Abstract

The iridescent features of the butterfly species Apatura iris (Linnaeus, 1758) and A. ilia (Denis & Schiffermüller, 1775) were studied. We recognized the structural color of scales only on the dorsal side of both the fore and hind wings of males of both of the aforementioned butterfly species. The scale dimensions and microstructure were analyzed by a scanning electron microscope (SEM) and transmission electron microscope (TEM). The optical properties were measured and it was found that the peak reflectivity is around 380 nm, with a spectral width (full width at half maximum) of approximately 50 nm in both species. The angular selectivity is high and a purple iridescent color is observed within the angular range of only 18 degrees in both species.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev. 99(7), 1935–1962 (1999).
    [CrossRef]
  2. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
    [CrossRef]
  3. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
    [CrossRef] [PubMed]
  4. R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol. 209(4), 748–765 (2006).
    [CrossRef] [PubMed]
  5. P. Vukusic, “Structural colour in Lepidoptera,” Curr. Biol. 16(16), R621–R623 (2006).
    [CrossRef] [PubMed]
  6. N. L. Garrett, P. Vukusic, F. Ogrin, E. Sirotkin, C. P. Winlove, and J. Moger, “Spectroscopy on the wing: naturally inspired SERS substrates for biochemical analysis,” J Biophotonics 2(3), 157–166 (2009).
    [CrossRef] [PubMed]
  7. M. D. Shawkey, N. I. Morehouse, and P. Vukusic, “A protean palette: colour materials and mixing in birds and butterflies,” J. R. Soc. Interface 6(Suppl 2), S221–S231 (2009).
    [PubMed]
  8. H. Ghiradella, “Light and color on the wing: structural colors in butterflies and moths,” Appl. Opt. 30(24), 3492–3500 (1991).
    [CrossRef] [PubMed]
  9. H. Ghiradella, “Hairs, bristles, and scales,” in Microscopic Anatomy of Invertebrates, Vol. 11A: Insecta, F.W. Harrison and M. Locke eds. (Wiley, New York, 1988).
  10. H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silberglied, and H. E. Hinton, “Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales,” Science 178(4066), 1214–1217 (1972).
    [CrossRef] [PubMed]
  11. L. P. Biró, K. Kertész, Z. Vértesy, G. I. Márk, Z. Bálint, V. Lousse, and J.-P. Vigneron, “Living photonic crystals: butterfly scales – nanostructure and optical properties,” Mater. Sci. Eng. C 27(5-8), 941–946 (2007).
    [CrossRef]
  12. Z. Han, L. Wu, Z. Qiu, and L. Ren, “Microstructure and structural color in wing scales of butterfly Thaumantis diores,” Chin. Sci. Bull. 54(4), 535–540 (2009).
    [CrossRef]
  13. M. Imafuku, Y. Hirose, and T. Takeuchi, “Wing colors of Chrysozephyrus butterflies (Lepidoptera; Lycaenidae): ultraviolet reflection by males,” Zoolog. Sci. 19(2), 175–183 (2002).
    [CrossRef] [PubMed]
  14. P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structurally assisted blackness in butterfly scales,” Proc. Biol. Sci. 271(Suppl 4), S237–S239 (2004).
    [CrossRef] [PubMed]
  15. P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310(5751), 1151 (2005).
    [CrossRef] [PubMed]
  16. S. M. Luke, P. Vukusic, and B. Hallam, “Measuring and modelling optical scattering and the colour quality of white pierid butterfly scales,” Opt. Express 17(17), 14729–14743 (2009).
    [CrossRef] [PubMed]
  17. K. Kertész, G. Molnár, Z. Vértesy, A. A. Koós, Z. E. Horváth, G. I. Márk, L. Tapasztó, Z. Bálint, I. Tamáska, O. Deparis, J. P. Vigneron, and L. P. Biró, “Photonic band gap materials in butterfly scales: a possible source of “blueprints”,” Mater. Sci. Eng. B 149(3), 259–265 (2008).
    [CrossRef]
  18. Z. Vértesy, K. Kertész, Z. Bálint, G. Molnár, M. Erős, and L. P. Biró, “SEM and TEM investigations in the scales of the European nymphalid butterfly Apatura ilia dark and light phenotypes,” in BioPhot Meeting Abstract Book, Levente Tapasztó ed. (Reserach Institute for Technical Physics and Materials Science, Budapest, Hungary, 2007), pp. 14–15.
  19. Z. Han, L. Wu, Z. Qiu, H. Guan, and L. Ren, “Structural colour in butterfly Apatura ilia scales and the microstructure simulation of photonic crystal,” J. Bionics Eng. 5(Supplement 1), 14–19 (2008).
    [CrossRef]
  20. R. E. Silberglied, “Visual communication and sexual selection among butterflies,” In The Biology of Butterflies. Symposium of the Royal Society of London, No. 11, R. I. Vane-Wright, and P. E. Ackery eds. (Academic Press, London. 1984) pp. 207–223.
  21. R. J. C. Page, “Perching and patrolling continuum at favoured hilltop sites on a ridge: a mate location strategy by the Purple Emperor butterfly Apatura iris,” The Entomologist’s Record 122, 61–70 (2010).
  22. S. Berthier, “Photonique des Morphos,” (Springer-Verlag France, Paris, 2010).
  23. G. A. Blackburn, “Hyperspectral remote sensing of plant pigments,” J. Exp. Bot. 58(4), 855–867 (2006).
    [CrossRef] [PubMed]
  24. M. A. Giraldo, S. Yoshioka, and D. G. Stavenga, “Far field scattering pattern of differently structured butterfly scales,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 194(3), 201–207 (2008).
    [CrossRef]
  25. S. Yoshioka and S. Kinoshita, “Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly,” Proc. Biol. Sci. 271(1539), 581–587 (2004).
    [CrossRef] [PubMed]

2010 (1)

R. J. C. Page, “Perching and patrolling continuum at favoured hilltop sites on a ridge: a mate location strategy by the Purple Emperor butterfly Apatura iris,” The Entomologist’s Record 122, 61–70 (2010).

2009 (4)

Z. Han, L. Wu, Z. Qiu, and L. Ren, “Microstructure and structural color in wing scales of butterfly Thaumantis diores,” Chin. Sci. Bull. 54(4), 535–540 (2009).
[CrossRef]

N. L. Garrett, P. Vukusic, F. Ogrin, E. Sirotkin, C. P. Winlove, and J. Moger, “Spectroscopy on the wing: naturally inspired SERS substrates for biochemical analysis,” J Biophotonics 2(3), 157–166 (2009).
[CrossRef] [PubMed]

M. D. Shawkey, N. I. Morehouse, and P. Vukusic, “A protean palette: colour materials and mixing in birds and butterflies,” J. R. Soc. Interface 6(Suppl 2), S221–S231 (2009).
[PubMed]

S. M. Luke, P. Vukusic, and B. Hallam, “Measuring and modelling optical scattering and the colour quality of white pierid butterfly scales,” Opt. Express 17(17), 14729–14743 (2009).
[CrossRef] [PubMed]

2008 (3)

M. A. Giraldo, S. Yoshioka, and D. G. Stavenga, “Far field scattering pattern of differently structured butterfly scales,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 194(3), 201–207 (2008).
[CrossRef]

K. Kertész, G. Molnár, Z. Vértesy, A. A. Koós, Z. E. Horváth, G. I. Márk, L. Tapasztó, Z. Bálint, I. Tamáska, O. Deparis, J. P. Vigneron, and L. P. Biró, “Photonic band gap materials in butterfly scales: a possible source of “blueprints”,” Mater. Sci. Eng. B 149(3), 259–265 (2008).
[CrossRef]

Z. Han, L. Wu, Z. Qiu, H. Guan, and L. Ren, “Structural colour in butterfly Apatura ilia scales and the microstructure simulation of photonic crystal,” J. Bionics Eng. 5(Supplement 1), 14–19 (2008).
[CrossRef]

2007 (1)

L. P. Biró, K. Kertész, Z. Vértesy, G. I. Márk, Z. Bálint, V. Lousse, and J.-P. Vigneron, “Living photonic crystals: butterfly scales – nanostructure and optical properties,” Mater. Sci. Eng. C 27(5-8), 941–946 (2007).
[CrossRef]

2006 (3)

R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol. 209(4), 748–765 (2006).
[CrossRef] [PubMed]

P. Vukusic, “Structural colour in Lepidoptera,” Curr. Biol. 16(16), R621–R623 (2006).
[CrossRef] [PubMed]

G. A. Blackburn, “Hyperspectral remote sensing of plant pigments,” J. Exp. Bot. 58(4), 855–867 (2006).
[CrossRef] [PubMed]

2005 (1)

P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310(5751), 1151 (2005).
[CrossRef] [PubMed]

2004 (2)

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structurally assisted blackness in butterfly scales,” Proc. Biol. Sci. 271(Suppl 4), S237–S239 (2004).
[CrossRef] [PubMed]

S. Yoshioka and S. Kinoshita, “Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly,” Proc. Biol. Sci. 271(1539), 581–587 (2004).
[CrossRef] [PubMed]

2003 (1)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

2002 (1)

M. Imafuku, Y. Hirose, and T. Takeuchi, “Wing colors of Chrysozephyrus butterflies (Lepidoptera; Lycaenidae): ultraviolet reflection by males,” Zoolog. Sci. 19(2), 175–183 (2002).
[CrossRef] [PubMed]

1999 (2)

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev. 99(7), 1935–1962 (1999).
[CrossRef]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

1991 (1)

1972 (1)

H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silberglied, and H. E. Hinton, “Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales,” Science 178(4066), 1214–1217 (1972).
[CrossRef] [PubMed]

Aneshansley, D.

H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silberglied, and H. E. Hinton, “Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales,” Science 178(4066), 1214–1217 (1972).
[CrossRef] [PubMed]

Bálint, Z.

K. Kertész, G. Molnár, Z. Vértesy, A. A. Koós, Z. E. Horváth, G. I. Márk, L. Tapasztó, Z. Bálint, I. Tamáska, O. Deparis, J. P. Vigneron, and L. P. Biró, “Photonic band gap materials in butterfly scales: a possible source of “blueprints”,” Mater. Sci. Eng. B 149(3), 259–265 (2008).
[CrossRef]

L. P. Biró, K. Kertész, Z. Vértesy, G. I. Márk, Z. Bálint, V. Lousse, and J.-P. Vigneron, “Living photonic crystals: butterfly scales – nanostructure and optical properties,” Mater. Sci. Eng. C 27(5-8), 941–946 (2007).
[CrossRef]

Biró, L. P.

K. Kertész, G. Molnár, Z. Vértesy, A. A. Koós, Z. E. Horváth, G. I. Márk, L. Tapasztó, Z. Bálint, I. Tamáska, O. Deparis, J. P. Vigneron, and L. P. Biró, “Photonic band gap materials in butterfly scales: a possible source of “blueprints”,” Mater. Sci. Eng. B 149(3), 259–265 (2008).
[CrossRef]

L. P. Biró, K. Kertész, Z. Vértesy, G. I. Márk, Z. Bálint, V. Lousse, and J.-P. Vigneron, “Living photonic crystals: butterfly scales – nanostructure and optical properties,” Mater. Sci. Eng. C 27(5-8), 941–946 (2007).
[CrossRef]

Blackburn, G. A.

G. A. Blackburn, “Hyperspectral remote sensing of plant pigments,” J. Exp. Bot. 58(4), 855–867 (2006).
[CrossRef] [PubMed]

Deparis, O.

K. Kertész, G. Molnár, Z. Vértesy, A. A. Koós, Z. E. Horváth, G. I. Márk, L. Tapasztó, Z. Bálint, I. Tamáska, O. Deparis, J. P. Vigneron, and L. P. Biró, “Photonic band gap materials in butterfly scales: a possible source of “blueprints”,” Mater. Sci. Eng. B 149(3), 259–265 (2008).
[CrossRef]

Eisner, T.

H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silberglied, and H. E. Hinton, “Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales,” Science 178(4066), 1214–1217 (1972).
[CrossRef] [PubMed]

Garrett, N. L.

N. L. Garrett, P. Vukusic, F. Ogrin, E. Sirotkin, C. P. Winlove, and J. Moger, “Spectroscopy on the wing: naturally inspired SERS substrates for biochemical analysis,” J Biophotonics 2(3), 157–166 (2009).
[CrossRef] [PubMed]

Ghiradella, H.

H. Ghiradella, “Light and color on the wing: structural colors in butterflies and moths,” Appl. Opt. 30(24), 3492–3500 (1991).
[CrossRef] [PubMed]

H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silberglied, and H. E. Hinton, “Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales,” Science 178(4066), 1214–1217 (1972).
[CrossRef] [PubMed]

Giraldo, M. A.

M. A. Giraldo, S. Yoshioka, and D. G. Stavenga, “Far field scattering pattern of differently structured butterfly scales,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 194(3), 201–207 (2008).
[CrossRef]

Guan, H.

Z. Han, L. Wu, Z. Qiu, H. Guan, and L. Ren, “Structural colour in butterfly Apatura ilia scales and the microstructure simulation of photonic crystal,” J. Bionics Eng. 5(Supplement 1), 14–19 (2008).
[CrossRef]

Hallam, B.

Han, Z.

Z. Han, L. Wu, Z. Qiu, and L. Ren, “Microstructure and structural color in wing scales of butterfly Thaumantis diores,” Chin. Sci. Bull. 54(4), 535–540 (2009).
[CrossRef]

Z. Han, L. Wu, Z. Qiu, H. Guan, and L. Ren, “Structural colour in butterfly Apatura ilia scales and the microstructure simulation of photonic crystal,” J. Bionics Eng. 5(Supplement 1), 14–19 (2008).
[CrossRef]

Hinton, H. E.

H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silberglied, and H. E. Hinton, “Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales,” Science 178(4066), 1214–1217 (1972).
[CrossRef] [PubMed]

Hirose, Y.

M. Imafuku, Y. Hirose, and T. Takeuchi, “Wing colors of Chrysozephyrus butterflies (Lepidoptera; Lycaenidae): ultraviolet reflection by males,” Zoolog. Sci. 19(2), 175–183 (2002).
[CrossRef] [PubMed]

Hooper, I.

P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310(5751), 1151 (2005).
[CrossRef] [PubMed]

Horváth, Z. E.

K. Kertész, G. Molnár, Z. Vértesy, A. A. Koós, Z. E. Horváth, G. I. Márk, L. Tapasztó, Z. Bálint, I. Tamáska, O. Deparis, J. P. Vigneron, and L. P. Biró, “Photonic band gap materials in butterfly scales: a possible source of “blueprints”,” Mater. Sci. Eng. B 149(3), 259–265 (2008).
[CrossRef]

Imafuku, M.

M. Imafuku, Y. Hirose, and T. Takeuchi, “Wing colors of Chrysozephyrus butterflies (Lepidoptera; Lycaenidae): ultraviolet reflection by males,” Zoolog. Sci. 19(2), 175–183 (2002).
[CrossRef] [PubMed]

Kertész, K.

K. Kertész, G. Molnár, Z. Vértesy, A. A. Koós, Z. E. Horváth, G. I. Márk, L. Tapasztó, Z. Bálint, I. Tamáska, O. Deparis, J. P. Vigneron, and L. P. Biró, “Photonic band gap materials in butterfly scales: a possible source of “blueprints”,” Mater. Sci. Eng. B 149(3), 259–265 (2008).
[CrossRef]

L. P. Biró, K. Kertész, Z. Vértesy, G. I. Márk, Z. Bálint, V. Lousse, and J.-P. Vigneron, “Living photonic crystals: butterfly scales – nanostructure and optical properties,” Mater. Sci. Eng. C 27(5-8), 941–946 (2007).
[CrossRef]

Kinoshita, S.

S. Yoshioka and S. Kinoshita, “Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly,” Proc. Biol. Sci. 271(1539), 581–587 (2004).
[CrossRef] [PubMed]

Koós, A. A.

K. Kertész, G. Molnár, Z. Vértesy, A. A. Koós, Z. E. Horváth, G. I. Márk, L. Tapasztó, Z. Bálint, I. Tamáska, O. Deparis, J. P. Vigneron, and L. P. Biró, “Photonic band gap materials in butterfly scales: a possible source of “blueprints”,” Mater. Sci. Eng. B 149(3), 259–265 (2008).
[CrossRef]

Lawrence, C. R.

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structurally assisted blackness in butterfly scales,” Proc. Biol. Sci. 271(Suppl 4), S237–S239 (2004).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

Lousse, V.

L. P. Biró, K. Kertész, Z. Vértesy, G. I. Márk, Z. Bálint, V. Lousse, and J.-P. Vigneron, “Living photonic crystals: butterfly scales – nanostructure and optical properties,” Mater. Sci. Eng. C 27(5-8), 941–946 (2007).
[CrossRef]

Luke, S. M.

Márk, G. I.

K. Kertész, G. Molnár, Z. Vértesy, A. A. Koós, Z. E. Horváth, G. I. Márk, L. Tapasztó, Z. Bálint, I. Tamáska, O. Deparis, J. P. Vigneron, and L. P. Biró, “Photonic band gap materials in butterfly scales: a possible source of “blueprints”,” Mater. Sci. Eng. B 149(3), 259–265 (2008).
[CrossRef]

L. P. Biró, K. Kertész, Z. Vértesy, G. I. Márk, Z. Bálint, V. Lousse, and J.-P. Vigneron, “Living photonic crystals: butterfly scales – nanostructure and optical properties,” Mater. Sci. Eng. C 27(5-8), 941–946 (2007).
[CrossRef]

Moger, J.

N. L. Garrett, P. Vukusic, F. Ogrin, E. Sirotkin, C. P. Winlove, and J. Moger, “Spectroscopy on the wing: naturally inspired SERS substrates for biochemical analysis,” J Biophotonics 2(3), 157–166 (2009).
[CrossRef] [PubMed]

Molnár, G.

K. Kertész, G. Molnár, Z. Vértesy, A. A. Koós, Z. E. Horváth, G. I. Márk, L. Tapasztó, Z. Bálint, I. Tamáska, O. Deparis, J. P. Vigneron, and L. P. Biró, “Photonic band gap materials in butterfly scales: a possible source of “blueprints”,” Mater. Sci. Eng. B 149(3), 259–265 (2008).
[CrossRef]

Morehouse, N. I.

M. D. Shawkey, N. I. Morehouse, and P. Vukusic, “A protean palette: colour materials and mixing in birds and butterflies,” J. R. Soc. Interface 6(Suppl 2), S221–S231 (2009).
[PubMed]

Ogrin, F.

N. L. Garrett, P. Vukusic, F. Ogrin, E. Sirotkin, C. P. Winlove, and J. Moger, “Spectroscopy on the wing: naturally inspired SERS substrates for biochemical analysis,” J Biophotonics 2(3), 157–166 (2009).
[CrossRef] [PubMed]

Page, R. J. C.

R. J. C. Page, “Perching and patrolling continuum at favoured hilltop sites on a ridge: a mate location strategy by the Purple Emperor butterfly Apatura iris,” The Entomologist’s Record 122, 61–70 (2010).

Prum, R. O.

R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol. 209(4), 748–765 (2006).
[CrossRef] [PubMed]

Qiu, Z.

Z. Han, L. Wu, Z. Qiu, and L. Ren, “Microstructure and structural color in wing scales of butterfly Thaumantis diores,” Chin. Sci. Bull. 54(4), 535–540 (2009).
[CrossRef]

Z. Han, L. Wu, Z. Qiu, H. Guan, and L. Ren, “Structural colour in butterfly Apatura ilia scales and the microstructure simulation of photonic crystal,” J. Bionics Eng. 5(Supplement 1), 14–19 (2008).
[CrossRef]

Quinn, T.

R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol. 209(4), 748–765 (2006).
[CrossRef] [PubMed]

Ren, L.

Z. Han, L. Wu, Z. Qiu, and L. Ren, “Microstructure and structural color in wing scales of butterfly Thaumantis diores,” Chin. Sci. Bull. 54(4), 535–540 (2009).
[CrossRef]

Z. Han, L. Wu, Z. Qiu, H. Guan, and L. Ren, “Structural colour in butterfly Apatura ilia scales and the microstructure simulation of photonic crystal,” J. Bionics Eng. 5(Supplement 1), 14–19 (2008).
[CrossRef]

Sambles, J. R.

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structurally assisted blackness in butterfly scales,” Proc. Biol. Sci. 271(Suppl 4), S237–S239 (2004).
[CrossRef] [PubMed]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

Shawkey, M. D.

M. D. Shawkey, N. I. Morehouse, and P. Vukusic, “A protean palette: colour materials and mixing in birds and butterflies,” J. R. Soc. Interface 6(Suppl 2), S221–S231 (2009).
[PubMed]

Silberglied, R. E.

H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silberglied, and H. E. Hinton, “Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales,” Science 178(4066), 1214–1217 (1972).
[CrossRef] [PubMed]

Sirotkin, E.

N. L. Garrett, P. Vukusic, F. Ogrin, E. Sirotkin, C. P. Winlove, and J. Moger, “Spectroscopy on the wing: naturally inspired SERS substrates for biochemical analysis,” J Biophotonics 2(3), 157–166 (2009).
[CrossRef] [PubMed]

Srinivasarao, M.

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev. 99(7), 1935–1962 (1999).
[CrossRef]

Stavenga, D. G.

M. A. Giraldo, S. Yoshioka, and D. G. Stavenga, “Far field scattering pattern of differently structured butterfly scales,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 194(3), 201–207 (2008).
[CrossRef]

Takeuchi, T.

M. Imafuku, Y. Hirose, and T. Takeuchi, “Wing colors of Chrysozephyrus butterflies (Lepidoptera; Lycaenidae): ultraviolet reflection by males,” Zoolog. Sci. 19(2), 175–183 (2002).
[CrossRef] [PubMed]

Tamáska, I.

K. Kertész, G. Molnár, Z. Vértesy, A. A. Koós, Z. E. Horváth, G. I. Márk, L. Tapasztó, Z. Bálint, I. Tamáska, O. Deparis, J. P. Vigneron, and L. P. Biró, “Photonic band gap materials in butterfly scales: a possible source of “blueprints”,” Mater. Sci. Eng. B 149(3), 259–265 (2008).
[CrossRef]

Tapasztó, L.

K. Kertész, G. Molnár, Z. Vértesy, A. A. Koós, Z. E. Horváth, G. I. Márk, L. Tapasztó, Z. Bálint, I. Tamáska, O. Deparis, J. P. Vigneron, and L. P. Biró, “Photonic band gap materials in butterfly scales: a possible source of “blueprints”,” Mater. Sci. Eng. B 149(3), 259–265 (2008).
[CrossRef]

Torres, R. H.

R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol. 209(4), 748–765 (2006).
[CrossRef] [PubMed]

Vértesy, Z.

K. Kertész, G. Molnár, Z. Vértesy, A. A. Koós, Z. E. Horváth, G. I. Márk, L. Tapasztó, Z. Bálint, I. Tamáska, O. Deparis, J. P. Vigneron, and L. P. Biró, “Photonic band gap materials in butterfly scales: a possible source of “blueprints”,” Mater. Sci. Eng. B 149(3), 259–265 (2008).
[CrossRef]

L. P. Biró, K. Kertész, Z. Vértesy, G. I. Márk, Z. Bálint, V. Lousse, and J.-P. Vigneron, “Living photonic crystals: butterfly scales – nanostructure and optical properties,” Mater. Sci. Eng. C 27(5-8), 941–946 (2007).
[CrossRef]

Vigneron, J. P.

K. Kertész, G. Molnár, Z. Vértesy, A. A. Koós, Z. E. Horváth, G. I. Márk, L. Tapasztó, Z. Bálint, I. Tamáska, O. Deparis, J. P. Vigneron, and L. P. Biró, “Photonic band gap materials in butterfly scales: a possible source of “blueprints”,” Mater. Sci. Eng. B 149(3), 259–265 (2008).
[CrossRef]

Vigneron, J.-P.

L. P. Biró, K. Kertész, Z. Vértesy, G. I. Márk, Z. Bálint, V. Lousse, and J.-P. Vigneron, “Living photonic crystals: butterfly scales – nanostructure and optical properties,” Mater. Sci. Eng. C 27(5-8), 941–946 (2007).
[CrossRef]

Vukusic, P.

N. L. Garrett, P. Vukusic, F. Ogrin, E. Sirotkin, C. P. Winlove, and J. Moger, “Spectroscopy on the wing: naturally inspired SERS substrates for biochemical analysis,” J Biophotonics 2(3), 157–166 (2009).
[CrossRef] [PubMed]

M. D. Shawkey, N. I. Morehouse, and P. Vukusic, “A protean palette: colour materials and mixing in birds and butterflies,” J. R. Soc. Interface 6(Suppl 2), S221–S231 (2009).
[PubMed]

S. M. Luke, P. Vukusic, and B. Hallam, “Measuring and modelling optical scattering and the colour quality of white pierid butterfly scales,” Opt. Express 17(17), 14729–14743 (2009).
[CrossRef] [PubMed]

P. Vukusic, “Structural colour in Lepidoptera,” Curr. Biol. 16(16), R621–R623 (2006).
[CrossRef] [PubMed]

P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310(5751), 1151 (2005).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structurally assisted blackness in butterfly scales,” Proc. Biol. Sci. 271(Suppl 4), S237–S239 (2004).
[CrossRef] [PubMed]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

Winlove, C. P.

N. L. Garrett, P. Vukusic, F. Ogrin, E. Sirotkin, C. P. Winlove, and J. Moger, “Spectroscopy on the wing: naturally inspired SERS substrates for biochemical analysis,” J Biophotonics 2(3), 157–166 (2009).
[CrossRef] [PubMed]

Wootton, R. J.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

Wu, L.

Z. Han, L. Wu, Z. Qiu, and L. Ren, “Microstructure and structural color in wing scales of butterfly Thaumantis diores,” Chin. Sci. Bull. 54(4), 535–540 (2009).
[CrossRef]

Z. Han, L. Wu, Z. Qiu, H. Guan, and L. Ren, “Structural colour in butterfly Apatura ilia scales and the microstructure simulation of photonic crystal,” J. Bionics Eng. 5(Supplement 1), 14–19 (2008).
[CrossRef]

Yoshioka, S.

M. A. Giraldo, S. Yoshioka, and D. G. Stavenga, “Far field scattering pattern of differently structured butterfly scales,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 194(3), 201–207 (2008).
[CrossRef]

S. Yoshioka and S. Kinoshita, “Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly,” Proc. Biol. Sci. 271(1539), 581–587 (2004).
[CrossRef] [PubMed]

Appl. Opt. (1)

Chem. Rev. (1)

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev. 99(7), 1935–1962 (1999).
[CrossRef]

Chin. Sci. Bull. (1)

Z. Han, L. Wu, Z. Qiu, and L. Ren, “Microstructure and structural color in wing scales of butterfly Thaumantis diores,” Chin. Sci. Bull. 54(4), 535–540 (2009).
[CrossRef]

Curr. Biol. (1)

P. Vukusic, “Structural colour in Lepidoptera,” Curr. Biol. 16(16), R621–R623 (2006).
[CrossRef] [PubMed]

J Biophotonics (1)

N. L. Garrett, P. Vukusic, F. Ogrin, E. Sirotkin, C. P. Winlove, and J. Moger, “Spectroscopy on the wing: naturally inspired SERS substrates for biochemical analysis,” J Biophotonics 2(3), 157–166 (2009).
[CrossRef] [PubMed]

J. Bionics Eng. (1)

Z. Han, L. Wu, Z. Qiu, H. Guan, and L. Ren, “Structural colour in butterfly Apatura ilia scales and the microstructure simulation of photonic crystal,” J. Bionics Eng. 5(Supplement 1), 14–19 (2008).
[CrossRef]

J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. (1)

M. A. Giraldo, S. Yoshioka, and D. G. Stavenga, “Far field scattering pattern of differently structured butterfly scales,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 194(3), 201–207 (2008).
[CrossRef]

J. Exp. Biol. (1)

R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol. 209(4), 748–765 (2006).
[CrossRef] [PubMed]

J. Exp. Bot. (1)

G. A. Blackburn, “Hyperspectral remote sensing of plant pigments,” J. Exp. Bot. 58(4), 855–867 (2006).
[CrossRef] [PubMed]

J. R. Soc. Interface (1)

M. D. Shawkey, N. I. Morehouse, and P. Vukusic, “A protean palette: colour materials and mixing in birds and butterflies,” J. R. Soc. Interface 6(Suppl 2), S221–S231 (2009).
[PubMed]

Mater. Sci. Eng. B (1)

K. Kertész, G. Molnár, Z. Vértesy, A. A. Koós, Z. E. Horváth, G. I. Márk, L. Tapasztó, Z. Bálint, I. Tamáska, O. Deparis, J. P. Vigneron, and L. P. Biró, “Photonic band gap materials in butterfly scales: a possible source of “blueprints”,” Mater. Sci. Eng. B 149(3), 259–265 (2008).
[CrossRef]

Mater. Sci. Eng. C (1)

L. P. Biró, K. Kertész, Z. Vértesy, G. I. Márk, Z. Bálint, V. Lousse, and J.-P. Vigneron, “Living photonic crystals: butterfly scales – nanostructure and optical properties,” Mater. Sci. Eng. C 27(5-8), 941–946 (2007).
[CrossRef]

Nature (1)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Proc. Biol. Sci. (3)

S. Yoshioka and S. Kinoshita, “Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly,” Proc. Biol. Sci. 271(1539), 581–587 (2004).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structurally assisted blackness in butterfly scales,” Proc. Biol. Sci. 271(Suppl 4), S237–S239 (2004).
[CrossRef] [PubMed]

Science (2)

P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310(5751), 1151 (2005).
[CrossRef] [PubMed]

H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silberglied, and H. E. Hinton, “Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales,” Science 178(4066), 1214–1217 (1972).
[CrossRef] [PubMed]

The Entomologist’s Record (1)

R. J. C. Page, “Perching and patrolling continuum at favoured hilltop sites on a ridge: a mate location strategy by the Purple Emperor butterfly Apatura iris,” The Entomologist’s Record 122, 61–70 (2010).

Zoolog. Sci. (1)

M. Imafuku, Y. Hirose, and T. Takeuchi, “Wing colors of Chrysozephyrus butterflies (Lepidoptera; Lycaenidae): ultraviolet reflection by males,” Zoolog. Sci. 19(2), 175–183 (2002).
[CrossRef] [PubMed]

Other (4)

Z. Vértesy, K. Kertész, Z. Bálint, G. Molnár, M. Erős, and L. P. Biró, “SEM and TEM investigations in the scales of the European nymphalid butterfly Apatura ilia dark and light phenotypes,” in BioPhot Meeting Abstract Book, Levente Tapasztó ed. (Reserach Institute for Technical Physics and Materials Science, Budapest, Hungary, 2007), pp. 14–15.

H. Ghiradella, “Hairs, bristles, and scales,” in Microscopic Anatomy of Invertebrates, Vol. 11A: Insecta, F.W. Harrison and M. Locke eds. (Wiley, New York, 1988).

S. Berthier, “Photonique des Morphos,” (Springer-Verlag France, Paris, 2010).

R. E. Silberglied, “Visual communication and sexual selection among butterflies,” In The Biology of Butterflies. Symposium of the Royal Society of London, No. 11, R. I. Vane-Wright, and P. E. Ackery eds. (Academic Press, London. 1984) pp. 207–223.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

a) Apatura iris; b) Apatura ilia. Observe that A. Ilia has an extra eye spot on fore wings.

Fig. 2
Fig. 2

Apatura iris: a) the cover scales on the dorsal wing side have a much denser structure in comparison to ground scales (SEM image); b) the blue iridescence of the cover scales positioned in regular rows. White scattering scales can be seen as well. The photograph is recorded in reflection; c) scattering scales have a glass-like appearance, while the iridescent scales are pigmented. Overlapping areas of glass-like scales are dark, indicating that the scattering is intensified. Microscope image is recorded in transmission.

Fig. 3
Fig. 3

SEM of the highly-magnified structure of a) Apatura iris cover scale in dorsal view; b) A. iris cover scale in dorso-lateral view. A stacked lamellar structure is apparent.

Fig. 4
Fig. 4

TEM image of cover scale cross section of Apatura iris.

Fig. 5
Fig. 5

Geometry of the microscopic structure of the Apatura iris wing scale (three orthogonal projections of the upper scale surface). All dimensions are in nanometers.

Fig. 6
Fig. 6

a) Reflection spectra of the Apatura iris wing, with the angle of incidence as a parameter; b) iridescence at 380 nm as a function of the observation angle.

Fig. 7
Fig. 7

a) Experimental setup used for the detection of the spatial distribution of Apatura iris wing iridescence (TL – titanium sapphire laser, SHG – frequency doubler, C – CCD camera, S – reflective cylinder, W – butterfly wing, M – mirror); b) a butterfly wing inside a reflective cylinder c) typical pattern of iridescence.

Fig. 8
Fig. 8

Pseudo-colored images of iridescence recorded at: a) 365 nm; b) 387 nm; c) 405 nm; d) 450 nm. Patterns were recorded using a Ti-sapphire laser with frequency doubler. Light intensities are color coded according to the bar at the top of the figure.

Fig. 9
Fig. 9

Radiation at 532 nm is almost uniformly scattered at the wing of Apatura iris. The pattern was recorded by Nd-YAG laser. Light intensities are color coded – yellow representing the highest intensity, and blue the lowest.

Fig. 10
Fig. 10

Directions in which the blue iridescence can be observed (purple arrows). The butterfly is schematically presented in three orthogonal projections.

Fig. 11
Fig. 11

Directionality of Apatura butterfly wing iridescence is a consequence of inclination of both lamellae (angle β) and the scale as a whole (angle α). γ is the angle of incidence of light with respect to the wing membrane. Axes x and z are in agreement with Fig. 10.

Fig. 12
Fig. 12

a) Geometry of the butterfly cover scale in cross section, used for the calculation of the spectral reflectivity of Apatura spp.; b) spectral reflectivity as obtained by exact analysis using rigorous coupled-wave analysis; c) angular dependence of iridescence at 380 nm.

Metrics