Abstract

P-i-n junctions were fabricated along Si nanowires (SiNWs) via the conventional top-down approach using optical lithography. Each device comprises 500 identical SiNWs connected in parallel, and each SiNW has triangular cross-section with dimensions of ~6 nm (base) by ~8 nm (height). The photodiodes exhibit very good rectifying electrical characteristics with a low reverse bias current of ~0.2 fA per SiNW. The photocurrent spectral response exhibits three peaks between 400 nm to 700 nm, which arise due to local optical field enhancement associated with diffraction by the periodic SiNW array and interference in an air/SiO2/Si cavity.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. T. Björk, J. Knoch, H. Schmid, H. Riel, and W. Riess, “Silicon nanowire tunneling field-effect transistors,” Appl. Phys. Lett. 92(19), 193504 (2008).
    [CrossRef]
  2. N. Singh, F. Y. Lim, W. W. Fang, S. C. Rustagi, L. K. Bera, A. Agarwal, C. H. Tung, K. M. Hoe, S. R. Omampuliyur, D. Tripathi, A. O. Adeyeye, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “Ultra-narrow silicon nanowire gate-all-around CMOS devices: impact of diameter channel-orientation and low temperature on device performance,” IEDM Tech. Dig 547–550, 1–4 (2006).
  3. X. T. Vu, R. GhoshMoulick, J. F. Eschermann, R. Stockmann, A. Offenhäusser, and S. Ingebrandt, “Fabrication and application of silicon nanowire transistor arrays for biomolecular detection,” Sens. Actuators B Chem. 144(2), 354–360 (2010).
    [CrossRef]
  4. O. Hayden, R. Agarwal, and C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater. 5(5), 352–356 (2006).
    [CrossRef] [PubMed]
  5. Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science 291(5505), 851–853 (2001).
    [CrossRef] [PubMed]
  6. A. Agarwal, K. Buddharaju, I. K. Lao, N. Singh, N. Balasubramanian, and D. L. Kwong, “Silicon nanowire sensor array using top-down CMOS technology,” Sens. Actuators A Phys. 145–146, 207–213 (2008).
    [CrossRef]
  7. A. S. Grove, O. Leistiko, and C. T. Sah, “Redistribution of acceptor and donor impurities during thermal oxidation of silicon,” J. Appl. Phys. 35(9), 2695–2701 (1964).
    [CrossRef]
  8. L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
    [CrossRef] [PubMed]
  9. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., 1998).
  10. G. Ding, C. T. Chan, Z. Q. Zhang, and P. Sheng, “Resonance-enhanced optical annealing of silicon nanowires,” Phys. Rev. B 71(20), 205302 (2005).
    [CrossRef]

2010 (2)

X. T. Vu, R. GhoshMoulick, J. F. Eschermann, R. Stockmann, A. Offenhäusser, and S. Ingebrandt, “Fabrication and application of silicon nanowire transistor arrays for biomolecular detection,” Sens. Actuators B Chem. 144(2), 354–360 (2010).
[CrossRef]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

2008 (2)

A. Agarwal, K. Buddharaju, I. K. Lao, N. Singh, N. Balasubramanian, and D. L. Kwong, “Silicon nanowire sensor array using top-down CMOS technology,” Sens. Actuators A Phys. 145–146, 207–213 (2008).
[CrossRef]

M. T. Björk, J. Knoch, H. Schmid, H. Riel, and W. Riess, “Silicon nanowire tunneling field-effect transistors,” Appl. Phys. Lett. 92(19), 193504 (2008).
[CrossRef]

2006 (2)

N. Singh, F. Y. Lim, W. W. Fang, S. C. Rustagi, L. K. Bera, A. Agarwal, C. H. Tung, K. M. Hoe, S. R. Omampuliyur, D. Tripathi, A. O. Adeyeye, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “Ultra-narrow silicon nanowire gate-all-around CMOS devices: impact of diameter channel-orientation and low temperature on device performance,” IEDM Tech. Dig 547–550, 1–4 (2006).

O. Hayden, R. Agarwal, and C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater. 5(5), 352–356 (2006).
[CrossRef] [PubMed]

2005 (1)

G. Ding, C. T. Chan, Z. Q. Zhang, and P. Sheng, “Resonance-enhanced optical annealing of silicon nanowires,” Phys. Rev. B 71(20), 205302 (2005).
[CrossRef]

2001 (1)

Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science 291(5505), 851–853 (2001).
[CrossRef] [PubMed]

1964 (1)

A. S. Grove, O. Leistiko, and C. T. Sah, “Redistribution of acceptor and donor impurities during thermal oxidation of silicon,” J. Appl. Phys. 35(9), 2695–2701 (1964).
[CrossRef]

Adeyeye, A. O.

N. Singh, F. Y. Lim, W. W. Fang, S. C. Rustagi, L. K. Bera, A. Agarwal, C. H. Tung, K. M. Hoe, S. R. Omampuliyur, D. Tripathi, A. O. Adeyeye, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “Ultra-narrow silicon nanowire gate-all-around CMOS devices: impact of diameter channel-orientation and low temperature on device performance,” IEDM Tech. Dig 547–550, 1–4 (2006).

Agarwal, A.

A. Agarwal, K. Buddharaju, I. K. Lao, N. Singh, N. Balasubramanian, and D. L. Kwong, “Silicon nanowire sensor array using top-down CMOS technology,” Sens. Actuators A Phys. 145–146, 207–213 (2008).
[CrossRef]

N. Singh, F. Y. Lim, W. W. Fang, S. C. Rustagi, L. K. Bera, A. Agarwal, C. H. Tung, K. M. Hoe, S. R. Omampuliyur, D. Tripathi, A. O. Adeyeye, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “Ultra-narrow silicon nanowire gate-all-around CMOS devices: impact of diameter channel-orientation and low temperature on device performance,” IEDM Tech. Dig 547–550, 1–4 (2006).

Agarwal, R.

O. Hayden, R. Agarwal, and C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater. 5(5), 352–356 (2006).
[CrossRef] [PubMed]

Balasubramanian, N.

A. Agarwal, K. Buddharaju, I. K. Lao, N. Singh, N. Balasubramanian, and D. L. Kwong, “Silicon nanowire sensor array using top-down CMOS technology,” Sens. Actuators A Phys. 145–146, 207–213 (2008).
[CrossRef]

N. Singh, F. Y. Lim, W. W. Fang, S. C. Rustagi, L. K. Bera, A. Agarwal, C. H. Tung, K. M. Hoe, S. R. Omampuliyur, D. Tripathi, A. O. Adeyeye, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “Ultra-narrow silicon nanowire gate-all-around CMOS devices: impact of diameter channel-orientation and low temperature on device performance,” IEDM Tech. Dig 547–550, 1–4 (2006).

Bera, L. K.

N. Singh, F. Y. Lim, W. W. Fang, S. C. Rustagi, L. K. Bera, A. Agarwal, C. H. Tung, K. M. Hoe, S. R. Omampuliyur, D. Tripathi, A. O. Adeyeye, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “Ultra-narrow silicon nanowire gate-all-around CMOS devices: impact of diameter channel-orientation and low temperature on device performance,” IEDM Tech. Dig 547–550, 1–4 (2006).

Björk, M. T.

M. T. Björk, J. Knoch, H. Schmid, H. Riel, and W. Riess, “Silicon nanowire tunneling field-effect transistors,” Appl. Phys. Lett. 92(19), 193504 (2008).
[CrossRef]

Brongersma, M. L.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

Buddharaju, K.

A. Agarwal, K. Buddharaju, I. K. Lao, N. Singh, N. Balasubramanian, and D. L. Kwong, “Silicon nanowire sensor array using top-down CMOS technology,” Sens. Actuators A Phys. 145–146, 207–213 (2008).
[CrossRef]

Cao, L.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

Chan, C. T.

G. Ding, C. T. Chan, Z. Q. Zhang, and P. Sheng, “Resonance-enhanced optical annealing of silicon nanowires,” Phys. Rev. B 71(20), 205302 (2005).
[CrossRef]

Clemens, B.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

Cui, Y.

Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science 291(5505), 851–853 (2001).
[CrossRef] [PubMed]

Ding, G.

G. Ding, C. T. Chan, Z. Q. Zhang, and P. Sheng, “Resonance-enhanced optical annealing of silicon nanowires,” Phys. Rev. B 71(20), 205302 (2005).
[CrossRef]

Eschermann, J. F.

X. T. Vu, R. GhoshMoulick, J. F. Eschermann, R. Stockmann, A. Offenhäusser, and S. Ingebrandt, “Fabrication and application of silicon nanowire transistor arrays for biomolecular detection,” Sens. Actuators B Chem. 144(2), 354–360 (2010).
[CrossRef]

Fan, P.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

Fang, W. W.

N. Singh, F. Y. Lim, W. W. Fang, S. C. Rustagi, L. K. Bera, A. Agarwal, C. H. Tung, K. M. Hoe, S. R. Omampuliyur, D. Tripathi, A. O. Adeyeye, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “Ultra-narrow silicon nanowire gate-all-around CMOS devices: impact of diameter channel-orientation and low temperature on device performance,” IEDM Tech. Dig 547–550, 1–4 (2006).

GhoshMoulick, R.

X. T. Vu, R. GhoshMoulick, J. F. Eschermann, R. Stockmann, A. Offenhäusser, and S. Ingebrandt, “Fabrication and application of silicon nanowire transistor arrays for biomolecular detection,” Sens. Actuators B Chem. 144(2), 354–360 (2010).
[CrossRef]

Grove, A. S.

A. S. Grove, O. Leistiko, and C. T. Sah, “Redistribution of acceptor and donor impurities during thermal oxidation of silicon,” J. Appl. Phys. 35(9), 2695–2701 (1964).
[CrossRef]

Hayden, O.

O. Hayden, R. Agarwal, and C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater. 5(5), 352–356 (2006).
[CrossRef] [PubMed]

Hoe, K. M.

N. Singh, F. Y. Lim, W. W. Fang, S. C. Rustagi, L. K. Bera, A. Agarwal, C. H. Tung, K. M. Hoe, S. R. Omampuliyur, D. Tripathi, A. O. Adeyeye, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “Ultra-narrow silicon nanowire gate-all-around CMOS devices: impact of diameter channel-orientation and low temperature on device performance,” IEDM Tech. Dig 547–550, 1–4 (2006).

Ingebrandt, S.

X. T. Vu, R. GhoshMoulick, J. F. Eschermann, R. Stockmann, A. Offenhäusser, and S. Ingebrandt, “Fabrication and application of silicon nanowire transistor arrays for biomolecular detection,” Sens. Actuators B Chem. 144(2), 354–360 (2010).
[CrossRef]

Knoch, J.

M. T. Björk, J. Knoch, H. Schmid, H. Riel, and W. Riess, “Silicon nanowire tunneling field-effect transistors,” Appl. Phys. Lett. 92(19), 193504 (2008).
[CrossRef]

Kwong, D. L.

A. Agarwal, K. Buddharaju, I. K. Lao, N. Singh, N. Balasubramanian, and D. L. Kwong, “Silicon nanowire sensor array using top-down CMOS technology,” Sens. Actuators A Phys. 145–146, 207–213 (2008).
[CrossRef]

N. Singh, F. Y. Lim, W. W. Fang, S. C. Rustagi, L. K. Bera, A. Agarwal, C. H. Tung, K. M. Hoe, S. R. Omampuliyur, D. Tripathi, A. O. Adeyeye, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “Ultra-narrow silicon nanowire gate-all-around CMOS devices: impact of diameter channel-orientation and low temperature on device performance,” IEDM Tech. Dig 547–550, 1–4 (2006).

Lao, I. K.

A. Agarwal, K. Buddharaju, I. K. Lao, N. Singh, N. Balasubramanian, and D. L. Kwong, “Silicon nanowire sensor array using top-down CMOS technology,” Sens. Actuators A Phys. 145–146, 207–213 (2008).
[CrossRef]

Leistiko, O.

A. S. Grove, O. Leistiko, and C. T. Sah, “Redistribution of acceptor and donor impurities during thermal oxidation of silicon,” J. Appl. Phys. 35(9), 2695–2701 (1964).
[CrossRef]

Lieber, C. M.

O. Hayden, R. Agarwal, and C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater. 5(5), 352–356 (2006).
[CrossRef] [PubMed]

Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science 291(5505), 851–853 (2001).
[CrossRef] [PubMed]

Lim, F. Y.

N. Singh, F. Y. Lim, W. W. Fang, S. C. Rustagi, L. K. Bera, A. Agarwal, C. H. Tung, K. M. Hoe, S. R. Omampuliyur, D. Tripathi, A. O. Adeyeye, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “Ultra-narrow silicon nanowire gate-all-around CMOS devices: impact of diameter channel-orientation and low temperature on device performance,” IEDM Tech. Dig 547–550, 1–4 (2006).

Lo, G. Q.

N. Singh, F. Y. Lim, W. W. Fang, S. C. Rustagi, L. K. Bera, A. Agarwal, C. H. Tung, K. M. Hoe, S. R. Omampuliyur, D. Tripathi, A. O. Adeyeye, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “Ultra-narrow silicon nanowire gate-all-around CMOS devices: impact of diameter channel-orientation and low temperature on device performance,” IEDM Tech. Dig 547–550, 1–4 (2006).

Offenhäusser, A.

X. T. Vu, R. GhoshMoulick, J. F. Eschermann, R. Stockmann, A. Offenhäusser, and S. Ingebrandt, “Fabrication and application of silicon nanowire transistor arrays for biomolecular detection,” Sens. Actuators B Chem. 144(2), 354–360 (2010).
[CrossRef]

Omampuliyur, S. R.

N. Singh, F. Y. Lim, W. W. Fang, S. C. Rustagi, L. K. Bera, A. Agarwal, C. H. Tung, K. M. Hoe, S. R. Omampuliyur, D. Tripathi, A. O. Adeyeye, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “Ultra-narrow silicon nanowire gate-all-around CMOS devices: impact of diameter channel-orientation and low temperature on device performance,” IEDM Tech. Dig 547–550, 1–4 (2006).

Park, J.-S.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

Riel, H.

M. T. Björk, J. Knoch, H. Schmid, H. Riel, and W. Riess, “Silicon nanowire tunneling field-effect transistors,” Appl. Phys. Lett. 92(19), 193504 (2008).
[CrossRef]

Riess, W.

M. T. Björk, J. Knoch, H. Schmid, H. Riel, and W. Riess, “Silicon nanowire tunneling field-effect transistors,” Appl. Phys. Lett. 92(19), 193504 (2008).
[CrossRef]

Rustagi, S. C.

N. Singh, F. Y. Lim, W. W. Fang, S. C. Rustagi, L. K. Bera, A. Agarwal, C. H. Tung, K. M. Hoe, S. R. Omampuliyur, D. Tripathi, A. O. Adeyeye, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “Ultra-narrow silicon nanowire gate-all-around CMOS devices: impact of diameter channel-orientation and low temperature on device performance,” IEDM Tech. Dig 547–550, 1–4 (2006).

Sah, C. T.

A. S. Grove, O. Leistiko, and C. T. Sah, “Redistribution of acceptor and donor impurities during thermal oxidation of silicon,” J. Appl. Phys. 35(9), 2695–2701 (1964).
[CrossRef]

Schmid, H.

M. T. Björk, J. Knoch, H. Schmid, H. Riel, and W. Riess, “Silicon nanowire tunneling field-effect transistors,” Appl. Phys. Lett. 92(19), 193504 (2008).
[CrossRef]

Sheng, P.

G. Ding, C. T. Chan, Z. Q. Zhang, and P. Sheng, “Resonance-enhanced optical annealing of silicon nanowires,” Phys. Rev. B 71(20), 205302 (2005).
[CrossRef]

Singh, N.

A. Agarwal, K. Buddharaju, I. K. Lao, N. Singh, N. Balasubramanian, and D. L. Kwong, “Silicon nanowire sensor array using top-down CMOS technology,” Sens. Actuators A Phys. 145–146, 207–213 (2008).
[CrossRef]

N. Singh, F. Y. Lim, W. W. Fang, S. C. Rustagi, L. K. Bera, A. Agarwal, C. H. Tung, K. M. Hoe, S. R. Omampuliyur, D. Tripathi, A. O. Adeyeye, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “Ultra-narrow silicon nanowire gate-all-around CMOS devices: impact of diameter channel-orientation and low temperature on device performance,” IEDM Tech. Dig 547–550, 1–4 (2006).

Stockmann, R.

X. T. Vu, R. GhoshMoulick, J. F. Eschermann, R. Stockmann, A. Offenhäusser, and S. Ingebrandt, “Fabrication and application of silicon nanowire transistor arrays for biomolecular detection,” Sens. Actuators B Chem. 144(2), 354–360 (2010).
[CrossRef]

Tripathi, D.

N. Singh, F. Y. Lim, W. W. Fang, S. C. Rustagi, L. K. Bera, A. Agarwal, C. H. Tung, K. M. Hoe, S. R. Omampuliyur, D. Tripathi, A. O. Adeyeye, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “Ultra-narrow silicon nanowire gate-all-around CMOS devices: impact of diameter channel-orientation and low temperature on device performance,” IEDM Tech. Dig 547–550, 1–4 (2006).

Tung, C. H.

N. Singh, F. Y. Lim, W. W. Fang, S. C. Rustagi, L. K. Bera, A. Agarwal, C. H. Tung, K. M. Hoe, S. R. Omampuliyur, D. Tripathi, A. O. Adeyeye, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “Ultra-narrow silicon nanowire gate-all-around CMOS devices: impact of diameter channel-orientation and low temperature on device performance,” IEDM Tech. Dig 547–550, 1–4 (2006).

Vu, X. T.

X. T. Vu, R. GhoshMoulick, J. F. Eschermann, R. Stockmann, A. Offenhäusser, and S. Ingebrandt, “Fabrication and application of silicon nanowire transistor arrays for biomolecular detection,” Sens. Actuators B Chem. 144(2), 354–360 (2010).
[CrossRef]

Zhang, Z. Q.

G. Ding, C. T. Chan, Z. Q. Zhang, and P. Sheng, “Resonance-enhanced optical annealing of silicon nanowires,” Phys. Rev. B 71(20), 205302 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

M. T. Björk, J. Knoch, H. Schmid, H. Riel, and W. Riess, “Silicon nanowire tunneling field-effect transistors,” Appl. Phys. Lett. 92(19), 193504 (2008).
[CrossRef]

IEDM Tech. Dig (1)

N. Singh, F. Y. Lim, W. W. Fang, S. C. Rustagi, L. K. Bera, A. Agarwal, C. H. Tung, K. M. Hoe, S. R. Omampuliyur, D. Tripathi, A. O. Adeyeye, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “Ultra-narrow silicon nanowire gate-all-around CMOS devices: impact of diameter channel-orientation and low temperature on device performance,” IEDM Tech. Dig 547–550, 1–4 (2006).

J. Appl. Phys. (1)

A. S. Grove, O. Leistiko, and C. T. Sah, “Redistribution of acceptor and donor impurities during thermal oxidation of silicon,” J. Appl. Phys. 35(9), 2695–2701 (1964).
[CrossRef]

Nano Lett. (1)

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

Nat. Mater. (1)

O. Hayden, R. Agarwal, and C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater. 5(5), 352–356 (2006).
[CrossRef] [PubMed]

Phys. Rev. B (1)

G. Ding, C. T. Chan, Z. Q. Zhang, and P. Sheng, “Resonance-enhanced optical annealing of silicon nanowires,” Phys. Rev. B 71(20), 205302 (2005).
[CrossRef]

Science (1)

Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science 291(5505), 851–853 (2001).
[CrossRef] [PubMed]

Sens. Actuators A Phys. (1)

A. Agarwal, K. Buddharaju, I. K. Lao, N. Singh, N. Balasubramanian, and D. L. Kwong, “Silicon nanowire sensor array using top-down CMOS technology,” Sens. Actuators A Phys. 145–146, 207–213 (2008).
[CrossRef]

Sens. Actuators B Chem. (1)

X. T. Vu, R. GhoshMoulick, J. F. Eschermann, R. Stockmann, A. Offenhäusser, and S. Ingebrandt, “Fabrication and application of silicon nanowire transistor arrays for biomolecular detection,” Sens. Actuators B Chem. 144(2), 354–360 (2010).
[CrossRef]

Other (1)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

SEM image of device structure showing the general device layout having 500 SiNWs p-i-n junctions connected in parallel. Intrinsic Si nanowires are exposed after thermal oxidation and oxide removal. They are connected between heavily doped P and N type Si pad to form p-i-n junction. Scale bar: 400 nm.

Fig. 2
Fig. 2

TEM image of SiNW embedded in SiO2. Scale bar: 10 nm. Dotted line outlines the triangular cross section of the crystalline SiNW.

Fig. 3
Fig. 3

IV characteristic of p-i-n diodes with 500 nanowires connected in parallel. Also shown is the straight line fitting used for deducing the ideality factor.

Fig. 4
Fig. 4

Spectral photocurrent response of the 500 SiNWs p-i-n junctions. Several distinct peaks can be observed as indicated by arrow. The inset shows the unit cell comprising air/SiO2/Si-substrate that is used for the construction of a periodic structure to simulate the spectral responsivity of the SiNWs pin device.

Metrics