Abstract

We report on a low noise all-fiber erbium fs frequency comb based on a simple and robust tapered-fiber carbon nanotube (tf-CNT) design. We mitigate dominant noise sources to show that the free-running linewidth of the carrier-envelope offset frequency (fceo) can be comparable to the best reported performance to date for fiber-based frequency combs. A free-running fceo linewidth of ~20 kHz is demonstrated, corresponding to an improvement of ~30 times over previous work based on a CNT mode-locked fiber laser [Opt. Express 18, 1667 (2010)]. We also demonstrate the use of an acousto-optic modulator external to the laser cavity to stabilize fceo, enabling a 300 kHz feedback control bandwidth. The offset frequency is phase-locked with an in-loop integrated phase noise of ~0.8 rad from 10Hz to 400kHz. We show a resolution-limited linewidth of ~1 Hz, demonstrating over 90% of the carrier power within the coherent fceo signal. The results demonstrate that the relatively simple tf-CNT fiber laser design can provide a compact, robust and high-performance fs frequency comb.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F. L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).
    [CrossRef] [PubMed]
  2. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
    [CrossRef]
  3. J. K. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. S. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, “A phase-stabilized carbon nanotube fiber laser frequency comb,” Opt. Express 17(16), 14115–14120 (2009).
    [CrossRef] [PubMed]
  4. K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett. 32(15), 2242–2244 (2007).
    [CrossRef] [PubMed]
  5. J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31(13), 1997–1999 (2006).
    [CrossRef] [PubMed]
  6. J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
    [CrossRef]
  7. R. J. Jones and J. C. Diels, “Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis,” Phys. Rev. Lett. 86(15), 3288–3291 (2001).
    [CrossRef] [PubMed]
  8. S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
    [CrossRef]
  9. K. Kieu, R. J. Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system,” IEEE Photon. Technol. Lett. 22(20), 1521–1523 (2010).
    [CrossRef]
  10. I. Hartl, G. Imeshev, M. Fermann, C. Langrock, and M. Fejer, “Integrated self-referenced frequency-comb laser based on a combination of fiber and waveguide technology,” Opt. Express 13(17), 6490–6496 (2005).
    [CrossRef] [PubMed]
  11. K. Kieu, R. J. Jones, and N. Peyghambarian, “High power femtosecond source near 1 micron based on an all-fiber Er-doped mode-locked laser,” Opt. Express 18(20), 21350–21355 (2010).
    [CrossRef] [PubMed]
  12. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
    [CrossRef]
  13. R. Paschotta, “Timing jitter and phase noiseof mode-locked fiber lasers,” Opt. Express 18(5), 5041–5054 (2010).
    [CrossRef] [PubMed]
  14. K. W. Holman, R. J. Jones, A. Marian, S. T. Cundiff, and J. Ye, “Detailed studies and control of intensity-related dynamics of femtosecond frequency combs from mode-locked Ti: sapphire lasers,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1018–1024 (2003).
    [CrossRef]
  15. S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Control and precise measurement of carrier-envelope phase dynamics,” Appl. Phys. B 78(1), 5–12 (2004).
    [CrossRef]
  16. K. Kieu and F. W. Wise, “Self-similar and stretched-pulse operation of erbium-doped fiber lasers with carbon nanotubes saturable absorber,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CML3.
  17. Z. P. Sun, T. Hasan, F. Q. Wang, A. G. Rozhin, I. H. White, and A. C. Ferrari, “Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes,” Nano Res. 3(6), 404–411 (2010).
    [CrossRef]
  18. M. Y. Sander, E. P. Ippen, and F. X. Kärtner, “Carrier-envelope phase dynamics of octave-spanning dispersion-managed Ti: sapphire lasers,” Opt. Express 18(5), 4948–4960 (2010).
    [CrossRef] [PubMed]
  19. C. Ouyang, P. Shum, H. Wang, J. H. Wong, K. Wu, S. Fu, R. Li, E. J. R. Kelleher, A. I. Chernov, and E. D. Obraztsova, “Observation of timing jitter reduction induced by spectral filtering in a fiber laser mode locked with a carbon nanotube-based saturable absorber,” Opt. Lett. 35(14), 2320–2322 (2010).
    [CrossRef] [PubMed]

2010 (8)

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[CrossRef]

K. Kieu, R. J. Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system,” IEEE Photon. Technol. Lett. 22(20), 1521–1523 (2010).
[CrossRef]

Z. P. Sun, T. Hasan, F. Q. Wang, A. G. Rozhin, I. H. White, and A. C. Ferrari, “Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes,” Nano Res. 3(6), 404–411 (2010).
[CrossRef]

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F. L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).
[CrossRef] [PubMed]

M. Y. Sander, E. P. Ippen, and F. X. Kärtner, “Carrier-envelope phase dynamics of octave-spanning dispersion-managed Ti: sapphire lasers,” Opt. Express 18(5), 4948–4960 (2010).
[CrossRef] [PubMed]

R. Paschotta, “Timing jitter and phase noiseof mode-locked fiber lasers,” Opt. Express 18(5), 5041–5054 (2010).
[CrossRef] [PubMed]

C. Ouyang, P. Shum, H. Wang, J. H. Wong, K. Wu, S. Fu, R. Li, E. J. R. Kelleher, A. I. Chernov, and E. D. Obraztsova, “Observation of timing jitter reduction induced by spectral filtering in a fiber laser mode locked with a carbon nanotube-based saturable absorber,” Opt. Lett. 35(14), 2320–2322 (2010).
[CrossRef] [PubMed]

K. Kieu, R. J. Jones, and N. Peyghambarian, “High power femtosecond source near 1 micron based on an all-fiber Er-doped mode-locked laser,” Opt. Express 18(20), 21350–21355 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[CrossRef]

2007 (2)

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
[CrossRef]

K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett. 32(15), 2242–2244 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

2004 (1)

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Control and precise measurement of carrier-envelope phase dynamics,” Appl. Phys. B 78(1), 5–12 (2004).
[CrossRef]

2003 (1)

K. W. Holman, R. J. Jones, A. Marian, S. T. Cundiff, and J. Ye, “Detailed studies and control of intensity-related dynamics of femtosecond frequency combs from mode-locked Ti: sapphire lasers,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1018–1024 (2003).
[CrossRef]

2001 (1)

R. J. Jones and J. C. Diels, “Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis,” Phys. Rev. Lett. 86(15), 3288–3291 (2001).
[CrossRef] [PubMed]

1993 (1)

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[CrossRef]

Amezcua-Correa, R.

Anderson, A.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[CrossRef]

Assion, A.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[CrossRef]

Benabid, F.

Chernov, A. I.

Corwin, K. L.

Couny, F.

Cundiff, S. T.

K. W. Holman, R. J. Jones, A. Marian, S. T. Cundiff, and J. Ye, “Detailed studies and control of intensity-related dynamics of femtosecond frequency combs from mode-locked Ti: sapphire lasers,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1018–1024 (2003).
[CrossRef]

Diels, J. C.

R. J. Jones and J. C. Diels, “Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis,” Phys. Rev. Lett. 86(15), 3288–3291 (2001).
[CrossRef] [PubMed]

Eikema, K. S. E.

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Control and precise measurement of carrier-envelope phase dynamics,” Appl. Phys. B 78(1), 5–12 (2004).
[CrossRef]

Fejer, M.

Fermann, M.

Fermann, M. E.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[CrossRef]

Ferrari, A. C.

Z. P. Sun, T. Hasan, F. Q. Wang, A. G. Rozhin, I. H. White, and A. C. Ferrari, “Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes,” Nano Res. 3(6), 404–411 (2010).
[CrossRef]

Frei, H.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[CrossRef]

Fu, S.

Grebing, C.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[CrossRef]

Hartl, I.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[CrossRef]

I. Hartl, G. Imeshev, M. Fermann, C. Langrock, and M. Fejer, “Integrated self-referenced frequency-comb laser based on a combination of fiber and waveguide technology,” Opt. Express 13(17), 6490–6496 (2005).
[CrossRef] [PubMed]

Hasan, T.

Z. P. Sun, T. Hasan, F. Q. Wang, A. G. Rozhin, I. H. White, and A. C. Ferrari, “Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes,” Nano Res. 3(6), 404–411 (2010).
[CrossRef]

Haus, H. A.

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[CrossRef]

Hogervorst, W.

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Control and precise measurement of carrier-envelope phase dynamics,” Appl. Phys. B 78(1), 5–12 (2004).
[CrossRef]

Holman, K. W.

K. W. Holman, R. J. Jones, A. Marian, S. T. Cundiff, and J. Ye, “Detailed studies and control of intensity-related dynamics of femtosecond frequency combs from mode-locked Ti: sapphire lasers,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1018–1024 (2003).
[CrossRef]

Hong, F. L.

Hosaka, K.

Imeshev, G.

Inaba, H.

Ippen, E. P.

Jones, R. J.

K. Kieu, R. J. Jones, and N. Peyghambarian, “High power femtosecond source near 1 micron based on an all-fiber Er-doped mode-locked laser,” Opt. Express 18(20), 21350–21355 (2010).
[CrossRef] [PubMed]

K. Kieu, R. J. Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system,” IEEE Photon. Technol. Lett. 22(20), 1521–1523 (2010).
[CrossRef]

K. W. Holman, R. J. Jones, A. Marian, S. T. Cundiff, and J. Ye, “Detailed studies and control of intensity-related dynamics of femtosecond frequency combs from mode-locked Ti: sapphire lasers,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1018–1024 (2003).
[CrossRef]

R. J. Jones and J. C. Diels, “Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis,” Phys. Rev. Lett. 86(15), 3288–3291 (2001).
[CrossRef] [PubMed]

Kärtner, F. X.

Katsuyama, T.

Kawato, S.

Kelleher, E. J. R.

Kieu, K.

Knabe, K.

Knight, J. C.

Kobayashi, T.

Kohno, T.

Koke, S.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[CrossRef]

Langrock, C.

Li, R.

Light, P. S.

Lim, J. K.

Mansuripur, M.

Marcinkevicius, A.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[CrossRef]

Marian, A.

K. W. Holman, R. J. Jones, A. Marian, S. T. Cundiff, and J. Ye, “Detailed studies and control of intensity-related dynamics of femtosecond frequency combs from mode-locked Ti: sapphire lasers,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1018–1024 (2003).
[CrossRef]

Martin, M. J.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[CrossRef]

McFerran, J. J.

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
[CrossRef]

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31(13), 1997–1999 (2006).
[CrossRef] [PubMed]

Mecozzi, A.

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[CrossRef]

Minoshima, K.

Nakajima, Y.

Neely, W.

Newbury, N. R.

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
[CrossRef]

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31(13), 1997–1999 (2006).
[CrossRef] [PubMed]

Nicholson, J. W.

Obraztsova, E. D.

Onae, A.

Ouyang, C.

Paschotta, R.

Peyghambarian, N.

K. Kieu, R. J. Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system,” IEEE Photon. Technol. Lett. 22(20), 1521–1523 (2010).
[CrossRef]

K. Kieu, R. J. Jones, and N. Peyghambarian, “High power femtosecond source near 1 micron based on an all-fiber Er-doped mode-locked laser,” Opt. Express 18(20), 21350–21355 (2010).
[CrossRef] [PubMed]

Rozhin, A. G.

Z. P. Sun, T. Hasan, F. Q. Wang, A. G. Rozhin, I. H. White, and A. C. Ferrari, “Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes,” Nano Res. 3(6), 404–411 (2010).
[CrossRef]

Sander, M. Y.

Schibli, T. R.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[CrossRef]

Shum, P.

Steinmeyer, G.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[CrossRef]

Sun, Z. P.

Z. P. Sun, T. Hasan, F. Q. Wang, A. G. Rozhin, I. H. White, and A. C. Ferrari, “Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes,” Nano Res. 3(6), 404–411 (2010).
[CrossRef]

Swann, W. C.

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
[CrossRef]

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31(13), 1997–1999 (2006).
[CrossRef] [PubMed]

Tillman, K. A.

Wang, F. Q.

Z. P. Sun, T. Hasan, F. Q. Wang, A. G. Rozhin, I. H. White, and A. C. Ferrari, “Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes,” Nano Res. 3(6), 404–411 (2010).
[CrossRef]

Wang, H.

Wang, Y. S.

Washburn, B. R.

White, I. H.

Z. P. Sun, T. Hasan, F. Q. Wang, A. G. Rozhin, I. H. White, and A. C. Ferrari, “Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes,” Nano Res. 3(6), 404–411 (2010).
[CrossRef]

Witte, S.

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Control and precise measurement of carrier-envelope phase dynamics,” Appl. Phys. B 78(1), 5–12 (2004).
[CrossRef]

Wong, J. H.

Wu, K.

Yasuda, M.

Ye, J.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[CrossRef]

K. W. Holman, R. J. Jones, A. Marian, S. T. Cundiff, and J. Ye, “Detailed studies and control of intensity-related dynamics of femtosecond frequency combs from mode-locked Ti: sapphire lasers,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1018–1024 (2003).
[CrossRef]

Yost, D. C.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[CrossRef]

Zinkstok, R. T.

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Control and precise measurement of carrier-envelope phase dynamics,” Appl. Phys. B 78(1), 5–12 (2004).
[CrossRef]

Appl. Phys. B (2)

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
[CrossRef]

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Control and precise measurement of carrier-envelope phase dynamics,” Appl. Phys. B 78(1), 5–12 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. W. Holman, R. J. Jones, A. Marian, S. T. Cundiff, and J. Ye, “Detailed studies and control of intensity-related dynamics of femtosecond frequency combs from mode-locked Ti: sapphire lasers,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1018–1024 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Kieu, R. J. Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system,” IEEE Photon. Technol. Lett. 22(20), 1521–1523 (2010).
[CrossRef]

Nano Res. (1)

Z. P. Sun, T. Hasan, F. Q. Wang, A. G. Rozhin, I. H. White, and A. C. Ferrari, “Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes,” Nano Res. 3(6), 404–411 (2010).
[CrossRef]

Nat. Photonics (2)

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[CrossRef]

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

R. J. Jones and J. C. Diels, “Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis,” Phys. Rev. Lett. 86(15), 3288–3291 (2001).
[CrossRef] [PubMed]

Other (1)

K. Kieu and F. W. Wise, “Self-similar and stretched-pulse operation of erbium-doped fiber lasers with carbon nanotubes saturable absorber,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CML3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic layout of tapered fiber CNT based fiber frequency comb. OC: output coupler; AOM: acousto-optic modulator; WDM: wavelength division multiplexer; EDF: erbium-doped fiber; HNLF: highly nonlinear fiber; f-2f: nonlinear interferometer for detection of the carrier envelope offset frequency. Inset shows output spectrum of laser before the broadening in the HNLF.

Fig. 2
Fig. 2

(a) Measured linewidth of fceo versus current to pump laser diode. Optical power was attenuated at each data point to maintain a constant pump power. (b) Measured fceo beatnote for two different laser cavity configurations producing laser spectral bandwidths of 12 nm and 30 nm (full-width at half maximum). The resolution bandwidth (RBW) for each was 100 kHz. VBW: video bandwidth.

Fig. 4
Fig. 4

(a) Measurement of in-loop spectral density of phase fluctuations with an integrated value of 0.8 rad. Inset shows in-loop error signal of residual phase fluctuations versus time. (b) Allan deviation measurement of fceo indicating frequency fluctuations relative to the local oscillator. The 1/τ dependence is expected when comparing 2 phase coherent signals. Also shown is the measurement noise floor of the detection system (open squares). Dashed line is a guide for the eye showing the 1/τ dependence.

Fig. 3
Fig. 3

(a) Free-running linewidth of fceo measured with an electronic spectrum analyzer and 300 Hz video resolution bandwidth. Larger signal at ~42 MHz corresponds to the fundamental repetition rate of the laser. (b) Stabilized carrier envelope offset frequency recorded with 1kHz video resolution bandwidth. Inset shows resolution bandwidth limited 1 Hz linewidth. RBW: resolution bandwidth.

Metrics