Abstract

We report a new optical near-field transducer comprised of a metallic nano-antenna extending from the ridge of a C-shaped metallic nano-aperture. Finite-difference time domain simulations predict that the C-aperture nano-tip (CAN-Tip) provides high intensity (650x), high optical resolution (~λ/60), and background-free near-field illumination at a wavelength of 980 nm. The CAN-Tip has an aperture resonance and tip antenna resonance which may be tuned independently, so the structure can be made resonant at ultraviolet wavelengths without being unduly small. This near-field optical resolution of 16.1 nm has been experimentally confirmed by employing the CAN-Tip as an NSOM probe.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Shi and L. Hesselink, “Design of a C aperture to achieve λ/10 resolution and resonant transmission,” J. Opt. Soc. Am. B 21(7), 1305–1317 (2004).
    [CrossRef]
  2. L. Sun and L. Hesselink, “Low-loss subwavelength metal C-aperture waveguide,” Opt. Lett. 31(24), 3606–3608 (2006).
    [CrossRef] [PubMed]
  3. E. H. Synge, “A suggested method for extending microscopic resolution into the ultra-microscopic region,” Philos. Mag. 6, 356–362 (1928).
  4. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
    [CrossRef]
  5. X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
    [CrossRef]
  6. X. Shi, R. L. Thornton, and L. Hesselink, “A nano-aperture with 1000× power throughput enhancement for very small aperture laser system (VSAL),” Proc. SPIE 4342, 320–327 (2002).
    [CrossRef]
  7. Z. Rao, L. Hesselink, and J. S. Harris, “High-intensity bowtie-shaped nano-aperture vertical-cavity surface-emitting laser for near-field optics,” Opt. Lett. 32(14), 1995–1997 (2007).
    [CrossRef] [PubMed]
  8. K. Tanaka and M. Tanaka, “Optimized computer-aided design of I-shaped subwavelength aperture for high intensity and small spot size,” Opt. Commun. 233(4-6), 231–244 (2004).
    [CrossRef]
  9. J. B. Leen, P. Hansen, Y. Cheng, A. Gibby, and L. Hesselink, “Near-field optical data storage using C-apertures,” Appl. Phys. Lett. 97(7), 073111 (2010).
    [CrossRef]
  10. U. C. Fischer, J. Koglin, and H. Fuchs, “The tetrahedral tip as a probe for scanning near-field optical microscopy at 30 nm resolution,” J. Microsc. 176, 231–237 (1994).
    [CrossRef]
  11. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
    [CrossRef]
  12. J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004).
    [CrossRef] [PubMed]
  13. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
    [CrossRef] [PubMed]
  14. H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81(26), 5030–5032 (2002).
    [CrossRef]
  15. K. Tanaka, M. Tanaka, and T. Sugiyama, “Metallic tip probe providing high intensity and small spot size with a small background light in near-field optics,” Appl. Phys. Lett. 87(15), 151116 (2005).
    [CrossRef]
  16. R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13(6), 1933–1938 (2005).
    [CrossRef] [PubMed]
  17. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [CrossRef] [PubMed]
  18. B. Hou, X. Q. Liao, and J. K. S. Poon, “Resonant infrared transmission and effective medium response of subwavelength H-fractal apertures,” Opt. Express 18(4), 3946–3951 (2010).
    [CrossRef] [PubMed]
  19. P. Hansen, L. Hesselink, and B. Leen, “Design of a subwavelength bent C-aperture waveguide,” Opt. Lett. 32(12), 1737–1739 (2007).
    [CrossRef] [PubMed]
  20. H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
    [CrossRef] [PubMed]
  21. K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
    [CrossRef]
  22. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005), Chap. 8.
  23. J. A. Matteo and L. Hesselink, “Fractal extensions of near-field aperture shapes for enhanced transmission and resolution,” Opt. Express 13(2), 636–647 (2005).
    [CrossRef] [PubMed]

2010 (2)

J. B. Leen, P. Hansen, Y. Cheng, A. Gibby, and L. Hesselink, “Near-field optical data storage using C-apertures,” Appl. Phys. Lett. 97(7), 073111 (2010).
[CrossRef]

B. Hou, X. Q. Liao, and J. K. S. Poon, “Resonant infrared transmission and effective medium response of subwavelength H-fractal apertures,” Opt. Express 18(4), 3946–3951 (2010).
[CrossRef] [PubMed]

2009 (1)

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[CrossRef] [PubMed]

2007 (4)

P. Hansen, L. Hesselink, and B. Leen, “Design of a subwavelength bent C-aperture waveguide,” Opt. Lett. 32(12), 1737–1739 (2007).
[CrossRef] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

Z. Rao, L. Hesselink, and J. S. Harris, “High-intensity bowtie-shaped nano-aperture vertical-cavity surface-emitting laser for near-field optics,” Opt. Lett. 32(14), 1995–1997 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (3)

2004 (4)

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004).
[CrossRef] [PubMed]

X. Shi and L. Hesselink, “Design of a C aperture to achieve λ/10 resolution and resonant transmission,” J. Opt. Soc. Am. B 21(7), 1305–1317 (2004).
[CrossRef]

K. Tanaka and M. Tanaka, “Optimized computer-aided design of I-shaped subwavelength aperture for high intensity and small spot size,” Opt. Commun. 233(4-6), 231–244 (2004).
[CrossRef]

2002 (3)

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
[CrossRef]

X. Shi, R. L. Thornton, and L. Hesselink, “A nano-aperture with 1000× power throughput enhancement for very small aperture laser system (VSAL),” Proc. SPIE 4342, 320–327 (2002).
[CrossRef]

H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81(26), 5030–5032 (2002).
[CrossRef]

1995 (1)

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
[CrossRef]

1994 (1)

U. C. Fischer, J. Koglin, and H. Fuchs, “The tetrahedral tip as a probe for scanning near-field optical microscopy at 30 nm resolution,” J. Microsc. 176, 231–237 (1994).
[CrossRef]

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
[CrossRef]

1928 (1)

E. H. Synge, “A suggested method for extending microscopic resolution into the ultra-microscopic region,” Philos. Mag. 6, 356–362 (1928).

Aouani, H.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[CrossRef] [PubMed]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
[CrossRef]

Blair, S.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[CrossRef] [PubMed]

Brolo, A. G.

Cheng, Y.

J. B. Leen, P. Hansen, Y. Cheng, A. Gibby, and L. Hesselink, “Near-field optical data storage using C-apertures,” Appl. Phys. Lett. 97(7), 073111 (2010).
[CrossRef]

Devaux, E.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[CrossRef] [PubMed]

Ebbesen, T. W.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[CrossRef] [PubMed]

Fischer, U. C.

U. C. Fischer, J. Koglin, and H. Fuchs, “The tetrahedral tip as a probe for scanning near-field optical microscopy at 30 nm resolution,” J. Microsc. 176, 231–237 (1994).
[CrossRef]

Frey, H. G.

H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81(26), 5030–5032 (2002).
[CrossRef]

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Fuchs, H.

U. C. Fischer, J. Koglin, and H. Fuchs, “The tetrahedral tip as a probe for scanning near-field optical microscopy at 30 nm resolution,” J. Microsc. 176, 231–237 (1994).
[CrossRef]

Gérard, D.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[CrossRef] [PubMed]

Gerton, J. M.

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004).
[CrossRef] [PubMed]

Gibby, A.

J. B. Leen, P. Hansen, Y. Cheng, A. Gibby, and L. Hesselink, “Near-field optical data storage using C-apertures,” Appl. Phys. Lett. 97(7), 073111 (2010).
[CrossRef]

Gordon, R.

Grober, R. D.

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
[CrossRef]

Guckenberger, R.

H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81(26), 5030–5032 (2002).
[CrossRef]

Hansen, P.

J. B. Leen, P. Hansen, Y. Cheng, A. Gibby, and L. Hesselink, “Near-field optical data storage using C-apertures,” Appl. Phys. Lett. 97(7), 073111 (2010).
[CrossRef]

P. Hansen, L. Hesselink, and B. Leen, “Design of a subwavelength bent C-aperture waveguide,” Opt. Lett. 32(12), 1737–1739 (2007).
[CrossRef] [PubMed]

Harris, J. S.

Hesselink, L.

Hou, B.

Karrai, K.

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
[CrossRef]

Keilmann, F.

H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81(26), 5030–5032 (2002).
[CrossRef]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Koglin, J.

U. C. Fischer, J. Koglin, and H. Fuchs, “The tetrahedral tip as a probe for scanning near-field optical microscopy at 30 nm resolution,” J. Microsc. 176, 231–237 (1994).
[CrossRef]

Kriele, A.

H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81(26), 5030–5032 (2002).
[CrossRef]

Kuipers, L.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

Leen, B.

Leen, J. B.

J. B. Leen, P. Hansen, Y. Cheng, A. Gibby, and L. Hesselink, “Near-field optical data storage using C-apertures,” Appl. Phys. Lett. 97(7), 073111 (2010).
[CrossRef]

Lessard, G. A.

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004).
[CrossRef] [PubMed]

Liao, X. Q.

Ma, Z.

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004).
[CrossRef] [PubMed]

Mahdavi, F.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[CrossRef] [PubMed]

Matteo, J. A.

Moerland, R. J.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

Moerner, W. E.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

Poon, J. K. S.

Quake, S. R.

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004).
[CrossRef] [PubMed]

Rao, Z.

Rigneault, H.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[CrossRef] [PubMed]

Schuck, P. J.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Segerink, F. B.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

Shi, X.

X. Shi and L. Hesselink, “Design of a C aperture to achieve λ/10 resolution and resonant transmission,” J. Opt. Soc. Am. B 21(7), 1305–1317 (2004).
[CrossRef]

X. Shi, R. L. Thornton, and L. Hesselink, “A nano-aperture with 1000× power throughput enhancement for very small aperture laser system (VSAL),” Proc. SPIE 4342, 320–327 (2002).
[CrossRef]

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
[CrossRef]

Sugiyama, T.

K. Tanaka, M. Tanaka, and T. Sugiyama, “Metallic tip probe providing high intensity and small spot size with a small background light in near-field optics,” Appl. Phys. Lett. 87(15), 151116 (2005).
[CrossRef]

Sun, L.

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Synge, E. H.

E. H. Synge, “A suggested method for extending microscopic resolution into the ultra-microscopic region,” Philos. Mag. 6, 356–362 (1928).

Taminiau, T. H.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

Tanaka, K.

K. Tanaka, M. Tanaka, and T. Sugiyama, “Metallic tip probe providing high intensity and small spot size with a small background light in near-field optics,” Appl. Phys. Lett. 87(15), 151116 (2005).
[CrossRef]

K. Tanaka and M. Tanaka, “Optimized computer-aided design of I-shaped subwavelength aperture for high intensity and small spot size,” Opt. Commun. 233(4-6), 231–244 (2004).
[CrossRef]

Tanaka, M.

K. Tanaka, M. Tanaka, and T. Sugiyama, “Metallic tip probe providing high intensity and small spot size with a small background light in near-field optics,” Appl. Phys. Lett. 87(15), 151116 (2005).
[CrossRef]

K. Tanaka and M. Tanaka, “Optimized computer-aided design of I-shaped subwavelength aperture for high intensity and small spot size,” Opt. Commun. 233(4-6), 231–244 (2004).
[CrossRef]

Thornton, R. L.

X. Shi, R. L. Thornton, and L. Hesselink, “A nano-aperture with 1000× power throughput enhancement for very small aperture laser system (VSAL),” Proc. SPIE 4342, 320–327 (2002).
[CrossRef]

van Hulst, N. F.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

Wade, L. A.

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004).
[CrossRef] [PubMed]

Wenger, J.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[CrossRef] [PubMed]

Xu, T.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[CrossRef] [PubMed]

ACS Nano (1)

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
[CrossRef]

J. B. Leen, P. Hansen, Y. Cheng, A. Gibby, and L. Hesselink, “Near-field optical data storage using C-apertures,” Appl. Phys. Lett. 97(7), 073111 (2010).
[CrossRef]

H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81(26), 5030–5032 (2002).
[CrossRef]

K. Tanaka, M. Tanaka, and T. Sugiyama, “Metallic tip probe providing high intensity and small spot size with a small background light in near-field optics,” Appl. Phys. Lett. 87(15), 151116 (2005).
[CrossRef]

J. Microsc. (1)

U. C. Fischer, J. Koglin, and H. Fuchs, “The tetrahedral tip as a probe for scanning near-field optical microscopy at 30 nm resolution,” J. Microsc. 176, 231–237 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
[CrossRef]

Nano Lett. (2)

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

K. Tanaka and M. Tanaka, “Optimized computer-aided design of I-shaped subwavelength aperture for high intensity and small spot size,” Opt. Commun. 233(4-6), 231–244 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Philos. Mag. (1)

E. H. Synge, “A suggested method for extending microscopic resolution into the ultra-microscopic region,” Philos. Mag. 6, 356–362 (1928).

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
[CrossRef]

Phys. Rev. Lett. (2)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004).
[CrossRef] [PubMed]

Proc. SPIE (1)

X. Shi, R. L. Thornton, and L. Hesselink, “A nano-aperture with 1000× power throughput enhancement for very small aperture laser system (VSAL),” Proc. SPIE 4342, 320–327 (2002).
[CrossRef]

Other (1)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic design of the CAN-Tip. (b) Spectrum of maximum normalized near-field intensity of CAN-Tips with tip lengths 0 nm (planar C-aperture), 30 nm, 50 nm, 70 nm, and 90 nm, calculated with FDTD simulations. FDTD near-field intensity profiles of a (c) C-shaped aperture at a wavelength of 960 nm and a (d) CAN-Tip at 980 nm. The near-field profile is calculated at 6 nm from (c) the output side of a C-shaped aperture and (d) the tip of a CAN-Tip. The FWHM near-field spot size is (a) 15.37 nm x 48.09 nm and (b) 18.36 nm x 18.36 nm. (Color bar shows the normalized intensities. White lines delineate relative positions of the aperture in each figure.) The characteristic sizes of the C-apertures are 40 nm, and the radii of curvature at the tip in (b) and (d) are 10 nm.

Fig. 2
Fig. 2

(a) Schematic diagram of the CAN-Tip NSOM probe and the experimental setup in a transmission mode. The dotted line delineates the FDTD simulation space. (b) Top view and (c) 35° angled view SEM images of a CAN-Tip fabricated with FIB milling.

Fig. 3
Fig. 3

(a) Simultaneous AFM (top figure) and NSOM (bottom) responses when scanning across three Cr nano-disks with a CAN-Tip NSOM probe set different distances away from the center of disks. SNR is about 8.5 for the AFM and about 8.9 for the NSOM. (b) Close-up of the first disk scan from (a) (blue solid lines). The overlaid red dashed lines show the fitted data. The narrowest transition at the left edge shows a equivalent 16.1 nm FWHM Gaussian transition in the NSOM plot and 28.5 nm in the AFM plot. This demonstrates the 16.1 nm optical resolution of the CAN-Tip NSOM probe.

Fig. 4
Fig. 4

(a) Schematic of NSOM line scan simulations. The probe scans down three paths over a 20 nm thick chromium disc of diameter 282.5 nm. Line 1 is across the center, line 2 is off-center by 70 nm, and line 3 is off-center by 105 nm. (b) FDTD simulations of normalized far-field power transmission collected with a NA0.4 solid angle. Vertical dotted lines mark the edges of the Cr disk along each scan line. (The radius of curvature of the NSOM tip used in the FDTD simulations is 15 nm.) Calculated intensity profiles measured at the interface between the Cr structures and glass substrate when the CAN-Tip is (c) at one edge and (d) at the center of the Cr disk. The asymmetry in the x-direction for the intensity in (d) reflects the x-asymmetry of the C-shaped aperture. (Color bar shows the normalized intensities.) Calculated far-field radiation patterns when the CAN-Tip is (e) at one edge and (f) at the center of the Cr disk.

Metrics