Abstract

Rhodamine B and Alexa Fluor 430 fluorophores have been used as doping agents for xerogel waveguides defined over an antiresonant (ARROW) filter. This configuration has a significant level of integration, since it merges the waveguide, the light emitter and the filter in a single photonic element. Different technologies have been combined for their implementation, namely soft lithography, standard silicon-based technology and silicon bulk micromachining. The spectral response of 15-mm long waveguides without fluorophore is first analyzed as a function of the waveguide width. Here, it has been observed how the xerogel used has a high transparency in the visible spectra, having only significant absorption at the wavelength where the ARROW filter is in resonance. In a second step, identical waveguides but doped with two different concentrations of Rhodamine B and Alexa Fluor 430 are studied. In addition to the effect of the filter, fluorophore-doped xerogel waveguides show losses close to −2 dB (equivalent to 2 dB of light emission). In addition, it has been observed how an increase of the fluorophore concentration within the xerogel matrix does not provide with a emission increase, but saturation or even a decrease of this magnitude due to self-absorption. Finally, the total losses of the proposed waveguides are analyzed as a function of their width, obtaining losses close to 5 dB for waveguide widths higher than 50 µm.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. J. Cadarso, C. Fernández-Sánchez, A. Llobera, M. Darder, and C. Domínguez, “Optical biosensor based on hollow integrated waveguides,” Anal. Chem. 80(9), 3498–3501 (2008).
    [CrossRef] [PubMed]
  2. M. B. Christiansen, J. M. Lopacinska, M. H. Jakobsen, N. A. Mortensen, M. Dufva, and A. Kristensen, “Polymer photonic crystal dye lasers as optofluidic cell sensors,” Opt. Express 17(4), 2722–2730 (2009).
    [CrossRef] [PubMed]
  3. F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
    [CrossRef]
  4. H. Joensson, C. Zhang, M. Uhlén, and H. Andersson Svahn, “A homogeneous assay for biomolecule interaction analysis in droplets by fluorescence polarization” 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Groningen, The Netherlands 1802–1804 (2010)
  5. J. Hübner, K. B. Mogensen, A. M. Jorgensen, P. Friis, P. Telleman, and J. P. Kutter, “Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels,” Rev. Sci. Instrum. 72(1), 229–233 (2001).
    [CrossRef]
  6. F. Z. Lin, Y. J. Chiu, S. A. Tsai, and T. H. Wu, “Laterally tapered undercut active waveguide fabricated by simple wet etching method for vertical waveguide directional coupler,” Opt. Express 16(11), 7588–7594 (2008).
    [CrossRef] [PubMed]
  7. A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethyl siloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
    [CrossRef] [PubMed]
  8. N. M. Jokerst, M. A. Brooke, S. Cho, M. Thomas, J. Lillie, D. Kim, S. Ralph, K. Dennis, B. Comeau, and C. Henderson, “Integrated planar lightwave bio/chem OEIC sensors on si CMOS circuits,” Proc. SPIE 5730, 226–233 (2005).
    [CrossRef]
  9. S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
    [CrossRef] [PubMed]
  10. O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
    [CrossRef] [PubMed]
  11. A. Llobera, S. Demming, H. N. Joensson, J. Vila-Planas, H. Andersson-Svahn, and S. Büttgenbach, “Monolithic PDMS passband filters for fluorescence detection,” Lab Chip 10(15), 1987–1992 (2010).
    [CrossRef] [PubMed]
  12. M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007).
    [CrossRef] [PubMed]
  13. T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions,” J. Quant. Elect. 28(7), 1689–1700 (1992).
    [CrossRef]
  14. A. Llobera, Í. Salinas, I. Garcés, R. Alonso, and C. Domínguez, “Large-core single-mode waveguides with cross-sectional antiresonant confinement,” IEEE J. Lightwave Tech. 22(6), 1560–1565 (2004).
    [CrossRef]
  15. N. J. Goddard, J. Hulme, C. Malins, K. Singh, and P. R. Fielden, “Asymmetric anti-resonant reflecting optical waveguides (arrow) as chemical sensors,” Analyst (Lond.) 127(3), 378–382 (2002).
    [CrossRef]
  16. S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with complete a photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
    [CrossRef]
  17. T. Woggon, T. Kleiner, M. Punke, and U. Lemmer, “Nanostructuring of organic-inorganic hybrid materials for distributed feedback laser resonators by two-photon polymerization,” Opt. Express 17(4), 2500–2507 (2009).
    [CrossRef] [PubMed]
  18. S. J. Lee, M. Goedert, M. T. Matyska, E. M. Ghandehari, M. Vijay, and J. J. Pesek, “Polymethylhydrosiloxane (PMHS) as a functional material for microfluidic chips,” J. Micromech. Microeng. 18, 025026 (9pp) (2008).
  19. Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
    [CrossRef]
  20. R. Houbertz, “Laser interaction in sol–gel based materials 3-D lithography for photonic applications,” Appl. Surf. Sci. 247(1-4), 504–512 (2005).
    [CrossRef]
  21. E. Z. Faraggi, Y. Sorek, O. Levi, Y. Avny, D. Davidov, R. Neumann, and R. Reisfeld, “New Conjugated Polymer Sol-Gel Glass Composites: Luminescence and Optical Waveguides,” Adv. Mater. 8(10), 833–837 (1996).
    [CrossRef]
  22. C. Ye, L. Shi, J. Wang, D. Lo, and X.-L. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83(20), 4101–4104 (2003).
    [CrossRef]
  23. X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol-gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 µm,” Opt. Mater. 12(1), 1–18 (1999).
    [CrossRef]
  24. A. Llobera, V. J. Cadarso, M. Darder, C. Domínguez, and C. Fernández-Sánchez, “Full-field photonic biosensors based on tunable bio-doped sol-gel glasses,” Lab Chip 8(7), 1185–1190 (2008).
    [CrossRef] [PubMed]
  25. L. Yang, S. S. Saavedra, N. R. Armstrong, and J. Hayes, “Fabrication and characterization of low-loss, sol-gel planar waveguides,” Anal. Chem. 66(8), 1254–1263 (1994).
    [CrossRef] [PubMed]
  26. C. Sanchez, B. Lebeau, F. Chaput, and J. P. Boilot, “Optical properties of functional hybrid organic-inorganic nanocomposites,” Adv. Mater. 12(23), 1969–1993 (2003).
    [CrossRef]
  27. S. Maruo and J. T. Fourkas, “Recent progress in multiphoton fabrication,” Laser Photon. Rev. 2(1-2), 100–111 (2008).
    [CrossRef]
  28. C. Fernández-Sánchez, V. J. Cadarso, M. Darder, C. Domínguez, and A. Llobera, “Patterning of high aspect-ratio sol-gel structures by micro transfer molding,” Chem. Mater. 20(8), 2662–2668 (2008).
    [CrossRef]
  29. A. Llobera, I. Salinas, I. Garcés, A. Merlos, and C. Domínguez, “Effect of wall tilt on the optical properties of integrated directional couplers,” Opt. Lett. 27(8), 601–603 (2002).
    [CrossRef]
  30. A. Llobera, V. Seidemann, J. A. Plaza, V. J. Cadarso, and S. Büttgenbach, “SU-8 optical accelerometers,” J. MicroElectro. Mechan. Syst. 16(1), 111–121 (2007).
    [CrossRef]
  31. V. J. Cadarso, A. Llobera, G. Villanueva, C. Dominguez, and J. A. Plaza, “3-D modulable PDMS-based microlens system,” Opt. Express 16(7), 4918–4929 (2008).
    [CrossRef] [PubMed]
  32. E. Kim, Y. Xia, and G. M. Whitesides, “Micromolding in capillaries: applications in materials science,” JACS 118(24), 5722–5731 (1996).
    [CrossRef]
  33. M. Fikry, M.M. Omar, and L.Z. Ismail, “Effect of host medium on the fluorescence emission intensity of rhodamine b in liquid and solid phase,” J. Fluoresc. 19(7), 41–746 (2009).
    [CrossRef]
  34. A. Entwistle and M. Noble, “The use of Lucifer yellow, bodipy, FITC, TRITC, RITC and Texas Red for dual immunolabeling visualized with a confocal scanning laser microscope,” J. Microsc. 168, 219–238 (1992).
    [CrossRef]
  35. O. Valdes-Aguilera and D. C. Neckers, “Aggregation phenomena in xanthene dyes,” Acc. Chem. Res. 22(5), 171–177 (1989).
    [CrossRef]
  36. J. Jasieniak, J. Pacifico, R. Signorini, A. Chiasera, M. Ferrari, A. Martucci, and P. Mulvaney, “Luminescence and amplified stimulated emission in CdSe–ZnS-nanocrystal-doped TiO2 and ZrO2 waveguides,” Adv. Funct. Mater. 17(10), 1654–1662 (2007).
    [CrossRef]

2010 (1)

A. Llobera, S. Demming, H. N. Joensson, J. Vila-Planas, H. Andersson-Svahn, and S. Büttgenbach, “Monolithic PDMS passband filters for fluorescence detection,” Lab Chip 10(15), 1987–1992 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (7)

V. J. Cadarso, A. Llobera, G. Villanueva, C. Dominguez, and J. A. Plaza, “3-D modulable PDMS-based microlens system,” Opt. Express 16(7), 4918–4929 (2008).
[CrossRef] [PubMed]

F. Z. Lin, Y. J. Chiu, S. A. Tsai, and T. H. Wu, “Laterally tapered undercut active waveguide fabricated by simple wet etching method for vertical waveguide directional coupler,” Opt. Express 16(11), 7588–7594 (2008).
[CrossRef] [PubMed]

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton fabrication,” Laser Photon. Rev. 2(1-2), 100–111 (2008).
[CrossRef]

C. Fernández-Sánchez, V. J. Cadarso, M. Darder, C. Domínguez, and A. Llobera, “Patterning of high aspect-ratio sol-gel structures by micro transfer molding,” Chem. Mater. 20(8), 2662–2668 (2008).
[CrossRef]

V. J. Cadarso, C. Fernández-Sánchez, A. Llobera, M. Darder, and C. Domínguez, “Optical biosensor based on hollow integrated waveguides,” Anal. Chem. 80(9), 3498–3501 (2008).
[CrossRef] [PubMed]

S. J. Lee, M. Goedert, M. T. Matyska, E. M. Ghandehari, M. Vijay, and J. J. Pesek, “Polymethylhydrosiloxane (PMHS) as a functional material for microfluidic chips,” J. Micromech. Microeng. 18, 025026 (9pp) (2008).

A. Llobera, V. J. Cadarso, M. Darder, C. Domínguez, and C. Fernández-Sánchez, “Full-field photonic biosensors based on tunable bio-doped sol-gel glasses,” Lab Chip 8(7), 1185–1190 (2008).
[CrossRef] [PubMed]

2007 (3)

M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007).
[CrossRef] [PubMed]

J. Jasieniak, J. Pacifico, R. Signorini, A. Chiasera, M. Ferrari, A. Martucci, and P. Mulvaney, “Luminescence and amplified stimulated emission in CdSe–ZnS-nanocrystal-doped TiO2 and ZrO2 waveguides,” Adv. Funct. Mater. 17(10), 1654–1662 (2007).
[CrossRef]

A. Llobera, V. Seidemann, J. A. Plaza, V. J. Cadarso, and S. Büttgenbach, “SU-8 optical accelerometers,” J. MicroElectro. Mechan. Syst. 16(1), 111–121 (2007).
[CrossRef]

2006 (3)

S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with complete a photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[CrossRef]

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

2005 (2)

N. M. Jokerst, M. A. Brooke, S. Cho, M. Thomas, J. Lillie, D. Kim, S. Ralph, K. Dennis, B. Comeau, and C. Henderson, “Integrated planar lightwave bio/chem OEIC sensors on si CMOS circuits,” Proc. SPIE 5730, 226–233 (2005).
[CrossRef]

R. Houbertz, “Laser interaction in sol–gel based materials 3-D lithography for photonic applications,” Appl. Surf. Sci. 247(1-4), 504–512 (2005).
[CrossRef]

2004 (2)

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethyl siloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[CrossRef] [PubMed]

A. Llobera, Í. Salinas, I. Garcés, R. Alonso, and C. Domínguez, “Large-core single-mode waveguides with cross-sectional antiresonant confinement,” IEEE J. Lightwave Tech. 22(6), 1560–1565 (2004).
[CrossRef]

2003 (3)

C. Ye, L. Shi, J. Wang, D. Lo, and X.-L. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83(20), 4101–4104 (2003).
[CrossRef]

C. Sanchez, B. Lebeau, F. Chaput, and J. P. Boilot, “Optical properties of functional hybrid organic-inorganic nanocomposites,” Adv. Mater. 12(23), 1969–1993 (2003).
[CrossRef]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

2002 (2)

A. Llobera, I. Salinas, I. Garcés, A. Merlos, and C. Domínguez, “Effect of wall tilt on the optical properties of integrated directional couplers,” Opt. Lett. 27(8), 601–603 (2002).
[CrossRef]

N. J. Goddard, J. Hulme, C. Malins, K. Singh, and P. R. Fielden, “Asymmetric anti-resonant reflecting optical waveguides (arrow) as chemical sensors,” Analyst (Lond.) 127(3), 378–382 (2002).
[CrossRef]

2001 (1)

J. Hübner, K. B. Mogensen, A. M. Jorgensen, P. Friis, P. Telleman, and J. P. Kutter, “Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels,” Rev. Sci. Instrum. 72(1), 229–233 (2001).
[CrossRef]

1999 (1)

X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol-gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 µm,” Opt. Mater. 12(1), 1–18 (1999).
[CrossRef]

1998 (1)

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[CrossRef]

1996 (2)

E. Z. Faraggi, Y. Sorek, O. Levi, Y. Avny, D. Davidov, R. Neumann, and R. Reisfeld, “New Conjugated Polymer Sol-Gel Glass Composites: Luminescence and Optical Waveguides,” Adv. Mater. 8(10), 833–837 (1996).
[CrossRef]

E. Kim, Y. Xia, and G. M. Whitesides, “Micromolding in capillaries: applications in materials science,” JACS 118(24), 5722–5731 (1996).
[CrossRef]

1994 (1)

L. Yang, S. S. Saavedra, N. R. Armstrong, and J. Hayes, “Fabrication and characterization of low-loss, sol-gel planar waveguides,” Anal. Chem. 66(8), 1254–1263 (1994).
[CrossRef] [PubMed]

1992 (2)

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions,” J. Quant. Elect. 28(7), 1689–1700 (1992).
[CrossRef]

A. Entwistle and M. Noble, “The use of Lucifer yellow, bodipy, FITC, TRITC, RITC and Texas Red for dual immunolabeling visualized with a confocal scanning laser microscope,” J. Microsc. 168, 219–238 (1992).
[CrossRef]

1989 (1)

O. Valdes-Aguilera and D. C. Neckers, “Aggregation phenomena in xanthene dyes,” Acc. Chem. Res. 22(5), 171–177 (1989).
[CrossRef]

Abad, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Abshire, P.

M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007).
[CrossRef] [PubMed]

Almeida, R. M.

X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol-gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 µm,” Opt. Mater. 12(1), 1–18 (1999).
[CrossRef]

Alonso, R.

A. Llobera, Í. Salinas, I. Garcés, R. Alonso, and C. Domínguez, “Large-core single-mode waveguides with cross-sectional antiresonant confinement,” IEEE J. Lightwave Tech. 22(6), 1560–1565 (2004).
[CrossRef]

Andersson-Svahn, H.

A. Llobera, S. Demming, H. N. Joensson, J. Vila-Planas, H. Andersson-Svahn, and S. Büttgenbach, “Monolithic PDMS passband filters for fluorescence detection,” Lab Chip 10(15), 1987–1992 (2010).
[CrossRef] [PubMed]

Armstrong, N. R.

L. Yang, S. S. Saavedra, N. R. Armstrong, and J. Hayes, “Fabrication and characterization of low-loss, sol-gel planar waveguides,” Anal. Chem. 66(8), 1254–1263 (1994).
[CrossRef] [PubMed]

Avny, Y.

E. Z. Faraggi, Y. Sorek, O. Levi, Y. Avny, D. Davidov, R. Neumann, and R. Reisfeld, “New Conjugated Polymer Sol-Gel Glass Composites: Luminescence and Optical Waveguides,” Adv. Mater. 8(10), 833–837 (1996).
[CrossRef]

Baba, T.

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions,” J. Quant. Elect. 28(7), 1689–1700 (1992).
[CrossRef]

Balslev, S.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

Barbier, D.

X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol-gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 µm,” Opt. Mater. 12(1), 1–18 (1999).
[CrossRef]

Beecher, S.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

Bilenberg, B.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

Boilot, J. P.

C. Sanchez, B. Lebeau, F. Chaput, and J. P. Boilot, “Optical properties of functional hybrid organic-inorganic nanocomposites,” Adv. Mater. 12(23), 1969–1993 (2003).
[CrossRef]

Bradley, D. D.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

Brooke, M. A.

N. M. Jokerst, M. A. Brooke, S. Cho, M. Thomas, J. Lillie, D. Kim, S. Ralph, K. Dennis, B. Comeau, and C. Henderson, “Integrated planar lightwave bio/chem OEIC sensors on si CMOS circuits,” Proc. SPIE 5730, 226–233 (2005).
[CrossRef]

Büttgenbach, S.

A. Llobera, S. Demming, H. N. Joensson, J. Vila-Planas, H. Andersson-Svahn, and S. Büttgenbach, “Monolithic PDMS passband filters for fluorescence detection,” Lab Chip 10(15), 1987–1992 (2010).
[CrossRef] [PubMed]

A. Llobera, V. Seidemann, J. A. Plaza, V. J. Cadarso, and S. Büttgenbach, “SU-8 optical accelerometers,” J. MicroElectro. Mechan. Syst. 16(1), 111–121 (2007).
[CrossRef]

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethyl siloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[CrossRef] [PubMed]

Cadarso, V. J.

V. J. Cadarso, C. Fernández-Sánchez, A. Llobera, M. Darder, and C. Domínguez, “Optical biosensor based on hollow integrated waveguides,” Anal. Chem. 80(9), 3498–3501 (2008).
[CrossRef] [PubMed]

V. J. Cadarso, A. Llobera, G. Villanueva, C. Dominguez, and J. A. Plaza, “3-D modulable PDMS-based microlens system,” Opt. Express 16(7), 4918–4929 (2008).
[CrossRef] [PubMed]

C. Fernández-Sánchez, V. J. Cadarso, M. Darder, C. Domínguez, and A. Llobera, “Patterning of high aspect-ratio sol-gel structures by micro transfer molding,” Chem. Mater. 20(8), 2662–2668 (2008).
[CrossRef]

A. Llobera, V. J. Cadarso, M. Darder, C. Domínguez, and C. Fernández-Sánchez, “Full-field photonic biosensors based on tunable bio-doped sol-gel glasses,” Lab Chip 8(7), 1185–1190 (2008).
[CrossRef] [PubMed]

A. Llobera, V. Seidemann, J. A. Plaza, V. J. Cadarso, and S. Büttgenbach, “SU-8 optical accelerometers,” J. MicroElectro. Mechan. Syst. 16(1), 111–121 (2007).
[CrossRef]

Calle, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Chaput, F.

C. Sanchez, B. Lebeau, F. Chaput, and J. P. Boilot, “Optical properties of functional hybrid organic-inorganic nanocomposites,” Adv. Mater. 12(23), 1969–1993 (2003).
[CrossRef]

Chiasera, A.

J. Jasieniak, J. Pacifico, R. Signorini, A. Chiasera, M. Ferrari, A. Martucci, and P. Mulvaney, “Luminescence and amplified stimulated emission in CdSe–ZnS-nanocrystal-doped TiO2 and ZrO2 waveguides,” Adv. Funct. Mater. 17(10), 1654–1662 (2007).
[CrossRef]

Chiu, Y. J.

Cho, S.

N. M. Jokerst, M. A. Brooke, S. Cho, M. Thomas, J. Lillie, D. Kim, S. Ralph, K. Dennis, B. Comeau, and C. Henderson, “Integrated planar lightwave bio/chem OEIC sensors on si CMOS circuits,” Proc. SPIE 5730, 226–233 (2005).
[CrossRef]

Christiansen, M. B.

Comeau, B.

N. M. Jokerst, M. A. Brooke, S. Cho, M. Thomas, J. Lillie, D. Kim, S. Ralph, K. Dennis, B. Comeau, and C. Henderson, “Integrated planar lightwave bio/chem OEIC sensors on si CMOS circuits,” Proc. SPIE 5730, 226–233 (2005).
[CrossRef]

Cornwell, A.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

Dandin, M.

M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007).
[CrossRef] [PubMed]

Darder, M.

V. J. Cadarso, C. Fernández-Sánchez, A. Llobera, M. Darder, and C. Domínguez, “Optical biosensor based on hollow integrated waveguides,” Anal. Chem. 80(9), 3498–3501 (2008).
[CrossRef] [PubMed]

A. Llobera, V. J. Cadarso, M. Darder, C. Domínguez, and C. Fernández-Sánchez, “Full-field photonic biosensors based on tunable bio-doped sol-gel glasses,” Lab Chip 8(7), 1185–1190 (2008).
[CrossRef] [PubMed]

C. Fernández-Sánchez, V. J. Cadarso, M. Darder, C. Domínguez, and A. Llobera, “Patterning of high aspect-ratio sol-gel structures by micro transfer molding,” Chem. Mater. 20(8), 2662–2668 (2008).
[CrossRef]

Davidov, D.

E. Z. Faraggi, Y. Sorek, O. Levi, Y. Avny, D. Davidov, R. Neumann, and R. Reisfeld, “New Conjugated Polymer Sol-Gel Glass Composites: Luminescence and Optical Waveguides,” Adv. Mater. 8(10), 833–837 (1996).
[CrossRef]

Demello, A. J.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

Demello, J. C.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

Demming, S.

A. Llobera, S. Demming, H. N. Joensson, J. Vila-Planas, H. Andersson-Svahn, and S. Büttgenbach, “Monolithic PDMS passband filters for fluorescence detection,” Lab Chip 10(15), 1987–1992 (2010).
[CrossRef] [PubMed]

Dennis, K.

N. M. Jokerst, M. A. Brooke, S. Cho, M. Thomas, J. Lillie, D. Kim, S. Ralph, K. Dennis, B. Comeau, and C. Henderson, “Integrated planar lightwave bio/chem OEIC sensors on si CMOS circuits,” Proc. SPIE 5730, 226–233 (2005).
[CrossRef]

Deubel, M.

S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with complete a photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[CrossRef]

Dominguez, C.

Domínguez, C.

V. J. Cadarso, C. Fernández-Sánchez, A. Llobera, M. Darder, and C. Domínguez, “Optical biosensor based on hollow integrated waveguides,” Anal. Chem. 80(9), 3498–3501 (2008).
[CrossRef] [PubMed]

C. Fernández-Sánchez, V. J. Cadarso, M. Darder, C. Domínguez, and A. Llobera, “Patterning of high aspect-ratio sol-gel structures by micro transfer molding,” Chem. Mater. 20(8), 2662–2668 (2008).
[CrossRef]

A. Llobera, V. J. Cadarso, M. Darder, C. Domínguez, and C. Fernández-Sánchez, “Full-field photonic biosensors based on tunable bio-doped sol-gel glasses,” Lab Chip 8(7), 1185–1190 (2008).
[CrossRef] [PubMed]

A. Llobera, Í. Salinas, I. Garcés, R. Alonso, and C. Domínguez, “Large-core single-mode waveguides with cross-sectional antiresonant confinement,” IEEE J. Lightwave Tech. 22(6), 1560–1565 (2004).
[CrossRef]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

A. Llobera, I. Salinas, I. Garcés, A. Merlos, and C. Domínguez, “Effect of wall tilt on the optical properties of integrated directional couplers,” Opt. Lett. 27(8), 601–603 (2002).
[CrossRef]

Du, X. M.

X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol-gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 µm,” Opt. Mater. 12(1), 1–18 (1999).
[CrossRef]

Dufva, M.

Entwistle, A.

A. Entwistle and M. Noble, “The use of Lucifer yellow, bodipy, FITC, TRITC, RITC and Texas Red for dual immunolabeling visualized with a confocal scanning laser microscope,” J. Microsc. 168, 219–238 (1992).
[CrossRef]

Faraggi, E. Z.

E. Z. Faraggi, Y. Sorek, O. Levi, Y. Avny, D. Davidov, R. Neumann, and R. Reisfeld, “New Conjugated Polymer Sol-Gel Glass Composites: Luminescence and Optical Waveguides,” Adv. Mater. 8(10), 833–837 (1996).
[CrossRef]

Fernández-Sánchez, C.

C. Fernández-Sánchez, V. J. Cadarso, M. Darder, C. Domínguez, and A. Llobera, “Patterning of high aspect-ratio sol-gel structures by micro transfer molding,” Chem. Mater. 20(8), 2662–2668 (2008).
[CrossRef]

A. Llobera, V. J. Cadarso, M. Darder, C. Domínguez, and C. Fernández-Sánchez, “Full-field photonic biosensors based on tunable bio-doped sol-gel glasses,” Lab Chip 8(7), 1185–1190 (2008).
[CrossRef] [PubMed]

V. J. Cadarso, C. Fernández-Sánchez, A. Llobera, M. Darder, and C. Domínguez, “Optical biosensor based on hollow integrated waveguides,” Anal. Chem. 80(9), 3498–3501 (2008).
[CrossRef] [PubMed]

Ferrari, M.

J. Jasieniak, J. Pacifico, R. Signorini, A. Chiasera, M. Ferrari, A. Martucci, and P. Mulvaney, “Luminescence and amplified stimulated emission in CdSe–ZnS-nanocrystal-doped TiO2 and ZrO2 waveguides,” Adv. Funct. Mater. 17(10), 1654–1662 (2007).
[CrossRef]

Fielden, P. R.

N. J. Goddard, J. Hulme, C. Malins, K. Singh, and P. R. Fielden, “Asymmetric anti-resonant reflecting optical waveguides (arrow) as chemical sensors,” Analyst (Lond.) 127(3), 378–382 (2002).
[CrossRef]

Fikry, M.

M. Fikry, M.M. Omar, and L.Z. Ismail, “Effect of host medium on the fluorescence emission intensity of rhodamine b in liquid and solid phase,” J. Fluoresc. 19(7), 41–746 (2009).
[CrossRef]

Fourkas, J. T.

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton fabrication,” Laser Photon. Rev. 2(1-2), 100–111 (2008).
[CrossRef]

Friis, P.

J. Hübner, K. B. Mogensen, A. M. Jorgensen, P. Friis, P. Telleman, and J. P. Kutter, “Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels,” Rev. Sci. Instrum. 72(1), 229–233 (2001).
[CrossRef]

Garcés, I.

A. Llobera, Í. Salinas, I. Garcés, R. Alonso, and C. Domínguez, “Large-core single-mode waveguides with cross-sectional antiresonant confinement,” IEEE J. Lightwave Tech. 22(6), 1560–1565 (2004).
[CrossRef]

A. Llobera, I. Salinas, I. Garcés, A. Merlos, and C. Domínguez, “Effect of wall tilt on the optical properties of integrated directional couplers,” Opt. Lett. 27(8), 601–603 (2002).
[CrossRef]

Geschke, O.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

Ghandehari, E. M.

S. J. Lee, M. Goedert, M. T. Matyska, E. M. Ghandehari, M. Vijay, and J. J. Pesek, “Polymethylhydrosiloxane (PMHS) as a functional material for microfluidic chips,” J. Micromech. Microeng. 18, 025026 (9pp) (2008).

Goddard, N. J.

N. J. Goddard, J. Hulme, C. Malins, K. Singh, and P. R. Fielden, “Asymmetric anti-resonant reflecting optical waveguides (arrow) as chemical sensors,” Analyst (Lond.) 127(3), 378–382 (2002).
[CrossRef]

Goedert, M.

S. J. Lee, M. Goedert, M. T. Matyska, E. M. Ghandehari, M. Vijay, and J. J. Pesek, “Polymethylhydrosiloxane (PMHS) as a functional material for microfluidic chips,” J. Micromech. Microeng. 18, 025026 (9pp) (2008).

Hayes, J.

L. Yang, S. S. Saavedra, N. R. Armstrong, and J. Hayes, “Fabrication and characterization of low-loss, sol-gel planar waveguides,” Anal. Chem. 66(8), 1254–1263 (1994).
[CrossRef] [PubMed]

Henderson, C.

N. M. Jokerst, M. A. Brooke, S. Cho, M. Thomas, J. Lillie, D. Kim, S. Ralph, K. Dennis, B. Comeau, and C. Henderson, “Integrated planar lightwave bio/chem OEIC sensors on si CMOS circuits,” Proc. SPIE 5730, 226–233 (2005).
[CrossRef]

Hofmann, O.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

Houbertz, R.

R. Houbertz, “Laser interaction in sol–gel based materials 3-D lithography for photonic applications,” Appl. Surf. Sci. 247(1-4), 504–512 (2005).
[CrossRef]

Hübner, J.

J. Hübner, K. B. Mogensen, A. M. Jorgensen, P. Friis, P. Telleman, and J. P. Kutter, “Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels,” Rev. Sci. Instrum. 72(1), 229–233 (2001).
[CrossRef]

Hulme, J.

N. J. Goddard, J. Hulme, C. Malins, K. Singh, and P. R. Fielden, “Asymmetric anti-resonant reflecting optical waveguides (arrow) as chemical sensors,” Analyst (Lond.) 127(3), 378–382 (2002).
[CrossRef]

Ismail, L.Z.

M. Fikry, M.M. Omar, and L.Z. Ismail, “Effect of host medium on the fluorescence emission intensity of rhodamine b in liquid and solid phase,” J. Fluoresc. 19(7), 41–746 (2009).
[CrossRef]

Jakobsen, M. H.

Jasieniak, J.

J. Jasieniak, J. Pacifico, R. Signorini, A. Chiasera, M. Ferrari, A. Martucci, and P. Mulvaney, “Luminescence and amplified stimulated emission in CdSe–ZnS-nanocrystal-doped TiO2 and ZrO2 waveguides,” Adv. Funct. Mater. 17(10), 1654–1662 (2007).
[CrossRef]

Joensson, H. N.

A. Llobera, S. Demming, H. N. Joensson, J. Vila-Planas, H. Andersson-Svahn, and S. Büttgenbach, “Monolithic PDMS passband filters for fluorescence detection,” Lab Chip 10(15), 1987–1992 (2010).
[CrossRef] [PubMed]

John, S.

S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with complete a photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[CrossRef]

Jokerst, N. M.

N. M. Jokerst, M. A. Brooke, S. Cho, M. Thomas, J. Lillie, D. Kim, S. Ralph, K. Dennis, B. Comeau, and C. Henderson, “Integrated planar lightwave bio/chem OEIC sensors on si CMOS circuits,” Proc. SPIE 5730, 226–233 (2005).
[CrossRef]

Jorgensen, A. M.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

J. Hübner, K. B. Mogensen, A. M. Jorgensen, P. Friis, P. Telleman, and J. P. Kutter, “Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels,” Rev. Sci. Instrum. 72(1), 229–233 (2001).
[CrossRef]

Kim, D.

N. M. Jokerst, M. A. Brooke, S. Cho, M. Thomas, J. Lillie, D. Kim, S. Ralph, K. Dennis, B. Comeau, and C. Henderson, “Integrated planar lightwave bio/chem OEIC sensors on si CMOS circuits,” Proc. SPIE 5730, 226–233 (2005).
[CrossRef]

Kim, E.

E. Kim, Y. Xia, and G. M. Whitesides, “Micromolding in capillaries: applications in materials science,” JACS 118(24), 5722–5731 (1996).
[CrossRef]

Kleiner, T.

Kokubun, Y.

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions,” J. Quant. Elect. 28(7), 1689–1700 (1992).
[CrossRef]

Kristensen, A.

M. B. Christiansen, J. M. Lopacinska, M. H. Jakobsen, N. A. Mortensen, M. Dufva, and A. Kristensen, “Polymer photonic crystal dye lasers as optofluidic cell sensors,” Opt. Express 17(4), 2722–2730 (2009).
[CrossRef] [PubMed]

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

Kutter, J. P.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

J. Hübner, K. B. Mogensen, A. M. Jorgensen, P. Friis, P. Telleman, and J. P. Kutter, “Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels,” Rev. Sci. Instrum. 72(1), 229–233 (2001).
[CrossRef]

Lebeau, B.

C. Sanchez, B. Lebeau, F. Chaput, and J. P. Boilot, “Optical properties of functional hybrid organic-inorganic nanocomposites,” Adv. Mater. 12(23), 1969–1993 (2003).
[CrossRef]

Lechuga, L. M.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Lee, S. J.

S. J. Lee, M. Goedert, M. T. Matyska, E. M. Ghandehari, M. Vijay, and J. J. Pesek, “Polymethylhydrosiloxane (PMHS) as a functional material for microfluidic chips,” J. Micromech. Microeng. 18, 025026 (9pp) (2008).

Lemmer, U.

Levi, O.

E. Z. Faraggi, Y. Sorek, O. Levi, Y. Avny, D. Davidov, R. Neumann, and R. Reisfeld, “New Conjugated Polymer Sol-Gel Glass Composites: Luminescence and Optical Waveguides,” Adv. Mater. 8(10), 833–837 (1996).
[CrossRef]

Lillie, J.

N. M. Jokerst, M. A. Brooke, S. Cho, M. Thomas, J. Lillie, D. Kim, S. Ralph, K. Dennis, B. Comeau, and C. Henderson, “Integrated planar lightwave bio/chem OEIC sensors on si CMOS circuits,” Proc. SPIE 5730, 226–233 (2005).
[CrossRef]

Lin, F. Z.

Llobera, A.

A. Llobera, S. Demming, H. N. Joensson, J. Vila-Planas, H. Andersson-Svahn, and S. Büttgenbach, “Monolithic PDMS passband filters for fluorescence detection,” Lab Chip 10(15), 1987–1992 (2010).
[CrossRef] [PubMed]

V. J. Cadarso, C. Fernández-Sánchez, A. Llobera, M. Darder, and C. Domínguez, “Optical biosensor based on hollow integrated waveguides,” Anal. Chem. 80(9), 3498–3501 (2008).
[CrossRef] [PubMed]

V. J. Cadarso, A. Llobera, G. Villanueva, C. Dominguez, and J. A. Plaza, “3-D modulable PDMS-based microlens system,” Opt. Express 16(7), 4918–4929 (2008).
[CrossRef] [PubMed]

A. Llobera, V. J. Cadarso, M. Darder, C. Domínguez, and C. Fernández-Sánchez, “Full-field photonic biosensors based on tunable bio-doped sol-gel glasses,” Lab Chip 8(7), 1185–1190 (2008).
[CrossRef] [PubMed]

C. Fernández-Sánchez, V. J. Cadarso, M. Darder, C. Domínguez, and A. Llobera, “Patterning of high aspect-ratio sol-gel structures by micro transfer molding,” Chem. Mater. 20(8), 2662–2668 (2008).
[CrossRef]

A. Llobera, V. Seidemann, J. A. Plaza, V. J. Cadarso, and S. Büttgenbach, “SU-8 optical accelerometers,” J. MicroElectro. Mechan. Syst. 16(1), 111–121 (2007).
[CrossRef]

A. Llobera, Í. Salinas, I. Garcés, R. Alonso, and C. Domínguez, “Large-core single-mode waveguides with cross-sectional antiresonant confinement,” IEEE J. Lightwave Tech. 22(6), 1560–1565 (2004).
[CrossRef]

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethyl siloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[CrossRef] [PubMed]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

A. Llobera, I. Salinas, I. Garcés, A. Merlos, and C. Domínguez, “Effect of wall tilt on the optical properties of integrated directional couplers,” Opt. Lett. 27(8), 601–603 (2002).
[CrossRef]

Lo, D.

C. Ye, L. Shi, J. Wang, D. Lo, and X.-L. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83(20), 4101–4104 (2003).
[CrossRef]

Lopacinska, J. M.

Malins, C.

N. J. Goddard, J. Hulme, C. Malins, K. Singh, and P. R. Fielden, “Asymmetric anti-resonant reflecting optical waveguides (arrow) as chemical sensors,” Analyst (Lond.) 127(3), 378–382 (2002).
[CrossRef]

Martucci, A.

J. Jasieniak, J. Pacifico, R. Signorini, A. Chiasera, M. Ferrari, A. Martucci, and P. Mulvaney, “Luminescence and amplified stimulated emission in CdSe–ZnS-nanocrystal-doped TiO2 and ZrO2 waveguides,” Adv. Funct. Mater. 17(10), 1654–1662 (2007).
[CrossRef]

Maruo, S.

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton fabrication,” Laser Photon. Rev. 2(1-2), 100–111 (2008).
[CrossRef]

Matyska, M. T.

S. J. Lee, M. Goedert, M. T. Matyska, E. M. Ghandehari, M. Vijay, and J. J. Pesek, “Polymethylhydrosiloxane (PMHS) as a functional material for microfluidic chips,” J. Micromech. Microeng. 18, 025026 (9pp) (2008).

McCarthy, O.

X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol-gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 µm,” Opt. Mater. 12(1), 1–18 (1999).
[CrossRef]

Merlos, A.

Mogensen, K. B.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

J. Hübner, K. B. Mogensen, A. M. Jorgensen, P. Friis, P. Telleman, and J. P. Kutter, “Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels,” Rev. Sci. Instrum. 72(1), 229–233 (2001).
[CrossRef]

Montoya, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Mortensen, N. A.

Mulvaney, P.

J. Jasieniak, J. Pacifico, R. Signorini, A. Chiasera, M. Ferrari, A. Martucci, and P. Mulvaney, “Luminescence and amplified stimulated emission in CdSe–ZnS-nanocrystal-doped TiO2 and ZrO2 waveguides,” Adv. Funct. Mater. 17(10), 1654–1662 (2007).
[CrossRef]

Neckers, D. C.

O. Valdes-Aguilera and D. C. Neckers, “Aggregation phenomena in xanthene dyes,” Acc. Chem. Res. 22(5), 171–177 (1989).
[CrossRef]

Neumann, R.

E. Z. Faraggi, Y. Sorek, O. Levi, Y. Avny, D. Davidov, R. Neumann, and R. Reisfeld, “New Conjugated Polymer Sol-Gel Glass Composites: Luminescence and Optical Waveguides,” Adv. Mater. 8(10), 833–837 (1996).
[CrossRef]

Noble, M.

A. Entwistle and M. Noble, “The use of Lucifer yellow, bodipy, FITC, TRITC, RITC and Texas Red for dual immunolabeling visualized with a confocal scanning laser microscope,” J. Microsc. 168, 219–238 (1992).
[CrossRef]

Omar, M.M.

M. Fikry, M.M. Omar, and L.Z. Ismail, “Effect of host medium on the fluorescence emission intensity of rhodamine b in liquid and solid phase,” J. Fluoresc. 19(7), 41–746 (2009).
[CrossRef]

Orignac, X.

X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol-gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 µm,” Opt. Mater. 12(1), 1–18 (1999).
[CrossRef]

Ozin, G. A.

S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with complete a photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[CrossRef]

Pacifico, J.

J. Jasieniak, J. Pacifico, R. Signorini, A. Chiasera, M. Ferrari, A. Martucci, and P. Mulvaney, “Luminescence and amplified stimulated emission in CdSe–ZnS-nanocrystal-doped TiO2 and ZrO2 waveguides,” Adv. Funct. Mater. 17(10), 1654–1662 (2007).
[CrossRef]

Perez-Willard, F.

S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with complete a photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[CrossRef]

Pesek, J. J.

S. J. Lee, M. Goedert, M. T. Matyska, E. M. Ghandehari, M. Vijay, and J. J. Pesek, “Polymethylhydrosiloxane (PMHS) as a functional material for microfluidic chips,” J. Micromech. Microeng. 18, 025026 (9pp) (2008).

Plaza, J. A.

V. J. Cadarso, A. Llobera, G. Villanueva, C. Dominguez, and J. A. Plaza, “3-D modulable PDMS-based microlens system,” Opt. Express 16(7), 4918–4929 (2008).
[CrossRef] [PubMed]

A. Llobera, V. Seidemann, J. A. Plaza, V. J. Cadarso, and S. Büttgenbach, “SU-8 optical accelerometers,” J. MicroElectro. Mechan. Syst. 16(1), 111–121 (2007).
[CrossRef]

Prieto, F.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Punke, M.

Raja, A.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

Ralph, S.

N. M. Jokerst, M. A. Brooke, S. Cho, M. Thomas, J. Lillie, D. Kim, S. Ralph, K. Dennis, B. Comeau, and C. Henderson, “Integrated planar lightwave bio/chem OEIC sensors on si CMOS circuits,” Proc. SPIE 5730, 226–233 (2005).
[CrossRef]

Reisfeld, R.

E. Z. Faraggi, Y. Sorek, O. Levi, Y. Avny, D. Davidov, R. Neumann, and R. Reisfeld, “New Conjugated Polymer Sol-Gel Glass Composites: Luminescence and Optical Waveguides,” Adv. Mater. 8(10), 833–837 (1996).
[CrossRef]

Saavedra, S. S.

L. Yang, S. S. Saavedra, N. R. Armstrong, and J. Hayes, “Fabrication and characterization of low-loss, sol-gel planar waveguides,” Anal. Chem. 66(8), 1254–1263 (1994).
[CrossRef] [PubMed]

Salinas, I.

Salinas, Í.

A. Llobera, Í. Salinas, I. Garcés, R. Alonso, and C. Domínguez, “Large-core single-mode waveguides with cross-sectional antiresonant confinement,” IEEE J. Lightwave Tech. 22(6), 1560–1565 (2004).
[CrossRef]

Sanchez, C.

C. Sanchez, B. Lebeau, F. Chaput, and J. P. Boilot, “Optical properties of functional hybrid organic-inorganic nanocomposites,” Adv. Mater. 12(23), 1969–1993 (2003).
[CrossRef]

Seidemann, V.

A. Llobera, V. Seidemann, J. A. Plaza, V. J. Cadarso, and S. Büttgenbach, “SU-8 optical accelerometers,” J. MicroElectro. Mechan. Syst. 16(1), 111–121 (2007).
[CrossRef]

Sepúlveda, B.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Shi, L.

C. Ye, L. Shi, J. Wang, D. Lo, and X.-L. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83(20), 4101–4104 (2003).
[CrossRef]

Signorini, R.

J. Jasieniak, J. Pacifico, R. Signorini, A. Chiasera, M. Ferrari, A. Martucci, and P. Mulvaney, “Luminescence and amplified stimulated emission in CdSe–ZnS-nanocrystal-doped TiO2 and ZrO2 waveguides,” Adv. Funct. Mater. 17(10), 1654–1662 (2007).
[CrossRef]

Singh, K.

N. J. Goddard, J. Hulme, C. Malins, K. Singh, and P. R. Fielden, “Asymmetric anti-resonant reflecting optical waveguides (arrow) as chemical sensors,” Analyst (Lond.) 127(3), 378–382 (2002).
[CrossRef]

Smela, E.

M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007).
[CrossRef] [PubMed]

Snakenborg, D.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

Sorek, Y.

E. Z. Faraggi, Y. Sorek, O. Levi, Y. Avny, D. Davidov, R. Neumann, and R. Reisfeld, “New Conjugated Polymer Sol-Gel Glass Composites: Luminescence and Optical Waveguides,” Adv. Mater. 8(10), 833–837 (1996).
[CrossRef]

Telleman, P.

J. Hübner, K. B. Mogensen, A. M. Jorgensen, P. Friis, P. Telleman, and J. P. Kutter, “Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels,” Rev. Sci. Instrum. 72(1), 229–233 (2001).
[CrossRef]

Thomas, M.

N. M. Jokerst, M. A. Brooke, S. Cho, M. Thomas, J. Lillie, D. Kim, S. Ralph, K. Dennis, B. Comeau, and C. Henderson, “Integrated planar lightwave bio/chem OEIC sensors on si CMOS circuits,” Proc. SPIE 5730, 226–233 (2005).
[CrossRef]

Tsai, S. A.

Valdes-Aguilera, O.

O. Valdes-Aguilera and D. C. Neckers, “Aggregation phenomena in xanthene dyes,” Acc. Chem. Res. 22(5), 171–177 (1989).
[CrossRef]

Vijay, M.

S. J. Lee, M. Goedert, M. T. Matyska, E. M. Ghandehari, M. Vijay, and J. J. Pesek, “Polymethylhydrosiloxane (PMHS) as a functional material for microfluidic chips,” J. Micromech. Microeng. 18, 025026 (9pp) (2008).

Vila-Planas, J.

A. Llobera, S. Demming, H. N. Joensson, J. Vila-Planas, H. Andersson-Svahn, and S. Büttgenbach, “Monolithic PDMS passband filters for fluorescence detection,” Lab Chip 10(15), 1987–1992 (2010).
[CrossRef] [PubMed]

Villanueva, G.

von Freymann, G.

S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with complete a photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[CrossRef]

Wang, J.

C. Ye, L. Shi, J. Wang, D. Lo, and X.-L. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83(20), 4101–4104 (2003).
[CrossRef]

Wang, X.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

Wegener, M.

S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with complete a photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[CrossRef]

Whitesides, G. M.

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[CrossRef]

E. Kim, Y. Xia, and G. M. Whitesides, “Micromolding in capillaries: applications in materials science,” JACS 118(24), 5722–5731 (1996).
[CrossRef]

Wilke, R.

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethyl siloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[CrossRef] [PubMed]

Woggon, T.

Wong, S.

S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with complete a photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[CrossRef]

Wu, T. H.

Xia, Y.

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[CrossRef]

E. Kim, Y. Xia, and G. M. Whitesides, “Micromolding in capillaries: applications in materials science,” JACS 118(24), 5722–5731 (1996).
[CrossRef]

Yang, L.

L. Yang, S. S. Saavedra, N. R. Armstrong, and J. Hayes, “Fabrication and characterization of low-loss, sol-gel planar waveguides,” Anal. Chem. 66(8), 1254–1263 (1994).
[CrossRef] [PubMed]

Ye, C.

C. Ye, L. Shi, J. Wang, D. Lo, and X.-L. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83(20), 4101–4104 (2003).
[CrossRef]

Yeatman, E.

X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol-gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 µm,” Opt. Mater. 12(1), 1–18 (1999).
[CrossRef]

Zhu, X.-L.

C. Ye, L. Shi, J. Wang, D. Lo, and X.-L. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83(20), 4101–4104 (2003).
[CrossRef]

Acc. Chem. Res. (1)

O. Valdes-Aguilera and D. C. Neckers, “Aggregation phenomena in xanthene dyes,” Acc. Chem. Res. 22(5), 171–177 (1989).
[CrossRef]

Adv. Funct. Mater. (1)

J. Jasieniak, J. Pacifico, R. Signorini, A. Chiasera, M. Ferrari, A. Martucci, and P. Mulvaney, “Luminescence and amplified stimulated emission in CdSe–ZnS-nanocrystal-doped TiO2 and ZrO2 waveguides,” Adv. Funct. Mater. 17(10), 1654–1662 (2007).
[CrossRef]

Adv. Mater. (3)

C. Sanchez, B. Lebeau, F. Chaput, and J. P. Boilot, “Optical properties of functional hybrid organic-inorganic nanocomposites,” Adv. Mater. 12(23), 1969–1993 (2003).
[CrossRef]

S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with complete a photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[CrossRef]

E. Z. Faraggi, Y. Sorek, O. Levi, Y. Avny, D. Davidov, R. Neumann, and R. Reisfeld, “New Conjugated Polymer Sol-Gel Glass Composites: Luminescence and Optical Waveguides,” Adv. Mater. 8(10), 833–837 (1996).
[CrossRef]

Anal. Chem. (2)

L. Yang, S. S. Saavedra, N. R. Armstrong, and J. Hayes, “Fabrication and characterization of low-loss, sol-gel planar waveguides,” Anal. Chem. 66(8), 1254–1263 (1994).
[CrossRef] [PubMed]

V. J. Cadarso, C. Fernández-Sánchez, A. Llobera, M. Darder, and C. Domínguez, “Optical biosensor based on hollow integrated waveguides,” Anal. Chem. 80(9), 3498–3501 (2008).
[CrossRef] [PubMed]

Analyst (Lond.) (1)

N. J. Goddard, J. Hulme, C. Malins, K. Singh, and P. R. Fielden, “Asymmetric anti-resonant reflecting optical waveguides (arrow) as chemical sensors,” Analyst (Lond.) 127(3), 378–382 (2002).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

C. Ye, L. Shi, J. Wang, D. Lo, and X.-L. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83(20), 4101–4104 (2003).
[CrossRef]

Appl. Surf. Sci. (1)

R. Houbertz, “Laser interaction in sol–gel based materials 3-D lithography for photonic applications,” Appl. Surf. Sci. 247(1-4), 504–512 (2005).
[CrossRef]

Chem. Mater. (1)

C. Fernández-Sánchez, V. J. Cadarso, M. Darder, C. Domínguez, and A. Llobera, “Patterning of high aspect-ratio sol-gel structures by micro transfer molding,” Chem. Mater. 20(8), 2662–2668 (2008).
[CrossRef]

IEEE J. Lightwave Tech. (1)

A. Llobera, Í. Salinas, I. Garcés, R. Alonso, and C. Domínguez, “Large-core single-mode waveguides with cross-sectional antiresonant confinement,” IEEE J. Lightwave Tech. 22(6), 1560–1565 (2004).
[CrossRef]

J. Fluoresc. (1)

M. Fikry, M.M. Omar, and L.Z. Ismail, “Effect of host medium on the fluorescence emission intensity of rhodamine b in liquid and solid phase,” J. Fluoresc. 19(7), 41–746 (2009).
[CrossRef]

J. MicroElectro. Mechan. Syst. (1)

A. Llobera, V. Seidemann, J. A. Plaza, V. J. Cadarso, and S. Büttgenbach, “SU-8 optical accelerometers,” J. MicroElectro. Mechan. Syst. 16(1), 111–121 (2007).
[CrossRef]

J. Micromech. Microeng. (1)

S. J. Lee, M. Goedert, M. T. Matyska, E. M. Ghandehari, M. Vijay, and J. J. Pesek, “Polymethylhydrosiloxane (PMHS) as a functional material for microfluidic chips,” J. Micromech. Microeng. 18, 025026 (9pp) (2008).

J. Microsc. (1)

A. Entwistle and M. Noble, “The use of Lucifer yellow, bodipy, FITC, TRITC, RITC and Texas Red for dual immunolabeling visualized with a confocal scanning laser microscope,” J. Microsc. 168, 219–238 (1992).
[CrossRef]

J. Quant. Elect. (1)

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions,” J. Quant. Elect. 28(7), 1689–1700 (1992).
[CrossRef]

JACS (1)

E. Kim, Y. Xia, and G. M. Whitesides, “Micromolding in capillaries: applications in materials science,” JACS 118(24), 5722–5731 (1996).
[CrossRef]

Lab Chip (6)

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethyl siloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[CrossRef] [PubMed]

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

A. Llobera, S. Demming, H. N. Joensson, J. Vila-Planas, H. Andersson-Svahn, and S. Büttgenbach, “Monolithic PDMS passband filters for fluorescence detection,” Lab Chip 10(15), 1987–1992 (2010).
[CrossRef] [PubMed]

M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007).
[CrossRef] [PubMed]

A. Llobera, V. J. Cadarso, M. Darder, C. Domínguez, and C. Fernández-Sánchez, “Full-field photonic biosensors based on tunable bio-doped sol-gel glasses,” Lab Chip 8(7), 1185–1190 (2008).
[CrossRef] [PubMed]

Laser Photon. Rev. (1)

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton fabrication,” Laser Photon. Rev. 2(1-2), 100–111 (2008).
[CrossRef]

Nanotechnology (1)

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. (1)

X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol-gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 µm,” Opt. Mater. 12(1), 1–18 (1999).
[CrossRef]

Proc. SPIE (1)

N. M. Jokerst, M. A. Brooke, S. Cho, M. Thomas, J. Lillie, D. Kim, S. Ralph, K. Dennis, B. Comeau, and C. Henderson, “Integrated planar lightwave bio/chem OEIC sensors on si CMOS circuits,” Proc. SPIE 5730, 226–233 (2005).
[CrossRef]

Rev. Sci. Instrum. (1)

J. Hübner, K. B. Mogensen, A. M. Jorgensen, P. Friis, P. Telleman, and J. P. Kutter, “Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels,” Rev. Sci. Instrum. 72(1), 229–233 (2001).
[CrossRef]

Other (1)

H. Joensson, C. Zhang, M. Uhlén, and H. Andersson Svahn, “A homogeneous assay for biomolecule interaction analysis in droplets by fluorescence polarization” 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Groningen, The Netherlands 1802–1804 (2010)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Scheme of an ARROW filter showing the different layers of the structure and the materials selected for each of them. Furthermore, schematic distribution of refractive index is also represented.

Fig. 2
Fig. 2

(a) Propagation losses (PL) in front of the thickness of the 1st cladding layer (d1) and (b) PL as a function of the thickness of the 2nd cladding layer (d2) for the excitation (430 nm) and the emitted (530 and 625 nm) wavelengths.

Fig. 3
Fig. 3

Scheme of the proposed serpentine-shaped microfluidic structure that is filled with the sol solution. Upon the polymerization process, doped and non-doped waveguides with different width are obtained. Inset: closer view of the waveguide ends, showing the dead end channels that solves the unstable meniscuses at the serpentine.

Fig. 4
Fig. 4

Fabrication flow chart of the device (a) Definition of the first SU-8 level of the master for self-alignment purposes. (b) Final level of the master, for obtaining the serpentine-shaped microfluidics. (c) Replica molding of the SU-8 master using PDMS. (d) Peeling-off of the PDMS. (e) Fabrication of the ARROW filters on a silicon substrate. (f) Positioning of the PDMS over the ARROW filters and opening of the inlet/outlet. (g) Filling of the microchannels with a sol solution by capillary force. (h) PDMS removal.

Fig. 5
Fig. 5

(a) SEM image of the fabricated xerogel waveguides where it can be observed the waveguide quality and the dead end channel for avoiding unstable meniscuses. (b) Close-up view of the facet end, where the absence of cracks or defects is noticeable.

Fig. 6
Fig. 6

Images of the raw (non-doped) (a), Rhodamine B (b) and Alexa 430 (c) waveguides defined over the ARROW filter into which a broadband light source has been coupled using a fiber optics.

Fig. 7
Fig. 7

Spectral response of five raw non-doped xerogel waveguides having different widths and defined over the ARROW filter and its comparison with the spectra obtained with a fiber-to-fiber coupling. The effect of the ARROW filter can be clearly observed (shown with a black arrow).

Fig. 8
Fig. 8

Measured fluorophore losses as a function of the wavelength for Rhodamine-B (a) and Alexa Fluor 430 (b) waveguides with different widths. Negative losses have to be understood as emission. The effect of the ARROW filter is shown in both figures with a black arrow.

Fig. 9
Fig. 9

Measured intensity as a function of the wavelength for raw and Rhodamine-B doped xerogel waveguides with different concentrations and widths, together with the spectra obtained with fiber-to-fiber coupling. The effect of the ARROW filter is shown with a black arrow. Increase of the dye concentration leads to self-absorption, thus decreasing the emitted light.

Fig. 10
Fig. 10

Measured total losses (including insertion losses and attenuation) as a function of the wavelength width for raw and Rhodamine-B doped xerogel waveguides.

Tables (1)

Tables Icon

Table 1 Refractive Indices, Thicknesses and Losses for Three Distinct Wavelengths of the ARROW Filters Implemented under the Xerogel Waveguide

Metrics