Abstract

An optically injected solid state laser (OISSL) system is known to generate complex nonlinear dynamics within the parameter space of varying the injection strength of the master laser and the frequency detuning between the master and slave lasers. Here we show that within these complex nonlinear dynamics, a system which can be operated as a source of laser pulses with a pulse repetition frequency (prf) that can be continuously varied by a single control, is embedded. Generation of pulse repetition frequencies ranging from 200 kHz up to 4 MHz is shown to be achievable for an optically injected Nd:YVO4 solid state laser system from analysis of prior experimental and simulation results. Generalizing this to other optically injected solid state laser systems, the upper bound on the repetition frequency is of order the relaxation oscillation frequency for the lasers. The system is discussed in the context of prf versatile laser systems more generally. Proposals are made for the next generation of OISSLs that will increase understanding of the variable pulse repetition frequency operation, and determine its practical limitations. Such variable prf laser systems; both low powered, and, higher powered systems achieved using one or more optical power amplifier stages; have many potential applications from interrogating resonance behaviors in microscale structures, through sensing and diagnostics, to laser processing.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Arnold, Department of Soft Matter Physics, Institue of Experimental Physics, Johannes Kepler Universität Linz, Austria, (personal communication, 2004).
  2. D. Basting, K. Pippert, and U. Stamm, “History and future prospects of excimer laser technology,” RIKEN Review 43, 14–22 (2002).
  3. M. J. Withford, D. J. W. Brown, R. P. Mildren, R. J. Carman, G. D. Marshall, and J. A. Piper, “Advances in copper laser technology: kinetic enhancement,” Prog. Quantum Electron. 28(3-4), 165–196 (2004).
    [CrossRef]
  4. R. Paschotta, “Encyclopedia of Laser Physics and Technology”, retrieved www.rp-photonics.com/encyclopedia .
  5. P. W. Milonni, and J. H. Eberly, Lasers (John Wiley and Sons, New York, 1988).
  6. T. L. Paoli, “Saturable absorption effects in the self-pulsing (AlGa)As junction laser,” Appl. Phys. Lett. 34(10), 652–655 (1979).
    [CrossRef]
  7. M. Ueno and R. Lang, “Conditions for self-sustained pulsation and bistability in semiconductor lasers,” J. Appl. Phys. 58(4), 1689–1692 (1985).
    [CrossRef]
  8. M. Adams, “Theory of two-section laser amplifiers,” Opt. Quantum Electron. 21(1), S15–S31 (1989).
    [CrossRef]
  9. G. Farrell, P. Phelan, and J. Hegarty, “Selfpulsation operating regime for absorber of twin section laser diode,” Electron. Lett. 27(16), 1403–1405 (1991).
    [CrossRef]
  10. E. A. Avrutin, “Analysis of spontaneous emission and noise in self-pulsing laser-diodes,” IEE Proc., J Optoelectron. 140(1), 16–20 (1993).
    [CrossRef]
  11. M. Jinno and T. Matsumoto, “Optical retiming regenerator using 1.5 mm wavelength multielectrode DFB LDs,” Electron. Lett. 25(20), 1332–1333 (1989).
    [CrossRef]
  12. U. Bandelow, H. J. Wunsche, and H. Wenzel, “Theory of selfpulsations in 2-section DFB lasers,” IEEE Photon. Technol. Lett. 5(10), 1176–1179 (1993).
    [CrossRef]
  13. H. Wenzel, U. Bandelow, H. J. Wunsche, and J. Rehberg, “Mechanisms of fast self pulsations in two-section DFB lasers,” IEEE J. Quantum Electron. 32(1), 69–78 (1996).
    [CrossRef]
  14. D. S. Yee, Y. A. Leem, S. T. Kim, K. H. Park, and B. G. Kim, “Self-pulsating amplified feedback laser based on a loss-coupled DFB laser,” IEEE J. Quantum Electron. 43(11), 1095–1103 (2007).
    [CrossRef]
  15. S. Nishikawa, M. Gotoda, T. Nishimura, T. Miyahara, T. Hatta, Y. Miyazak, K. Matsumoto, K. Takagi, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Lasing Mechanism Analysis of Self-Pulsating Distributed Feedback Laser Diodes and Successful Demonstration of All-Optical Signal Recovery at 40 Gbps,” Jpn. J. Appl. Phys. 47(5), 3493–3498 (2008).
    [CrossRef]
  16. S. F. Lim, J. A. Hudgings, G. S. Li, W. Yuen, K. Y. Lau, and C. J. Chang-Hasnain, “Self-pulsating and bistable VCSEL with controllable intracavity quantum-well saturable absorber,” Electron. Lett. 33(20), 1708–1710 (1997).
    [CrossRef]
  17. G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16(3), 376–388 (1999).
    [CrossRef]
  18. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
    [CrossRef]
  19. B. Braun, F. X. Kartner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22(6), 381–383 (1997).
    [CrossRef] [PubMed]
  20. R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34μm Nd:YVO(4) microchip laser with semiconductor saturable-absorber mirrors,” Opt. Lett. 22(13), 991–993 (1997).
    [CrossRef] [PubMed]
  21. B. Braun, F. X. Kartner, U. Keller, J. P. Meyn, and G. Huber, “Passively Q-switched 180-ps Nd:LaSc(3)(BO3)(4) microchip laser,” Opt. Lett. 21(6), 405–407 (1996).
    [CrossRef] [PubMed]
  22. J. J. Zayhowski and C. Dill, “Coupled-cavity electro-optically Q-switched Nd:YVO(4) microchip lasers,” Opt. Lett. 20(7), 716–718 (1995).
    [CrossRef] [PubMed]
  23. J. J. Zayhowski and C. Dill Iii, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994).
    [CrossRef] [PubMed]
  24. S. Valling, T. Fordell, and A. M. Lindberg, “Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72 (2005).
  25. S. Valling, T. Fordell, and A. M. Lindberg, “Experimental and numerical intensity time series of an optically injected solid state laser,” Opt. Commun. 254(4-6), 282–289 (2005).
    [CrossRef]
  26. S. Valling, B. Krauskopf, T. Fordell, and A. M. Lindberg, “Experimental bifurcation diagram of a solid state laser with optical injection,” Opt. Commun. 271(2), 532–542 (2007).
    [CrossRef]
  27. J. P. Toomey, D. M. Kane, S. Valling, and A. M. Lindberg, “Automated correlation dimension analysis of optically injected solid state lasers,” Opt. Express 17(9), 7592–7608 (2009).
    [CrossRef] [PubMed]
  28. S. Valling, B. Stahlberg, and A. M. Lindberg, “Tunable feedback loop for suppression of relaxation oscillations in a diode-pumped Nd: YVO4 laser,” Opt. Laser Technol. 39(1), 82–85 (2007).
    [CrossRef]
  29. T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor-laser subject to optical-injection,” Appl. Phys. Lett. 64(26), 3539–3541 (1994).
    [CrossRef]
  30. T. Fordell and A. M. Lindberg, “Numerical stability maps of an optically injected semiconductor laser,” Opt. Commun. 242(4-6), 613–622 (2004).
    [CrossRef]
  31. Y. Isyanova, J. G. Manni, D. Welford, M. Jaspan, and J. A. Russell, “High-power, passively Q-switched microlaser - Power amplifier system,” in Advanced Solid-State Lasers, Proceedings, C. Marshall, ed. (2001), pp. 186–190.
  32. S. Pearce and C. L. M. Ireland, “Performance of a CW pumped Nd:YVO4 amplifier with kHz pulses,” Opt. Laser Technol. 35(5), 375–379 (2003).
    [CrossRef]
  33. A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (> 100 W) of a diode-pumped TEM00 Nd: GdVo(4) laser system,” IEEE J. Sel. Top. Quantum Electron. 11(3), 621–625 (2005).
    [CrossRef]
  34. M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system,” Appl. Opt. 44(4), 582–590 (2005).
    [CrossRef] [PubMed]
  35. J. G. Manni, “Amplification of microchip oscillator emission using a diode-pumped wedged-slab amplifier,” Opt. Commun. 252(1-3), 117–126 (2005).
    [CrossRef]
  36. C. C. Harb, M. B. Gray, H. A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped neodymium-YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30(12), 2907–2913 (1994).
    [CrossRef]
  37. T. J. Kane, “Intensity noise in diode-pumped single-frequency Nd:YAG lasers and its control by electronic feedback,” IEEE Photon. Technol. Lett. 2(4), 244–245 (1990).
    [CrossRef]
  38. J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 10(12), 1727–1729 (1998).
    [CrossRef]
  39. R. S. Conroy, T. Lake, G. J. Friel, A. J. Kemp, and B. D. Sinclair, “Self-Q-switched Nd:YVO4 microchip lasers,” Opt. Lett. 23(6), 457–459 (1998).
    [CrossRef]
  40. N. J. van Druten, S. S. R. Oemrawsingh, Y. Lien, C. Serrat, M. P. van Exter, and J. P. Woerdman, “Observation of transverse modes in a microchip laser with combined gain and index guiding,” J. Opt. Soc. Am. B 18(12), 1793–1804 (2001).
    [CrossRef]
  41. Y. J. Cheng, P. L. Mussche, and A. E. Siegman, “Cavity decay-rate and relaxation oscillation frequency in unconventional laser cavities,” IEEE J. Quantum Electron. 31(2), 391–398 (1995).
    [CrossRef]

2009 (1)

2008 (1)

S. Nishikawa, M. Gotoda, T. Nishimura, T. Miyahara, T. Hatta, Y. Miyazak, K. Matsumoto, K. Takagi, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Lasing Mechanism Analysis of Self-Pulsating Distributed Feedback Laser Diodes and Successful Demonstration of All-Optical Signal Recovery at 40 Gbps,” Jpn. J. Appl. Phys. 47(5), 3493–3498 (2008).
[CrossRef]

2007 (3)

S. Valling, B. Stahlberg, and A. M. Lindberg, “Tunable feedback loop for suppression of relaxation oscillations in a diode-pumped Nd: YVO4 laser,” Opt. Laser Technol. 39(1), 82–85 (2007).
[CrossRef]

D. S. Yee, Y. A. Leem, S. T. Kim, K. H. Park, and B. G. Kim, “Self-pulsating amplified feedback laser based on a loss-coupled DFB laser,” IEEE J. Quantum Electron. 43(11), 1095–1103 (2007).
[CrossRef]

S. Valling, B. Krauskopf, T. Fordell, and A. M. Lindberg, “Experimental bifurcation diagram of a solid state laser with optical injection,” Opt. Commun. 271(2), 532–542 (2007).
[CrossRef]

2005 (5)

S. Valling, T. Fordell, and A. M. Lindberg, “Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72 (2005).

S. Valling, T. Fordell, and A. M. Lindberg, “Experimental and numerical intensity time series of an optically injected solid state laser,” Opt. Commun. 254(4-6), 282–289 (2005).
[CrossRef]

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (> 100 W) of a diode-pumped TEM00 Nd: GdVo(4) laser system,” IEEE J. Sel. Top. Quantum Electron. 11(3), 621–625 (2005).
[CrossRef]

M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system,” Appl. Opt. 44(4), 582–590 (2005).
[CrossRef] [PubMed]

J. G. Manni, “Amplification of microchip oscillator emission using a diode-pumped wedged-slab amplifier,” Opt. Commun. 252(1-3), 117–126 (2005).
[CrossRef]

2004 (2)

T. Fordell and A. M. Lindberg, “Numerical stability maps of an optically injected semiconductor laser,” Opt. Commun. 242(4-6), 613–622 (2004).
[CrossRef]

M. J. Withford, D. J. W. Brown, R. P. Mildren, R. J. Carman, G. D. Marshall, and J. A. Piper, “Advances in copper laser technology: kinetic enhancement,” Prog. Quantum Electron. 28(3-4), 165–196 (2004).
[CrossRef]

2003 (1)

S. Pearce and C. L. M. Ireland, “Performance of a CW pumped Nd:YVO4 amplifier with kHz pulses,” Opt. Laser Technol. 35(5), 375–379 (2003).
[CrossRef]

2002 (1)

D. Basting, K. Pippert, and U. Stamm, “History and future prospects of excimer laser technology,” RIKEN Review 43, 14–22 (2002).

2001 (1)

1999 (1)

1998 (2)

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 10(12), 1727–1729 (1998).
[CrossRef]

R. S. Conroy, T. Lake, G. J. Friel, A. J. Kemp, and B. D. Sinclair, “Self-Q-switched Nd:YVO4 microchip lasers,” Opt. Lett. 23(6), 457–459 (1998).
[CrossRef]

1997 (3)

1996 (3)

B. Braun, F. X. Kartner, U. Keller, J. P. Meyn, and G. Huber, “Passively Q-switched 180-ps Nd:LaSc(3)(BO3)(4) microchip laser,” Opt. Lett. 21(6), 405–407 (1996).
[CrossRef] [PubMed]

H. Wenzel, U. Bandelow, H. J. Wunsche, and J. Rehberg, “Mechanisms of fast self pulsations in two-section DFB lasers,” IEEE J. Quantum Electron. 32(1), 69–78 (1996).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

1995 (2)

J. J. Zayhowski and C. Dill, “Coupled-cavity electro-optically Q-switched Nd:YVO(4) microchip lasers,” Opt. Lett. 20(7), 716–718 (1995).
[CrossRef] [PubMed]

Y. J. Cheng, P. L. Mussche, and A. E. Siegman, “Cavity decay-rate and relaxation oscillation frequency in unconventional laser cavities,” IEEE J. Quantum Electron. 31(2), 391–398 (1995).
[CrossRef]

1994 (3)

J. J. Zayhowski and C. Dill Iii, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994).
[CrossRef] [PubMed]

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor-laser subject to optical-injection,” Appl. Phys. Lett. 64(26), 3539–3541 (1994).
[CrossRef]

C. C. Harb, M. B. Gray, H. A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped neodymium-YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30(12), 2907–2913 (1994).
[CrossRef]

1993 (2)

U. Bandelow, H. J. Wunsche, and H. Wenzel, “Theory of selfpulsations in 2-section DFB lasers,” IEEE Photon. Technol. Lett. 5(10), 1176–1179 (1993).
[CrossRef]

E. A. Avrutin, “Analysis of spontaneous emission and noise in self-pulsing laser-diodes,” IEE Proc., J Optoelectron. 140(1), 16–20 (1993).
[CrossRef]

1991 (1)

G. Farrell, P. Phelan, and J. Hegarty, “Selfpulsation operating regime for absorber of twin section laser diode,” Electron. Lett. 27(16), 1403–1405 (1991).
[CrossRef]

1990 (1)

T. J. Kane, “Intensity noise in diode-pumped single-frequency Nd:YAG lasers and its control by electronic feedback,” IEEE Photon. Technol. Lett. 2(4), 244–245 (1990).
[CrossRef]

1989 (2)

M. Adams, “Theory of two-section laser amplifiers,” Opt. Quantum Electron. 21(1), S15–S31 (1989).
[CrossRef]

M. Jinno and T. Matsumoto, “Optical retiming regenerator using 1.5 mm wavelength multielectrode DFB LDs,” Electron. Lett. 25(20), 1332–1333 (1989).
[CrossRef]

1985 (1)

M. Ueno and R. Lang, “Conditions for self-sustained pulsation and bistability in semiconductor lasers,” J. Appl. Phys. 58(4), 1689–1692 (1985).
[CrossRef]

1979 (1)

T. L. Paoli, “Saturable absorption effects in the self-pulsing (AlGa)As junction laser,” Appl. Phys. Lett. 34(10), 652–655 (1979).
[CrossRef]

Adams, M.

M. Adams, “Theory of two-section laser amplifiers,” Opt. Quantum Electron. 21(1), S15–S31 (1989).
[CrossRef]

Alsing, P. M.

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor-laser subject to optical-injection,” Appl. Phys. Lett. 64(26), 3539–3541 (1994).
[CrossRef]

Aoyagi, T.

S. Nishikawa, M. Gotoda, T. Nishimura, T. Miyahara, T. Hatta, Y. Miyazak, K. Matsumoto, K. Takagi, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Lasing Mechanism Analysis of Self-Pulsating Distributed Feedback Laser Diodes and Successful Demonstration of All-Optical Signal Recovery at 40 Gbps,” Jpn. J. Appl. Phys. 47(5), 3493–3498 (2008).
[CrossRef]

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Avrutin, E. A.

E. A. Avrutin, “Analysis of spontaneous emission and noise in self-pulsing laser-diodes,” IEE Proc., J Optoelectron. 140(1), 16–20 (1993).
[CrossRef]

Bachor, H. A.

C. C. Harb, M. B. Gray, H. A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped neodymium-YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30(12), 2907–2913 (1994).
[CrossRef]

Bandelow, U.

H. Wenzel, U. Bandelow, H. J. Wunsche, and J. Rehberg, “Mechanisms of fast self pulsations in two-section DFB lasers,” IEEE J. Quantum Electron. 32(1), 69–78 (1996).
[CrossRef]

U. Bandelow, H. J. Wunsche, and H. Wenzel, “Theory of selfpulsations in 2-section DFB lasers,” IEEE Photon. Technol. Lett. 5(10), 1176–1179 (1993).
[CrossRef]

Basting, D.

D. Basting, K. Pippert, and U. Stamm, “History and future prospects of excimer laser technology,” RIKEN Review 43, 14–22 (2002).

Blows, J. L.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 10(12), 1727–1729 (1998).
[CrossRef]

Braun, B.

Brown, D. J. W.

M. J. Withford, D. J. W. Brown, R. P. Mildren, R. J. Carman, G. D. Marshall, and J. A. Piper, “Advances in copper laser technology: kinetic enhancement,” Prog. Quantum Electron. 28(3-4), 165–196 (2004).
[CrossRef]

Carman, R. J.

M. J. Withford, D. J. W. Brown, R. P. Mildren, R. J. Carman, G. D. Marshall, and J. A. Piper, “Advances in copper laser technology: kinetic enhancement,” Prog. Quantum Electron. 28(3-4), 165–196 (2004).
[CrossRef]

Chang-Hasnain, C. J.

S. F. Lim, J. A. Hudgings, G. S. Li, W. Yuen, K. Y. Lau, and C. J. Chang-Hasnain, “Self-pulsating and bistable VCSEL with controllable intracavity quantum-well saturable absorber,” Electron. Lett. 33(20), 1708–1710 (1997).
[CrossRef]

Cheng, Y. J.

Y. J. Cheng, P. L. Mussche, and A. E. Siegman, “Cavity decay-rate and relaxation oscillation frequency in unconventional laser cavities,” IEEE J. Quantum Electron. 31(2), 391–398 (1995).
[CrossRef]

Conroy, R. S.

Damzen, M. J.

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (> 100 W) of a diode-pumped TEM00 Nd: GdVo(4) laser system,” IEEE J. Sel. Top. Quantum Electron. 11(3), 621–625 (2005).
[CrossRef]

Dawes, J.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 10(12), 1727–1729 (1998).
[CrossRef]

Dill, C.

Dill Iii, C.

Farrell, G.

G. Farrell, P. Phelan, and J. Hegarty, “Selfpulsation operating regime for absorber of twin section laser diode,” Electron. Lett. 27(16), 1403–1405 (1991).
[CrossRef]

Fluck, R.

Fordell, T.

S. Valling, B. Krauskopf, T. Fordell, and A. M. Lindberg, “Experimental bifurcation diagram of a solid state laser with optical injection,” Opt. Commun. 271(2), 532–542 (2007).
[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg, “Experimental and numerical intensity time series of an optically injected solid state laser,” Opt. Commun. 254(4-6), 282–289 (2005).
[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg, “Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72 (2005).

T. Fordell and A. M. Lindberg, “Numerical stability maps of an optically injected semiconductor laser,” Opt. Commun. 242(4-6), 613–622 (2004).
[CrossRef]

Freitag, I.

C. C. Harb, M. B. Gray, H. A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped neodymium-YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30(12), 2907–2913 (1994).
[CrossRef]

Friel, G. J.

Gavrielides, A.

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor-laser subject to optical-injection,” Appl. Phys. Lett. 64(26), 3539–3541 (1994).
[CrossRef]

Gini, E.

Gotoda, M.

S. Nishikawa, M. Gotoda, T. Nishimura, T. Miyahara, T. Hatta, Y. Miyazak, K. Matsumoto, K. Takagi, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Lasing Mechanism Analysis of Self-Pulsating Distributed Feedback Laser Diodes and Successful Demonstration of All-Optical Signal Recovery at 40 Gbps,” Jpn. J. Appl. Phys. 47(5), 3493–3498 (2008).
[CrossRef]

Gray, M. B.

C. C. Harb, M. B. Gray, H. A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped neodymium-YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30(12), 2907–2913 (1994).
[CrossRef]

Harb, C. C.

C. C. Harb, M. B. Gray, H. A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped neodymium-YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30(12), 2907–2913 (1994).
[CrossRef]

Hatta, T.

S. Nishikawa, M. Gotoda, T. Nishimura, T. Miyahara, T. Hatta, Y. Miyazak, K. Matsumoto, K. Takagi, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Lasing Mechanism Analysis of Self-Pulsating Distributed Feedback Laser Diodes and Successful Demonstration of All-Optical Signal Recovery at 40 Gbps,” Jpn. J. Appl. Phys. 47(5), 3493–3498 (2008).
[CrossRef]

Hegarty, J.

G. Farrell, P. Phelan, and J. Hegarty, “Selfpulsation operating regime for absorber of twin section laser diode,” Electron. Lett. 27(16), 1403–1405 (1991).
[CrossRef]

Honninger, C.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Huber, G.

Hudgings, J. A.

S. F. Lim, J. A. Hudgings, G. S. Li, W. Yuen, K. Y. Lau, and C. J. Chang-Hasnain, “Self-pulsating and bistable VCSEL with controllable intracavity quantum-well saturable absorber,” Electron. Lett. 33(20), 1708–1710 (1997).
[CrossRef]

Ireland, C. L. M.

S. Pearce and C. L. M. Ireland, “Performance of a CW pumped Nd:YVO4 amplifier with kHz pulses,” Opt. Laser Technol. 35(5), 375–379 (2003).
[CrossRef]

Jinno, M.

M. Jinno and T. Matsumoto, “Optical retiming regenerator using 1.5 mm wavelength multielectrode DFB LDs,” Electron. Lett. 25(20), 1332–1333 (1989).
[CrossRef]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Kane, D. M.

Kane, T. J.

T. J. Kane, “Intensity noise in diode-pumped single-frequency Nd:YAG lasers and its control by electronic feedback,” IEEE Photon. Technol. Lett. 2(4), 244–245 (1990).
[CrossRef]

Kappe, P.

Kartner, F. X.

B. Braun, F. X. Kartner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22(6), 381–383 (1997).
[CrossRef] [PubMed]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

B. Braun, F. X. Kartner, U. Keller, J. P. Meyn, and G. Huber, “Passively Q-switched 180-ps Nd:LaSc(3)(BO3)(4) microchip laser,” Opt. Lett. 21(6), 405–407 (1996).
[CrossRef] [PubMed]

Keller, U.

Kemp, A. J.

Kim, B. G.

D. S. Yee, Y. A. Leem, S. T. Kim, K. H. Park, and B. G. Kim, “Self-pulsating amplified feedback laser based on a loss-coupled DFB laser,” IEEE J. Quantum Electron. 43(11), 1095–1103 (2007).
[CrossRef]

Kim, S. T.

D. S. Yee, Y. A. Leem, S. T. Kim, K. H. Park, and B. G. Kim, “Self-pulsating amplified feedback laser based on a loss-coupled DFB laser,” IEEE J. Quantum Electron. 43(11), 1095–1103 (2007).
[CrossRef]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Kovanis, V.

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor-laser subject to optical-injection,” Appl. Phys. Lett. 64(26), 3539–3541 (1994).
[CrossRef]

Krauskopf, B.

S. Valling, B. Krauskopf, T. Fordell, and A. M. Lindberg, “Experimental bifurcation diagram of a solid state laser with optical injection,” Opt. Commun. 271(2), 532–542 (2007).
[CrossRef]

Lake, T.

Lang, R.

M. Ueno and R. Lang, “Conditions for self-sustained pulsation and bistability in semiconductor lasers,” J. Appl. Phys. 58(4), 1689–1692 (1985).
[CrossRef]

Lau, K. Y.

S. F. Lim, J. A. Hudgings, G. S. Li, W. Yuen, K. Y. Lau, and C. J. Chang-Hasnain, “Self-pulsating and bistable VCSEL with controllable intracavity quantum-well saturable absorber,” Electron. Lett. 33(20), 1708–1710 (1997).
[CrossRef]

Leem, Y. A.

D. S. Yee, Y. A. Leem, S. T. Kim, K. H. Park, and B. G. Kim, “Self-pulsating amplified feedback laser based on a loss-coupled DFB laser,” IEEE J. Quantum Electron. 43(11), 1095–1103 (2007).
[CrossRef]

Li, G. S.

S. F. Lim, J. A. Hudgings, G. S. Li, W. Yuen, K. Y. Lau, and C. J. Chang-Hasnain, “Self-pulsating and bistable VCSEL with controllable intracavity quantum-well saturable absorber,” Electron. Lett. 33(20), 1708–1710 (1997).
[CrossRef]

Lien, Y.

Lim, S. F.

S. F. Lim, J. A. Hudgings, G. S. Li, W. Yuen, K. Y. Lau, and C. J. Chang-Hasnain, “Self-pulsating and bistable VCSEL with controllable intracavity quantum-well saturable absorber,” Electron. Lett. 33(20), 1708–1710 (1997).
[CrossRef]

Lindberg, A. M.

J. P. Toomey, D. M. Kane, S. Valling, and A. M. Lindberg, “Automated correlation dimension analysis of optically injected solid state lasers,” Opt. Express 17(9), 7592–7608 (2009).
[CrossRef] [PubMed]

S. Valling, B. Stahlberg, and A. M. Lindberg, “Tunable feedback loop for suppression of relaxation oscillations in a diode-pumped Nd: YVO4 laser,” Opt. Laser Technol. 39(1), 82–85 (2007).
[CrossRef]

S. Valling, B. Krauskopf, T. Fordell, and A. M. Lindberg, “Experimental bifurcation diagram of a solid state laser with optical injection,” Opt. Commun. 271(2), 532–542 (2007).
[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg, “Experimental and numerical intensity time series of an optically injected solid state laser,” Opt. Commun. 254(4-6), 282–289 (2005).
[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg, “Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72 (2005).

T. Fordell and A. M. Lindberg, “Numerical stability maps of an optically injected semiconductor laser,” Opt. Commun. 242(4-6), 613–622 (2004).
[CrossRef]

Liu, J. M.

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor-laser subject to optical-injection,” Appl. Phys. Lett. 64(26), 3539–3541 (1994).
[CrossRef]

Manni, J. G.

J. G. Manni, “Amplification of microchip oscillator emission using a diode-pumped wedged-slab amplifier,” Opt. Commun. 252(1-3), 117–126 (2005).
[CrossRef]

Marshall, G. D.

M. J. Withford, D. J. W. Brown, R. P. Mildren, R. J. Carman, G. D. Marshall, and J. A. Piper, “Advances in copper laser technology: kinetic enhancement,” Prog. Quantum Electron. 28(3-4), 165–196 (2004).
[CrossRef]

Matsumoto, K.

S. Nishikawa, M. Gotoda, T. Nishimura, T. Miyahara, T. Hatta, Y. Miyazak, K. Matsumoto, K. Takagi, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Lasing Mechanism Analysis of Self-Pulsating Distributed Feedback Laser Diodes and Successful Demonstration of All-Optical Signal Recovery at 40 Gbps,” Jpn. J. Appl. Phys. 47(5), 3493–3498 (2008).
[CrossRef]

Matsumoto, T.

M. Jinno and T. Matsumoto, “Optical retiming regenerator using 1.5 mm wavelength multielectrode DFB LDs,” Electron. Lett. 25(20), 1332–1333 (1989).
[CrossRef]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Melchior, H.

Menzel, R.

Meyn, J. P.

Mildren, R. P.

M. J. Withford, D. J. W. Brown, R. P. Mildren, R. J. Carman, G. D. Marshall, and J. A. Piper, “Advances in copper laser technology: kinetic enhancement,” Prog. Quantum Electron. 28(3-4), 165–196 (2004).
[CrossRef]

Minassian, A.

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (> 100 W) of a diode-pumped TEM00 Nd: GdVo(4) laser system,” IEEE J. Sel. Top. Quantum Electron. 11(3), 621–625 (2005).
[CrossRef]

Miyahara, T.

S. Nishikawa, M. Gotoda, T. Nishimura, T. Miyahara, T. Hatta, Y. Miyazak, K. Matsumoto, K. Takagi, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Lasing Mechanism Analysis of Self-Pulsating Distributed Feedback Laser Diodes and Successful Demonstration of All-Optical Signal Recovery at 40 Gbps,” Jpn. J. Appl. Phys. 47(5), 3493–3498 (2008).
[CrossRef]

Miyazak, Y.

S. Nishikawa, M. Gotoda, T. Nishimura, T. Miyahara, T. Hatta, Y. Miyazak, K. Matsumoto, K. Takagi, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Lasing Mechanism Analysis of Self-Pulsating Distributed Feedback Laser Diodes and Successful Demonstration of All-Optical Signal Recovery at 40 Gbps,” Jpn. J. Appl. Phys. 47(5), 3493–3498 (2008).
[CrossRef]

Moser, M.

Mussche, P. L.

Y. J. Cheng, P. L. Mussche, and A. E. Siegman, “Cavity decay-rate and relaxation oscillation frequency in unconventional laser cavities,” IEEE J. Quantum Electron. 31(2), 391–398 (1995).
[CrossRef]

Nishikawa, S.

S. Nishikawa, M. Gotoda, T. Nishimura, T. Miyahara, T. Hatta, Y. Miyazak, K. Matsumoto, K. Takagi, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Lasing Mechanism Analysis of Self-Pulsating Distributed Feedback Laser Diodes and Successful Demonstration of All-Optical Signal Recovery at 40 Gbps,” Jpn. J. Appl. Phys. 47(5), 3493–3498 (2008).
[CrossRef]

Nishimura, T.

S. Nishikawa, M. Gotoda, T. Nishimura, T. Miyahara, T. Hatta, Y. Miyazak, K. Matsumoto, K. Takagi, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Lasing Mechanism Analysis of Self-Pulsating Distributed Feedback Laser Diodes and Successful Demonstration of All-Optical Signal Recovery at 40 Gbps,” Jpn. J. Appl. Phys. 47(5), 3493–3498 (2008).
[CrossRef]

Oemrawsingh, S. S. R.

Omatsu, T.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 10(12), 1727–1729 (1998).
[CrossRef]

Ostermeyer, M.

Paoli, T. L.

T. L. Paoli, “Saturable absorption effects in the self-pulsing (AlGa)As junction laser,” Appl. Phys. Lett. 34(10), 652–655 (1979).
[CrossRef]

Park, K. H.

D. S. Yee, Y. A. Leem, S. T. Kim, K. H. Park, and B. G. Kim, “Self-pulsating amplified feedback laser based on a loss-coupled DFB laser,” IEEE J. Quantum Electron. 43(11), 1095–1103 (2007).
[CrossRef]

Paschotta, R.

Pask, H.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 10(12), 1727–1729 (1998).
[CrossRef]

Pearce, S.

S. Pearce and C. L. M. Ireland, “Performance of a CW pumped Nd:YVO4 amplifier with kHz pulses,” Opt. Laser Technol. 35(5), 375–379 (2003).
[CrossRef]

Phelan, P.

G. Farrell, P. Phelan, and J. Hegarty, “Selfpulsation operating regime for absorber of twin section laser diode,” Electron. Lett. 27(16), 1403–1405 (1991).
[CrossRef]

Piper, J. A.

M. J. Withford, D. J. W. Brown, R. P. Mildren, R. J. Carman, G. D. Marshall, and J. A. Piper, “Advances in copper laser technology: kinetic enhancement,” Prog. Quantum Electron. 28(3-4), 165–196 (2004).
[CrossRef]

Pippert, K.

D. Basting, K. Pippert, and U. Stamm, “History and future prospects of excimer laser technology,” RIKEN Review 43, 14–22 (2002).

Rehberg, J.

H. Wenzel, U. Bandelow, H. J. Wunsche, and J. Rehberg, “Mechanisms of fast self pulsations in two-section DFB lasers,” IEEE J. Quantum Electron. 32(1), 69–78 (1996).
[CrossRef]

Rottengatter, P.

C. C. Harb, M. B. Gray, H. A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped neodymium-YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30(12), 2907–2913 (1994).
[CrossRef]

Schilling, R.

C. C. Harb, M. B. Gray, H. A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped neodymium-YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30(12), 2907–2913 (1994).
[CrossRef]

Serrat, C.

Siegman, A. E.

Y. J. Cheng, P. L. Mussche, and A. E. Siegman, “Cavity decay-rate and relaxation oscillation frequency in unconventional laser cavities,” IEEE J. Quantum Electron. 31(2), 391–398 (1995).
[CrossRef]

Simpson, T. B.

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor-laser subject to optical-injection,” Appl. Phys. Lett. 64(26), 3539–3541 (1994).
[CrossRef]

Sinclair, B. D.

Smith, G.

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (> 100 W) of a diode-pumped TEM00 Nd: GdVo(4) laser system,” IEEE J. Sel. Top. Quantum Electron. 11(3), 621–625 (2005).
[CrossRef]

Spühler, G. J.

Stahlberg, B.

S. Valling, B. Stahlberg, and A. M. Lindberg, “Tunable feedback loop for suppression of relaxation oscillations in a diode-pumped Nd: YVO4 laser,” Opt. Laser Technol. 39(1), 82–85 (2007).
[CrossRef]

Stamm, U.

D. Basting, K. Pippert, and U. Stamm, “History and future prospects of excimer laser technology,” RIKEN Review 43, 14–22 (2002).

Takagi, K.

S. Nishikawa, M. Gotoda, T. Nishimura, T. Miyahara, T. Hatta, Y. Miyazak, K. Matsumoto, K. Takagi, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Lasing Mechanism Analysis of Self-Pulsating Distributed Feedback Laser Diodes and Successful Demonstration of All-Optical Signal Recovery at 40 Gbps,” Jpn. J. Appl. Phys. 47(5), 3493–3498 (2008).
[CrossRef]

Tateda, M.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 10(12), 1727–1729 (1998).
[CrossRef]

Thompson, B. A.

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (> 100 W) of a diode-pumped TEM00 Nd: GdVo(4) laser system,” IEEE J. Sel. Top. Quantum Electron. 11(3), 621–625 (2005).
[CrossRef]

Tokuda, Y.

S. Nishikawa, M. Gotoda, T. Nishimura, T. Miyahara, T. Hatta, Y. Miyazak, K. Matsumoto, K. Takagi, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Lasing Mechanism Analysis of Self-Pulsating Distributed Feedback Laser Diodes and Successful Demonstration of All-Optical Signal Recovery at 40 Gbps,” Jpn. J. Appl. Phys. 47(5), 3493–3498 (2008).
[CrossRef]

Toomey, J. P.

Ueno, M.

M. Ueno and R. Lang, “Conditions for self-sustained pulsation and bistability in semiconductor lasers,” J. Appl. Phys. 58(4), 1689–1692 (1985).
[CrossRef]

Valling, S.

J. P. Toomey, D. M. Kane, S. Valling, and A. M. Lindberg, “Automated correlation dimension analysis of optically injected solid state lasers,” Opt. Express 17(9), 7592–7608 (2009).
[CrossRef] [PubMed]

S. Valling, B. Krauskopf, T. Fordell, and A. M. Lindberg, “Experimental bifurcation diagram of a solid state laser with optical injection,” Opt. Commun. 271(2), 532–542 (2007).
[CrossRef]

S. Valling, B. Stahlberg, and A. M. Lindberg, “Tunable feedback loop for suppression of relaxation oscillations in a diode-pumped Nd: YVO4 laser,” Opt. Laser Technol. 39(1), 82–85 (2007).
[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg, “Experimental and numerical intensity time series of an optically injected solid state laser,” Opt. Commun. 254(4-6), 282–289 (2005).
[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg, “Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72 (2005).

van Druten, N. J.

van Exter, M. P.

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Welling, H.

C. C. Harb, M. B. Gray, H. A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped neodymium-YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30(12), 2907–2913 (1994).
[CrossRef]

Wenzel, H.

H. Wenzel, U. Bandelow, H. J. Wunsche, and J. Rehberg, “Mechanisms of fast self pulsations in two-section DFB lasers,” IEEE J. Quantum Electron. 32(1), 69–78 (1996).
[CrossRef]

U. Bandelow, H. J. Wunsche, and H. Wenzel, “Theory of selfpulsations in 2-section DFB lasers,” IEEE Photon. Technol. Lett. 5(10), 1176–1179 (1993).
[CrossRef]

Withford, M. J.

M. J. Withford, D. J. W. Brown, R. P. Mildren, R. J. Carman, G. D. Marshall, and J. A. Piper, “Advances in copper laser technology: kinetic enhancement,” Prog. Quantum Electron. 28(3-4), 165–196 (2004).
[CrossRef]

Woerdman, J. P.

Wulfmeyer, V.

Wunsche, H. J.

H. Wenzel, U. Bandelow, H. J. Wunsche, and J. Rehberg, “Mechanisms of fast self pulsations in two-section DFB lasers,” IEEE J. Quantum Electron. 32(1), 69–78 (1996).
[CrossRef]

U. Bandelow, H. J. Wunsche, and H. Wenzel, “Theory of selfpulsations in 2-section DFB lasers,” IEEE Photon. Technol. Lett. 5(10), 1176–1179 (1993).
[CrossRef]

Yee, D. S.

D. S. Yee, Y. A. Leem, S. T. Kim, K. H. Park, and B. G. Kim, “Self-pulsating amplified feedback laser based on a loss-coupled DFB laser,” IEEE J. Quantum Electron. 43(11), 1095–1103 (2007).
[CrossRef]

Yoshiara, K.

S. Nishikawa, M. Gotoda, T. Nishimura, T. Miyahara, T. Hatta, Y. Miyazak, K. Matsumoto, K. Takagi, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Lasing Mechanism Analysis of Self-Pulsating Distributed Feedback Laser Diodes and Successful Demonstration of All-Optical Signal Recovery at 40 Gbps,” Jpn. J. Appl. Phys. 47(5), 3493–3498 (2008).
[CrossRef]

Yuen, W.

S. F. Lim, J. A. Hudgings, G. S. Li, W. Yuen, K. Y. Lau, and C. J. Chang-Hasnain, “Self-pulsating and bistable VCSEL with controllable intracavity quantum-well saturable absorber,” Electron. Lett. 33(20), 1708–1710 (1997).
[CrossRef]

Zayhowski, J. J.

Zhang, G.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor-laser subject to optical-injection,” Appl. Phys. Lett. 64(26), 3539–3541 (1994).
[CrossRef]

T. L. Paoli, “Saturable absorption effects in the self-pulsing (AlGa)As junction laser,” Appl. Phys. Lett. 34(10), 652–655 (1979).
[CrossRef]

Electron. Lett. (3)

G. Farrell, P. Phelan, and J. Hegarty, “Selfpulsation operating regime for absorber of twin section laser diode,” Electron. Lett. 27(16), 1403–1405 (1991).
[CrossRef]

M. Jinno and T. Matsumoto, “Optical retiming regenerator using 1.5 mm wavelength multielectrode DFB LDs,” Electron. Lett. 25(20), 1332–1333 (1989).
[CrossRef]

S. F. Lim, J. A. Hudgings, G. S. Li, W. Yuen, K. Y. Lau, and C. J. Chang-Hasnain, “Self-pulsating and bistable VCSEL with controllable intracavity quantum-well saturable absorber,” Electron. Lett. 33(20), 1708–1710 (1997).
[CrossRef]

IEE Proc., J Optoelectron. (1)

E. A. Avrutin, “Analysis of spontaneous emission and noise in self-pulsing laser-diodes,” IEE Proc., J Optoelectron. 140(1), 16–20 (1993).
[CrossRef]

IEEE J. Quantum Electron. (4)

H. Wenzel, U. Bandelow, H. J. Wunsche, and J. Rehberg, “Mechanisms of fast self pulsations in two-section DFB lasers,” IEEE J. Quantum Electron. 32(1), 69–78 (1996).
[CrossRef]

D. S. Yee, Y. A. Leem, S. T. Kim, K. H. Park, and B. G. Kim, “Self-pulsating amplified feedback laser based on a loss-coupled DFB laser,” IEEE J. Quantum Electron. 43(11), 1095–1103 (2007).
[CrossRef]

C. C. Harb, M. B. Gray, H. A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped neodymium-YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30(12), 2907–2913 (1994).
[CrossRef]

Y. J. Cheng, P. L. Mussche, and A. E. Siegman, “Cavity decay-rate and relaxation oscillation frequency in unconventional laser cavities,” IEEE J. Quantum Electron. 31(2), 391–398 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (> 100 W) of a diode-pumped TEM00 Nd: GdVo(4) laser system,” IEEE J. Sel. Top. Quantum Electron. 11(3), 621–625 (2005).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

U. Bandelow, H. J. Wunsche, and H. Wenzel, “Theory of selfpulsations in 2-section DFB lasers,” IEEE Photon. Technol. Lett. 5(10), 1176–1179 (1993).
[CrossRef]

T. J. Kane, “Intensity noise in diode-pumped single-frequency Nd:YAG lasers and its control by electronic feedback,” IEEE Photon. Technol. Lett. 2(4), 244–245 (1990).
[CrossRef]

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 10(12), 1727–1729 (1998).
[CrossRef]

J. Appl. Phys. (1)

M. Ueno and R. Lang, “Conditions for self-sustained pulsation and bistability in semiconductor lasers,” J. Appl. Phys. 58(4), 1689–1692 (1985).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

S. Nishikawa, M. Gotoda, T. Nishimura, T. Miyahara, T. Hatta, Y. Miyazak, K. Matsumoto, K. Takagi, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Lasing Mechanism Analysis of Self-Pulsating Distributed Feedback Laser Diodes and Successful Demonstration of All-Optical Signal Recovery at 40 Gbps,” Jpn. J. Appl. Phys. 47(5), 3493–3498 (2008).
[CrossRef]

Opt. Commun. (4)

T. Fordell and A. M. Lindberg, “Numerical stability maps of an optically injected semiconductor laser,” Opt. Commun. 242(4-6), 613–622 (2004).
[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg, “Experimental and numerical intensity time series of an optically injected solid state laser,” Opt. Commun. 254(4-6), 282–289 (2005).
[CrossRef]

S. Valling, B. Krauskopf, T. Fordell, and A. M. Lindberg, “Experimental bifurcation diagram of a solid state laser with optical injection,” Opt. Commun. 271(2), 532–542 (2007).
[CrossRef]

J. G. Manni, “Amplification of microchip oscillator emission using a diode-pumped wedged-slab amplifier,” Opt. Commun. 252(1-3), 117–126 (2005).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (2)

S. Valling, B. Stahlberg, and A. M. Lindberg, “Tunable feedback loop for suppression of relaxation oscillations in a diode-pumped Nd: YVO4 laser,” Opt. Laser Technol. 39(1), 82–85 (2007).
[CrossRef]

S. Pearce and C. L. M. Ireland, “Performance of a CW pumped Nd:YVO4 amplifier with kHz pulses,” Opt. Laser Technol. 35(5), 375–379 (2003).
[CrossRef]

Opt. Lett. (6)

Opt. Quantum Electron. (1)

M. Adams, “Theory of two-section laser amplifiers,” Opt. Quantum Electron. 21(1), S15–S31 (1989).
[CrossRef]

Phys. Rev. A (1)

S. Valling, T. Fordell, and A. M. Lindberg, “Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72 (2005).

Prog. Quantum Electron. (1)

M. J. Withford, D. J. W. Brown, R. P. Mildren, R. J. Carman, G. D. Marshall, and J. A. Piper, “Advances in copper laser technology: kinetic enhancement,” Prog. Quantum Electron. 28(3-4), 165–196 (2004).
[CrossRef]

RIKEN Review (1)

D. Basting, K. Pippert, and U. Stamm, “History and future prospects of excimer laser technology,” RIKEN Review 43, 14–22 (2002).

Other (4)

N. Arnold, Department of Soft Matter Physics, Institue of Experimental Physics, Johannes Kepler Universität Linz, Austria, (personal communication, 2004).

R. Paschotta, “Encyclopedia of Laser Physics and Technology”, retrieved www.rp-photonics.com/encyclopedia .

P. W. Milonni, and J. H. Eberly, Lasers (John Wiley and Sons, New York, 1988).

Y. Isyanova, J. G. Manni, D. Welford, M. Jaspan, and J. A. Russell, “High-power, passively Q-switched microlaser - Power amplifier system,” in Advanced Solid-State Lasers, Proceedings, C. Marshall, ed. (2001), pp. 186–190.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 3
Fig. 3

The same map of the (K, Δω) plane as in Fig. 2 with a rescaled z-axis to highlight features in the 0 to 4 MHz scale.

Fig. 1
Fig. 1

Experimental setup: LD, laser diode, 809 nm; FI, Faraday isolator; TEC, temperature control, sets frequency detuning; IF, interference filter, blocks 1064 nm pump transmission; BS, beam splitter; AOM, acousto-optic modulator, controls injected power; FP, Fabry-Pérot interferometer; PD, photodetectors, PD1 injection power, PD2 time varying output power, PD3 beat frequency between lasers. Figure reproduced from [24].

Fig. 2
Fig. 2

Dominant frequency from experimental intensity time series in the (K, Δω) plane.

Fig. 4
Fig. 4

Dominant frequency as a function of injection strength for detuning Δω = −0.50, −0.74, −1.01, −1.49, −2.02, −2.50 and −3.01.

Fig. 5
Fig. 5

The range of pulse repetition frequencies which are accessible using this OISSL system. (a) f pulse = 4.2 MHz at Δω = −1.94, K = 0.218, τd = 49 ns; (b) f pulse = 3 MHz at Δω = −1.31, K = 0.4, τd = 45 ns; (c) f pulse = 2 MHz at Δω = −1.02, K = 0.475, τd = 31 ns; (d) f pulse = 1 MHz at Δω = −0.74, K = 0.489, τd = 45 ns; (e) f pulse = 500 kHz at Δω = −0.95, K = 0.778, τd = 22 ns; and (f) f pulse = 200 kHz at Δω = −0.56, K = 0.0.394, τd = 53 ns.

Fig. 6
Fig. 6

Comparison of 1 MHz pulses for (a) detuning Δω = −0.74 (K = 0.489, pulse envelope 100 ± 5 ns), and (b) detuning Δω = −3.70 (K = 3.190, pulse duration 42 ± 2 ns)

Fig. 7
Fig. 7

Map showing the standard deviation in pulse period for all time series in the (K, Δω) plane. Blue regions correspond to more stable pulses.

Fig. 8
Fig. 8

Maps of the dominant frequency from simulated time series in the (K, Δω) plane, (a) full pulse repetition frequency scale and, (b) scaled to highlight prf between 0 and 4 MHz.

Metrics