Abstract

An Allegretto Eye-Q laser platform (Wavelight GmbH, Erlangen, Germany) was used to study the effect of air-flow speed on the ablation of artificial polymer corneas used for testing refractive surgery patterns. Flat samples of two materials (PMMA and Filofocon A) were ablated at four different air flow conditions. The shape and profile of the ablated surfaces were measured with a precise non-contact optical surface profilometer. Significant asymmetries in the measured profiles were found when the ablation was performed with the clinical air aspiration system, and also without air flow. Increasing air-flow produced deeper ablations, improved symmetry, and increased the repeatability of the ablation pattern. Shielding of the laser pulse by the plume of smoke during the ablation of plastic samples reduced the central ablation depth by more than 40% with no-air flow, 30% with clinical air aspiration, and 5% with 1.15 m/s air flow. A simple model based on non-inertial dragging of the particles by air flow predicts no central shielding with 2.3 m/s air flow, and accurately predicts (within 2 μm) the decrease of central ablation depth by shielding. The shielding effects for PMMA and Filofocon A were similar despite the differences in the ablation properties of the materials and the different full-shielding transmission coefficient, which is related to the number of particles ejected and their associated optical behavior. Air flow is a key factor in the evaluation of ablation patterns in refractive surgery using plastic models, as significant shielding effects are found with typical air-flow levels used under clinical conditions. Shielding effects can be avoided by tuning the air flow to the laser repetition rate.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Dorronsoro, D. Cano, J. Merayo-Lloves, and S. Marcos, “Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape,” Opt. Express 14(13), 6142–6156 (2006).
    [CrossRef] [PubMed]
  2. E. Hauge, S. A. Naroo, and W. N. Charman, “Poly(methyl methacrylate) model study of optical surface quality after excimer laser photorefractive keratectomy,” J. Cataract Refract. Surg. 27(12), 2026–2035 (2001).
    [CrossRef] [PubMed]
  3. W. Bachmann, B. Jean, T. Bende, M. Wohlrab, and H. J. Thiel, “Silicone replica technique and automatic confocal topometry for determination of corneal surface roughness,” Ger. J. Ophthalmol. 2(6), 400–403 (1993).
    [PubMed]
  4. C. B. Odonnell, J. Kemner, and F. E. Odonnell, “Surface roughness in PMMA is linearly related to the amount of excimer laser ablation,” J. Refract. Surg. 12(1), 171–174 (1996).
  5. S. A. Naroo and W. N. Charman, “Surface roughness after excimer laser ablation using a PMMA model: profilometry and effects on vision,” J. Refract. Surg. 21(3), 260–268 (2005).
    [PubMed]
  6. J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar, and W. J. Stark, “Excimer laser calibration system,” J. Refract. Surg. 12(3), 401–411 (1996).
    [PubMed]
  7. S. Marcos, C. Dorronsoro, and D. Cano, “Spherical aberration prevention method in e.g. laser refractive surgery system,” (Patent WO 2005/122873 A1, 2005).
  8. C. Dorronsoro, L. Remon, J. Merayo-Lloves, and S. Marcos, “Experimental evaluation of optimized ablation patterns for laser refractive surgery,” Opt. Express 17(17), 15292–15307 (2009).
    [CrossRef] [PubMed]
  9. C. Roberts, and W. Dupps, “Corneal biomechanics and their role in corneal ablative procedures,” in Customized corneal ablation: The quest for super vision, S. McRae, R. Krueger, and R. Applegate, eds. (Stack publising, 2001).
  10. FDA, “Opthalmic devices panel 110th meeting,” (Food and Drug Administration, 2008).
  11. B. Drum, “Evaluating the Safety and Effectiveness of “Aberration-Free” Ophthalmic Refractive Surgery,” in 9th Annual FDA Science Forum, (Washington, DC, 2003).
  12. B. Drum, “Radial efficiency function in refractive surgery: Ablation losses caused by corneal curvature,” in 11th annual FDA Science Forum, (Washington, DC, 2005).
  13. B. Drum, “The Evolution of the Optical Zone in Corneal Refractive Surgery,” in Wavefront Congress, (Santa Fe, New Mexico, 2007)
  14. C. Dorronsoro, J. Siegel, L. Remon, and S. Marcos, “Suitability of Filofocon A and PMMA for experimental models in excimer laser ablation refractive surgery,” Opt. Express 16(25), 20955–20967 (2008).
    [CrossRef] [PubMed]
  15. G. H. Pettit and R. Sauerbrey, “Pulsed ultraviolet-laser ablation,” Appl. Phys., A Mater. Sci. Process. 56(1), 51–63 (1993).
    [CrossRef]
  16. D. W. Hahn, M. N. Ediger, and G. H. Pettit, “Dynamics of ablation plume particles generated during excimer laser corneal ablation,” Lasers Surg. Med. 16(4), 384–389 (1995).
    [CrossRef] [PubMed]
  17. J. T. Walsh and P. T. Staveteig, “Effect of hydrogen bonding on far-ultraviolet water absorption and potential implications for 193-nm arf excimer laser-tissue interaction,” Proc. SPIE 2391, 176–183 (1995).
    [CrossRef]
  18. B. T. Fisher and D. W. Hahn, “Development and numerical solution of a mechanistic model for corneal tissue ablation with the 193 nm argon fluoride excimer laser,” J. Opt. Soc. Am. A 24(2), 265–277 (2007).
    [CrossRef]
  19. B. T. Fisher and D. W. Hahn, “Measurement of small-signal absorption coefficient and absorption cross section of collagen for 193-nm excimer laser light and the role of collagen in tissue ablation,” Appl. Opt. 43(29), 5443–5451 (2004).
    [CrossRef] [PubMed]
  20. Z. Bor, B. Hopp, B. Rácz, G. Szabó, I. Ratkay, I. Süveges, A. Füst, and J. Mohay, “Plume emission, shock wave and surface wave formation during excimer laser ablation of the cornea,” Refract. Corneal Surg. 9(2Suppl), S111–S115 (1993).
    [PubMed]
  21. R. R. Krueger, J. S. Krasinski, C. Radzewicz, K. G. Stonecipher, and J. J. Rowsey, “Photography of shock waves during excimer laser ablation of the cornea. Effect of helium gas on propagation velocity,” Cornea 12(4), 330–334 (1993).
    [CrossRef] [PubMed]
  22. C. A. Puliafito, D. Stern, R. R. Krueger, and E. R. Mandel, “High-speed photography of excimer laser ablation of the cornea,” Arch. Ophthalmol. 105(9), 1255–1259 (1987).
    [PubMed]
  23. H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, “Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained,” J. Appl. Phys. 83(10), 5458–5468 (1998).
    [CrossRef]
  24. R. Srinivasan and B. Braren, “Ultraviolet-laser ablation of organic polymers,” Chem. Rev. 89(6), 1303–1316 (1989).
    [CrossRef]
  25. I. Zinovik and A. Povitsky, “Dynamics of multiple plumes in laser ablation: Modeling of the shielding effect,” J. Appl. Phys. 100(2), 024911 (2006).
    [CrossRef]
  26. R. Sauerbrey and G. H. Pettit, “Theory for the etching of organic materials by ultraviolet-laser pulses,” Appl. Phys. Lett. 55(5), 421–423 (1989).
    [CrossRef]
  27. H. Lubatschowski, O. Kermani, H. Welling, and W. Ertmer, “A scanning and rotating slit arF excimer laser delivery system for refractive surgery,” J. Refract. Surg. 14(2Suppl), S186–S191 (1998).
    [PubMed]
  28. J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, “Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy,” Ophthalmology 104(5), 823–830 (1997).
    [PubMed]
  29. C. R. Munnerlyn, M. E. Arnoldussen, A. L. Munnerlyn, and B. A. Logan, “Theory concerning the ablation of corneal tissue with large-area, 193-nm excimer laser beams,” J. Biomed. Opt. 11(6), 064032 (2006).
    [CrossRef]
  30. C. Dorbecker, H. Lubatschowski, S. Lohmann, C. Ruff, O. Kermani, and W. Ertmer, “Influence of the ablation plume on the removal process during ArF-excimer laser photoablation,” Proc. SPIE 2632, 2–9 (1996).
    [CrossRef]
  31. L. M. Shanyfelt, P. L. Dickrell, H. F. Edelhauser, and D. W. Hahn, “Effects of laser repetition rate on corneal tissue ablation for 193-nm excimer laser light,” Lasers Surg. Med. 40(7), 483–493 (2008).
    [CrossRef] [PubMed]
  32. M. Mrochen, M. Kaemmerer, and T. Seiler, “Wavefront-guided laser in situ keratomileusis: early results in three eyes,” J. Refract. Surg. 16(2), 116–121 (2000).
    [PubMed]
  33. M. Mrochen, R. R. Krueger, M. Bueeler, and T. Seiler, “Aberration-sensing and wavefront-guided laser in situ keratomileusis: management of decentered ablation,” J. Refract. Surg. 18(4), 418–429 (2002).
    [PubMed]
  34. A. J. Kanellopoulos, J. Conway, and L. H. Pe, “LASIK for hyperopia with the WaveLight excimer laser,” J. Refract. Surg. 22(1), 43–47 (2006).
    [PubMed]
  35. M. R. Jankov, S. I. Panagopoulou, N. S. Tsiklis, G. C. Hajitanasis, M. Aslanides, and G. Pallikaris, “Topography-guided treatment of irregular astigmatism with the waveLight excimer laser,” J. Refract. Surg. 22(4), 335–344 (2006).
    [PubMed]
  36. T. Koller, H. P. Iseli, F. Hafezi, M. Mrochen, and T. Seiler, “Q-factor customized ablation profile for the correction of myopic astigmatism,” J. Cataract Refract. Surg. 32(4), 584–589 (2006).
    [CrossRef] [PubMed]
  37. K. G. Stonecipher and G. M. Kezirian, “Wavefront-optimized versus wavefront-guided LASIK for myopic astigmatism with the ALLEGRETTO WAVE: Three-month results of a prospective FDA trial,” J. Refract. Surg. 24(4), S424–S430 (2008).
    [PubMed]
  38. D. T. C. Lin, S. R. Holland, K. M. Rocha, and R. R. Krueger, “Method for optimizing topography-guided ablation of highly aberrated eyes with the ALLEGRETTO WAVE Excimer Laser,” J. Refract. Surg. 24(4), S439–S445 (2008).
    [PubMed]
  39. M. Mrochen, C. Donitzky, C. Wullner, and J. Loffler, “Wavefront-optimized ablation profiles: theoretical background,” J. Cataract Refract. Surg. 30(4), 775–785 (2004).
    [CrossRef] [PubMed]
  40. M. Mrochen, U. Schelling, C. Wuellner, and C. Donitzky, “Effect of time sequences in scanning algorithms on the surface temperature during corneal laser surgery with high-repetition-rate excimer laser,” J. Cataract Refract. Surg. 35(4), 738–746 (2009).
    [CrossRef] [PubMed]
  41. M. Mrochen, U. Schelling, C. Wuellner, and C. Donitzky, “Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system,” J. Cataract Refract. Surg. 35(2), 363–373 (2009).
    [CrossRef] [PubMed]
  42. M. Mrochen, C. Wuellner, K. Rose, and C. Donitzky, “Experimental setup to determine the pulse energies and radiant exposures for excimer lasers with repetition rates ranging from 100 to 1050 Hz,” J. Cataract Refract. Surg. 35(10), 1806–1814 (2009).
    [CrossRef] [PubMed]
  43. R. Artigas, F. Laguarta, and C. Cadevall, “Dual-technology optical sensor head for 3D surface shape measurements on the micro- and nanoscales,” Proc. SPIE 5457, 166–174 (2004).
    [CrossRef]

2009 (4)

M. Mrochen, U. Schelling, C. Wuellner, and C. Donitzky, “Effect of time sequences in scanning algorithms on the surface temperature during corneal laser surgery with high-repetition-rate excimer laser,” J. Cataract Refract. Surg. 35(4), 738–746 (2009).
[CrossRef] [PubMed]

M. Mrochen, U. Schelling, C. Wuellner, and C. Donitzky, “Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system,” J. Cataract Refract. Surg. 35(2), 363–373 (2009).
[CrossRef] [PubMed]

M. Mrochen, C. Wuellner, K. Rose, and C. Donitzky, “Experimental setup to determine the pulse energies and radiant exposures for excimer lasers with repetition rates ranging from 100 to 1050 Hz,” J. Cataract Refract. Surg. 35(10), 1806–1814 (2009).
[CrossRef] [PubMed]

C. Dorronsoro, L. Remon, J. Merayo-Lloves, and S. Marcos, “Experimental evaluation of optimized ablation patterns for laser refractive surgery,” Opt. Express 17(17), 15292–15307 (2009).
[CrossRef] [PubMed]

2008 (4)

C. Dorronsoro, J. Siegel, L. Remon, and S. Marcos, “Suitability of Filofocon A and PMMA for experimental models in excimer laser ablation refractive surgery,” Opt. Express 16(25), 20955–20967 (2008).
[CrossRef] [PubMed]

L. M. Shanyfelt, P. L. Dickrell, H. F. Edelhauser, and D. W. Hahn, “Effects of laser repetition rate on corneal tissue ablation for 193-nm excimer laser light,” Lasers Surg. Med. 40(7), 483–493 (2008).
[CrossRef] [PubMed]

K. G. Stonecipher and G. M. Kezirian, “Wavefront-optimized versus wavefront-guided LASIK for myopic astigmatism with the ALLEGRETTO WAVE: Three-month results of a prospective FDA trial,” J. Refract. Surg. 24(4), S424–S430 (2008).
[PubMed]

D. T. C. Lin, S. R. Holland, K. M. Rocha, and R. R. Krueger, “Method for optimizing topography-guided ablation of highly aberrated eyes with the ALLEGRETTO WAVE Excimer Laser,” J. Refract. Surg. 24(4), S439–S445 (2008).
[PubMed]

2007 (1)

2006 (6)

C. Dorronsoro, D. Cano, J. Merayo-Lloves, and S. Marcos, “Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape,” Opt. Express 14(13), 6142–6156 (2006).
[CrossRef] [PubMed]

A. J. Kanellopoulos, J. Conway, and L. H. Pe, “LASIK for hyperopia with the WaveLight excimer laser,” J. Refract. Surg. 22(1), 43–47 (2006).
[PubMed]

M. R. Jankov, S. I. Panagopoulou, N. S. Tsiklis, G. C. Hajitanasis, M. Aslanides, and G. Pallikaris, “Topography-guided treatment of irregular astigmatism with the waveLight excimer laser,” J. Refract. Surg. 22(4), 335–344 (2006).
[PubMed]

T. Koller, H. P. Iseli, F. Hafezi, M. Mrochen, and T. Seiler, “Q-factor customized ablation profile for the correction of myopic astigmatism,” J. Cataract Refract. Surg. 32(4), 584–589 (2006).
[CrossRef] [PubMed]

C. R. Munnerlyn, M. E. Arnoldussen, A. L. Munnerlyn, and B. A. Logan, “Theory concerning the ablation of corneal tissue with large-area, 193-nm excimer laser beams,” J. Biomed. Opt. 11(6), 064032 (2006).
[CrossRef]

I. Zinovik and A. Povitsky, “Dynamics of multiple plumes in laser ablation: Modeling of the shielding effect,” J. Appl. Phys. 100(2), 024911 (2006).
[CrossRef]

2005 (1)

S. A. Naroo and W. N. Charman, “Surface roughness after excimer laser ablation using a PMMA model: profilometry and effects on vision,” J. Refract. Surg. 21(3), 260–268 (2005).
[PubMed]

2004 (3)

R. Artigas, F. Laguarta, and C. Cadevall, “Dual-technology optical sensor head for 3D surface shape measurements on the micro- and nanoscales,” Proc. SPIE 5457, 166–174 (2004).
[CrossRef]

B. T. Fisher and D. W. Hahn, “Measurement of small-signal absorption coefficient and absorption cross section of collagen for 193-nm excimer laser light and the role of collagen in tissue ablation,” Appl. Opt. 43(29), 5443–5451 (2004).
[CrossRef] [PubMed]

M. Mrochen, C. Donitzky, C. Wullner, and J. Loffler, “Wavefront-optimized ablation profiles: theoretical background,” J. Cataract Refract. Surg. 30(4), 775–785 (2004).
[CrossRef] [PubMed]

2002 (1)

M. Mrochen, R. R. Krueger, M. Bueeler, and T. Seiler, “Aberration-sensing and wavefront-guided laser in situ keratomileusis: management of decentered ablation,” J. Refract. Surg. 18(4), 418–429 (2002).
[PubMed]

2001 (1)

E. Hauge, S. A. Naroo, and W. N. Charman, “Poly(methyl methacrylate) model study of optical surface quality after excimer laser photorefractive keratectomy,” J. Cataract Refract. Surg. 27(12), 2026–2035 (2001).
[CrossRef] [PubMed]

2000 (1)

M. Mrochen, M. Kaemmerer, and T. Seiler, “Wavefront-guided laser in situ keratomileusis: early results in three eyes,” J. Refract. Surg. 16(2), 116–121 (2000).
[PubMed]

1998 (2)

H. Lubatschowski, O. Kermani, H. Welling, and W. Ertmer, “A scanning and rotating slit arF excimer laser delivery system for refractive surgery,” J. Refract. Surg. 14(2Suppl), S186–S191 (1998).
[PubMed]

H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, “Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained,” J. Appl. Phys. 83(10), 5458–5468 (1998).
[CrossRef]

1997 (1)

J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, “Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy,” Ophthalmology 104(5), 823–830 (1997).
[PubMed]

1996 (3)

C. Dorbecker, H. Lubatschowski, S. Lohmann, C. Ruff, O. Kermani, and W. Ertmer, “Influence of the ablation plume on the removal process during ArF-excimer laser photoablation,” Proc. SPIE 2632, 2–9 (1996).
[CrossRef]

C. B. Odonnell, J. Kemner, and F. E. Odonnell, “Surface roughness in PMMA is linearly related to the amount of excimer laser ablation,” J. Refract. Surg. 12(1), 171–174 (1996).

J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar, and W. J. Stark, “Excimer laser calibration system,” J. Refract. Surg. 12(3), 401–411 (1996).
[PubMed]

1995 (2)

D. W. Hahn, M. N. Ediger, and G. H. Pettit, “Dynamics of ablation plume particles generated during excimer laser corneal ablation,” Lasers Surg. Med. 16(4), 384–389 (1995).
[CrossRef] [PubMed]

J. T. Walsh and P. T. Staveteig, “Effect of hydrogen bonding on far-ultraviolet water absorption and potential implications for 193-nm arf excimer laser-tissue interaction,” Proc. SPIE 2391, 176–183 (1995).
[CrossRef]

1993 (4)

G. H. Pettit and R. Sauerbrey, “Pulsed ultraviolet-laser ablation,” Appl. Phys., A Mater. Sci. Process. 56(1), 51–63 (1993).
[CrossRef]

W. Bachmann, B. Jean, T. Bende, M. Wohlrab, and H. J. Thiel, “Silicone replica technique and automatic confocal topometry for determination of corneal surface roughness,” Ger. J. Ophthalmol. 2(6), 400–403 (1993).
[PubMed]

Z. Bor, B. Hopp, B. Rácz, G. Szabó, I. Ratkay, I. Süveges, A. Füst, and J. Mohay, “Plume emission, shock wave and surface wave formation during excimer laser ablation of the cornea,” Refract. Corneal Surg. 9(2Suppl), S111–S115 (1993).
[PubMed]

R. R. Krueger, J. S. Krasinski, C. Radzewicz, K. G. Stonecipher, and J. J. Rowsey, “Photography of shock waves during excimer laser ablation of the cornea. Effect of helium gas on propagation velocity,” Cornea 12(4), 330–334 (1993).
[CrossRef] [PubMed]

1989 (2)

R. Srinivasan and B. Braren, “Ultraviolet-laser ablation of organic polymers,” Chem. Rev. 89(6), 1303–1316 (1989).
[CrossRef]

R. Sauerbrey and G. H. Pettit, “Theory for the etching of organic materials by ultraviolet-laser pulses,” Appl. Phys. Lett. 55(5), 421–423 (1989).
[CrossRef]

1987 (1)

C. A. Puliafito, D. Stern, R. R. Krueger, and E. R. Mandel, “High-speed photography of excimer laser ablation of the cornea,” Arch. Ophthalmol. 105(9), 1255–1259 (1987).
[PubMed]

Arnoldussen, M. E.

C. R. Munnerlyn, M. E. Arnoldussen, A. L. Munnerlyn, and B. A. Logan, “Theory concerning the ablation of corneal tissue with large-area, 193-nm excimer laser beams,” J. Biomed. Opt. 11(6), 064032 (2006).
[CrossRef]

Artigas, R.

R. Artigas, F. Laguarta, and C. Cadevall, “Dual-technology optical sensor head for 3D surface shape measurements on the micro- and nanoscales,” Proc. SPIE 5457, 166–174 (2004).
[CrossRef]

Aslanides, M.

M. R. Jankov, S. I. Panagopoulou, N. S. Tsiklis, G. C. Hajitanasis, M. Aslanides, and G. Pallikaris, “Topography-guided treatment of irregular astigmatism with the waveLight excimer laser,” J. Refract. Surg. 22(4), 335–344 (2006).
[PubMed]

Azar, D. T.

J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar, and W. J. Stark, “Excimer laser calibration system,” J. Refract. Surg. 12(3), 401–411 (1996).
[PubMed]

Bachmann, W.

W. Bachmann, B. Jean, T. Bende, M. Wohlrab, and H. J. Thiel, “Silicone replica technique and automatic confocal topometry for determination of corneal surface roughness,” Ger. J. Ophthalmol. 2(6), 400–403 (1993).
[PubMed]

Bende, T.

W. Bachmann, B. Jean, T. Bende, M. Wohlrab, and H. J. Thiel, “Silicone replica technique and automatic confocal topometry for determination of corneal surface roughness,” Ger. J. Ophthalmol. 2(6), 400–403 (1993).
[PubMed]

Birngruber, R.

J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, “Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy,” Ophthalmology 104(5), 823–830 (1997).
[PubMed]

Bor, Z.

Z. Bor, B. Hopp, B. Rácz, G. Szabó, I. Ratkay, I. Süveges, A. Füst, and J. Mohay, “Plume emission, shock wave and surface wave formation during excimer laser ablation of the cornea,” Refract. Corneal Surg. 9(2Suppl), S111–S115 (1993).
[PubMed]

Braren, B.

R. Srinivasan and B. Braren, “Ultraviolet-laser ablation of organic polymers,” Chem. Rev. 89(6), 1303–1316 (1989).
[CrossRef]

Bueeler, M.

M. Mrochen, R. R. Krueger, M. Bueeler, and T. Seiler, “Aberration-sensing and wavefront-guided laser in situ keratomileusis: management of decentered ablation,” J. Refract. Surg. 18(4), 418–429 (2002).
[PubMed]

Cadevall, C.

R. Artigas, F. Laguarta, and C. Cadevall, “Dual-technology optical sensor head for 3D surface shape measurements on the micro- and nanoscales,” Proc. SPIE 5457, 166–174 (2004).
[CrossRef]

Cambier, J. L.

J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar, and W. J. Stark, “Excimer laser calibration system,” J. Refract. Surg. 12(3), 401–411 (1996).
[PubMed]

Cano, D.

Charman, W. N.

S. A. Naroo and W. N. Charman, “Surface roughness after excimer laser ablation using a PMMA model: profilometry and effects on vision,” J. Refract. Surg. 21(3), 260–268 (2005).
[PubMed]

E. Hauge, S. A. Naroo, and W. N. Charman, “Poly(methyl methacrylate) model study of optical surface quality after excimer laser photorefractive keratectomy,” J. Cataract Refract. Surg. 27(12), 2026–2035 (2001).
[CrossRef] [PubMed]

Conway, J.

A. J. Kanellopoulos, J. Conway, and L. H. Pe, “LASIK for hyperopia with the WaveLight excimer laser,” J. Refract. Surg. 22(1), 43–47 (2006).
[PubMed]

Dickrell, P. L.

L. M. Shanyfelt, P. L. Dickrell, H. F. Edelhauser, and D. W. Hahn, “Effects of laser repetition rate on corneal tissue ablation for 193-nm excimer laser light,” Lasers Surg. Med. 40(7), 483–493 (2008).
[CrossRef] [PubMed]

Donitzky, C.

M. Mrochen, U. Schelling, C. Wuellner, and C. Donitzky, “Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system,” J. Cataract Refract. Surg. 35(2), 363–373 (2009).
[CrossRef] [PubMed]

M. Mrochen, U. Schelling, C. Wuellner, and C. Donitzky, “Effect of time sequences in scanning algorithms on the surface temperature during corneal laser surgery with high-repetition-rate excimer laser,” J. Cataract Refract. Surg. 35(4), 738–746 (2009).
[CrossRef] [PubMed]

M. Mrochen, C. Wuellner, K. Rose, and C. Donitzky, “Experimental setup to determine the pulse energies and radiant exposures for excimer lasers with repetition rates ranging from 100 to 1050 Hz,” J. Cataract Refract. Surg. 35(10), 1806–1814 (2009).
[CrossRef] [PubMed]

M. Mrochen, C. Donitzky, C. Wullner, and J. Loffler, “Wavefront-optimized ablation profiles: theoretical background,” J. Cataract Refract. Surg. 30(4), 775–785 (2004).
[CrossRef] [PubMed]

Dorbecker, C.

C. Dorbecker, H. Lubatschowski, S. Lohmann, C. Ruff, O. Kermani, and W. Ertmer, “Influence of the ablation plume on the removal process during ArF-excimer laser photoablation,” Proc. SPIE 2632, 2–9 (1996).
[CrossRef]

Dorronsoro, C.

Edelhauser, H. F.

L. M. Shanyfelt, P. L. Dickrell, H. F. Edelhauser, and D. W. Hahn, “Effects of laser repetition rate on corneal tissue ablation for 193-nm excimer laser light,” Lasers Surg. Med. 40(7), 483–493 (2008).
[CrossRef] [PubMed]

Ediger, M. N.

D. W. Hahn, M. N. Ediger, and G. H. Pettit, “Dynamics of ablation plume particles generated during excimer laser corneal ablation,” Lasers Surg. Med. 16(4), 384–389 (1995).
[CrossRef] [PubMed]

Ertmer, W.

H. Lubatschowski, O. Kermani, H. Welling, and W. Ertmer, “A scanning and rotating slit arF excimer laser delivery system for refractive surgery,” J. Refract. Surg. 14(2Suppl), S186–S191 (1998).
[PubMed]

C. Dorbecker, H. Lubatschowski, S. Lohmann, C. Ruff, O. Kermani, and W. Ertmer, “Influence of the ablation plume on the removal process during ArF-excimer laser photoablation,” Proc. SPIE 2632, 2–9 (1996).
[CrossRef]

Fisher, B. T.

Füst, A.

Z. Bor, B. Hopp, B. Rácz, G. Szabó, I. Ratkay, I. Süveges, A. Füst, and J. Mohay, “Plume emission, shock wave and surface wave formation during excimer laser ablation of the cornea,” Refract. Corneal Surg. 9(2Suppl), S111–S115 (1993).
[PubMed]

Gottsch, J. D.

J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar, and W. J. Stark, “Excimer laser calibration system,” J. Refract. Surg. 12(3), 401–411 (1996).
[PubMed]

Hafezi, F.

T. Koller, H. P. Iseli, F. Hafezi, M. Mrochen, and T. Seiler, “Q-factor customized ablation profile for the correction of myopic astigmatism,” J. Cataract Refract. Surg. 32(4), 584–589 (2006).
[CrossRef] [PubMed]

Hahn, D. W.

L. M. Shanyfelt, P. L. Dickrell, H. F. Edelhauser, and D. W. Hahn, “Effects of laser repetition rate on corneal tissue ablation for 193-nm excimer laser light,” Lasers Surg. Med. 40(7), 483–493 (2008).
[CrossRef] [PubMed]

B. T. Fisher and D. W. Hahn, “Development and numerical solution of a mechanistic model for corneal tissue ablation with the 193 nm argon fluoride excimer laser,” J. Opt. Soc. Am. A 24(2), 265–277 (2007).
[CrossRef]

B. T. Fisher and D. W. Hahn, “Measurement of small-signal absorption coefficient and absorption cross section of collagen for 193-nm excimer laser light and the role of collagen in tissue ablation,” Appl. Opt. 43(29), 5443–5451 (2004).
[CrossRef] [PubMed]

D. W. Hahn, M. N. Ediger, and G. H. Pettit, “Dynamics of ablation plume particles generated during excimer laser corneal ablation,” Lasers Surg. Med. 16(4), 384–389 (1995).
[CrossRef] [PubMed]

Hajitanasis, G. C.

M. R. Jankov, S. I. Panagopoulou, N. S. Tsiklis, G. C. Hajitanasis, M. Aslanides, and G. Pallikaris, “Topography-guided treatment of irregular astigmatism with the waveLight excimer laser,” J. Refract. Surg. 22(4), 335–344 (2006).
[PubMed]

Hall, D.

J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar, and W. J. Stark, “Excimer laser calibration system,” J. Refract. Surg. 12(3), 401–411 (1996).
[PubMed]

Hauge, E.

E. Hauge, S. A. Naroo, and W. N. Charman, “Poly(methyl methacrylate) model study of optical surface quality after excimer laser photorefractive keratectomy,” J. Cataract Refract. Surg. 27(12), 2026–2035 (2001).
[CrossRef] [PubMed]

Hohla, K.

J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, “Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy,” Ophthalmology 104(5), 823–830 (1997).
[PubMed]

Holland, S. R.

D. T. C. Lin, S. R. Holland, K. M. Rocha, and R. R. Krueger, “Method for optimizing topography-guided ablation of highly aberrated eyes with the ALLEGRETTO WAVE Excimer Laser,” J. Refract. Surg. 24(4), S439–S445 (2008).
[PubMed]

Hopp, B.

Z. Bor, B. Hopp, B. Rácz, G. Szabó, I. Ratkay, I. Süveges, A. Füst, and J. Mohay, “Plume emission, shock wave and surface wave formation during excimer laser ablation of the cornea,” Refract. Corneal Surg. 9(2Suppl), S111–S115 (1993).
[PubMed]

Ihlemann, J.

H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, “Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained,” J. Appl. Phys. 83(10), 5458–5468 (1998).
[CrossRef]

Iseli, H. P.

T. Koller, H. P. Iseli, F. Hafezi, M. Mrochen, and T. Seiler, “Q-factor customized ablation profile for the correction of myopic astigmatism,” J. Cataract Refract. Surg. 32(4), 584–589 (2006).
[CrossRef] [PubMed]

Jankov, M. R.

M. R. Jankov, S. I. Panagopoulou, N. S. Tsiklis, G. C. Hajitanasis, M. Aslanides, and G. Pallikaris, “Topography-guided treatment of irregular astigmatism with the waveLight excimer laser,” J. Refract. Surg. 22(4), 335–344 (2006).
[PubMed]

Jean, B.

W. Bachmann, B. Jean, T. Bende, M. Wohlrab, and H. J. Thiel, “Silicone replica technique and automatic confocal topometry for determination of corneal surface roughness,” Ger. J. Ophthalmol. 2(6), 400–403 (1993).
[PubMed]

Kaemmerer, M.

M. Mrochen, M. Kaemmerer, and T. Seiler, “Wavefront-guided laser in situ keratomileusis: early results in three eyes,” J. Refract. Surg. 16(2), 116–121 (2000).
[PubMed]

Kanellopoulos, A. J.

A. J. Kanellopoulos, J. Conway, and L. H. Pe, “LASIK for hyperopia with the WaveLight excimer laser,” J. Refract. Surg. 22(1), 43–47 (2006).
[PubMed]

Kemner, J.

C. B. Odonnell, J. Kemner, and F. E. Odonnell, “Surface roughness in PMMA is linearly related to the amount of excimer laser ablation,” J. Refract. Surg. 12(1), 171–174 (1996).

Kermani, O.

H. Lubatschowski, O. Kermani, H. Welling, and W. Ertmer, “A scanning and rotating slit arF excimer laser delivery system for refractive surgery,” J. Refract. Surg. 14(2Suppl), S186–S191 (1998).
[PubMed]

C. Dorbecker, H. Lubatschowski, S. Lohmann, C. Ruff, O. Kermani, and W. Ertmer, “Influence of the ablation plume on the removal process during ArF-excimer laser photoablation,” Proc. SPIE 2632, 2–9 (1996).
[CrossRef]

Kezirian, G. M.

K. G. Stonecipher and G. M. Kezirian, “Wavefront-optimized versus wavefront-guided LASIK for myopic astigmatism with the ALLEGRETTO WAVE: Three-month results of a prospective FDA trial,” J. Refract. Surg. 24(4), S424–S430 (2008).
[PubMed]

Koller, T.

T. Koller, H. P. Iseli, F. Hafezi, M. Mrochen, and T. Seiler, “Q-factor customized ablation profile for the correction of myopic astigmatism,” J. Cataract Refract. Surg. 32(4), 584–589 (2006).
[CrossRef] [PubMed]

Krasinski, J. S.

R. R. Krueger, J. S. Krasinski, C. Radzewicz, K. G. Stonecipher, and J. J. Rowsey, “Photography of shock waves during excimer laser ablation of the cornea. Effect of helium gas on propagation velocity,” Cornea 12(4), 330–334 (1993).
[CrossRef] [PubMed]

Krueger, R. R.

D. T. C. Lin, S. R. Holland, K. M. Rocha, and R. R. Krueger, “Method for optimizing topography-guided ablation of highly aberrated eyes with the ALLEGRETTO WAVE Excimer Laser,” J. Refract. Surg. 24(4), S439–S445 (2008).
[PubMed]

M. Mrochen, R. R. Krueger, M. Bueeler, and T. Seiler, “Aberration-sensing and wavefront-guided laser in situ keratomileusis: management of decentered ablation,” J. Refract. Surg. 18(4), 418–429 (2002).
[PubMed]

R. R. Krueger, J. S. Krasinski, C. Radzewicz, K. G. Stonecipher, and J. J. Rowsey, “Photography of shock waves during excimer laser ablation of the cornea. Effect of helium gas on propagation velocity,” Cornea 12(4), 330–334 (1993).
[CrossRef] [PubMed]

C. A. Puliafito, D. Stern, R. R. Krueger, and E. R. Mandel, “High-speed photography of excimer laser ablation of the cornea,” Arch. Ophthalmol. 105(9), 1255–1259 (1987).
[PubMed]

Laguarta, F.

R. Artigas, F. Laguarta, and C. Cadevall, “Dual-technology optical sensor head for 3D surface shape measurements on the micro- and nanoscales,” Proc. SPIE 5457, 166–174 (2004).
[CrossRef]

Lin, D. T. C.

D. T. C. Lin, S. R. Holland, K. M. Rocha, and R. R. Krueger, “Method for optimizing topography-guided ablation of highly aberrated eyes with the ALLEGRETTO WAVE Excimer Laser,” J. Refract. Surg. 24(4), S439–S445 (2008).
[PubMed]

Loffler, J.

M. Mrochen, C. Donitzky, C. Wullner, and J. Loffler, “Wavefront-optimized ablation profiles: theoretical background,” J. Cataract Refract. Surg. 30(4), 775–785 (2004).
[CrossRef] [PubMed]

Logan, B. A.

C. R. Munnerlyn, M. E. Arnoldussen, A. L. Munnerlyn, and B. A. Logan, “Theory concerning the ablation of corneal tissue with large-area, 193-nm excimer laser beams,” J. Biomed. Opt. 11(6), 064032 (2006).
[CrossRef]

Lohmann, S.

C. Dorbecker, H. Lubatschowski, S. Lohmann, C. Ruff, O. Kermani, and W. Ertmer, “Influence of the ablation plume on the removal process during ArF-excimer laser photoablation,” Proc. SPIE 2632, 2–9 (1996).
[CrossRef]

Lubatschowski, H.

H. Lubatschowski, O. Kermani, H. Welling, and W. Ertmer, “A scanning and rotating slit arF excimer laser delivery system for refractive surgery,” J. Refract. Surg. 14(2Suppl), S186–S191 (1998).
[PubMed]

C. Dorbecker, H. Lubatschowski, S. Lohmann, C. Ruff, O. Kermani, and W. Ertmer, “Influence of the ablation plume on the removal process during ArF-excimer laser photoablation,” Proc. SPIE 2632, 2–9 (1996).
[CrossRef]

Luther, K.

H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, “Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained,” J. Appl. Phys. 83(10), 5458–5468 (1998).
[CrossRef]

Mandel, E. R.

C. A. Puliafito, D. Stern, R. R. Krueger, and E. R. Mandel, “High-speed photography of excimer laser ablation of the cornea,” Arch. Ophthalmol. 105(9), 1255–1259 (1987).
[PubMed]

Marcos, S.

Merayo-Lloves, J.

Mohay, J.

Z. Bor, B. Hopp, B. Rácz, G. Szabó, I. Ratkay, I. Süveges, A. Füst, and J. Mohay, “Plume emission, shock wave and surface wave formation during excimer laser ablation of the cornea,” Refract. Corneal Surg. 9(2Suppl), S111–S115 (1993).
[PubMed]

Mrochen, M.

M. Mrochen, U. Schelling, C. Wuellner, and C. Donitzky, “Effect of time sequences in scanning algorithms on the surface temperature during corneal laser surgery with high-repetition-rate excimer laser,” J. Cataract Refract. Surg. 35(4), 738–746 (2009).
[CrossRef] [PubMed]

M. Mrochen, C. Wuellner, K. Rose, and C. Donitzky, “Experimental setup to determine the pulse energies and radiant exposures for excimer lasers with repetition rates ranging from 100 to 1050 Hz,” J. Cataract Refract. Surg. 35(10), 1806–1814 (2009).
[CrossRef] [PubMed]

M. Mrochen, U. Schelling, C. Wuellner, and C. Donitzky, “Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system,” J. Cataract Refract. Surg. 35(2), 363–373 (2009).
[CrossRef] [PubMed]

T. Koller, H. P. Iseli, F. Hafezi, M. Mrochen, and T. Seiler, “Q-factor customized ablation profile for the correction of myopic astigmatism,” J. Cataract Refract. Surg. 32(4), 584–589 (2006).
[CrossRef] [PubMed]

M. Mrochen, C. Donitzky, C. Wullner, and J. Loffler, “Wavefront-optimized ablation profiles: theoretical background,” J. Cataract Refract. Surg. 30(4), 775–785 (2004).
[CrossRef] [PubMed]

M. Mrochen, R. R. Krueger, M. Bueeler, and T. Seiler, “Aberration-sensing and wavefront-guided laser in situ keratomileusis: management of decentered ablation,” J. Refract. Surg. 18(4), 418–429 (2002).
[PubMed]

M. Mrochen, M. Kaemmerer, and T. Seiler, “Wavefront-guided laser in situ keratomileusis: early results in three eyes,” J. Refract. Surg. 16(2), 116–121 (2000).
[PubMed]

Munnerlyn, A. L.

C. R. Munnerlyn, M. E. Arnoldussen, A. L. Munnerlyn, and B. A. Logan, “Theory concerning the ablation of corneal tissue with large-area, 193-nm excimer laser beams,” J. Biomed. Opt. 11(6), 064032 (2006).
[CrossRef]

Munnerlyn, C. R.

C. R. Munnerlyn, M. E. Arnoldussen, A. L. Munnerlyn, and B. A. Logan, “Theory concerning the ablation of corneal tissue with large-area, 193-nm excimer laser beams,” J. Biomed. Opt. 11(6), 064032 (2006).
[CrossRef]

Naroo, S. A.

S. A. Naroo and W. N. Charman, “Surface roughness after excimer laser ablation using a PMMA model: profilometry and effects on vision,” J. Refract. Surg. 21(3), 260–268 (2005).
[PubMed]

E. Hauge, S. A. Naroo, and W. N. Charman, “Poly(methyl methacrylate) model study of optical surface quality after excimer laser photorefractive keratectomy,” J. Cataract Refract. Surg. 27(12), 2026–2035 (2001).
[CrossRef] [PubMed]

Noack, J.

J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, “Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy,” Ophthalmology 104(5), 823–830 (1997).
[PubMed]

Odonnell, C. B.

C. B. Odonnell, J. Kemner, and F. E. Odonnell, “Surface roughness in PMMA is linearly related to the amount of excimer laser ablation,” J. Refract. Surg. 12(1), 171–174 (1996).

Odonnell, F. E.

C. B. Odonnell, J. Kemner, and F. E. Odonnell, “Surface roughness in PMMA is linearly related to the amount of excimer laser ablation,” J. Refract. Surg. 12(1), 171–174 (1996).

Pallikaris, G.

M. R. Jankov, S. I. Panagopoulou, N. S. Tsiklis, G. C. Hajitanasis, M. Aslanides, and G. Pallikaris, “Topography-guided treatment of irregular astigmatism with the waveLight excimer laser,” J. Refract. Surg. 22(4), 335–344 (2006).
[PubMed]

Panagopoulou, S. I.

M. R. Jankov, S. I. Panagopoulou, N. S. Tsiklis, G. C. Hajitanasis, M. Aslanides, and G. Pallikaris, “Topography-guided treatment of irregular astigmatism with the waveLight excimer laser,” J. Refract. Surg. 22(4), 335–344 (2006).
[PubMed]

Pe, L. H.

A. J. Kanellopoulos, J. Conway, and L. H. Pe, “LASIK for hyperopia with the WaveLight excimer laser,” J. Refract. Surg. 22(1), 43–47 (2006).
[PubMed]

Pettit, G. H.

D. W. Hahn, M. N. Ediger, and G. H. Pettit, “Dynamics of ablation plume particles generated during excimer laser corneal ablation,” Lasers Surg. Med. 16(4), 384–389 (1995).
[CrossRef] [PubMed]

G. H. Pettit and R. Sauerbrey, “Pulsed ultraviolet-laser ablation,” Appl. Phys., A Mater. Sci. Process. 56(1), 51–63 (1993).
[CrossRef]

R. Sauerbrey and G. H. Pettit, “Theory for the etching of organic materials by ultraviolet-laser pulses,” Appl. Phys. Lett. 55(5), 421–423 (1989).
[CrossRef]

Povitsky, A.

I. Zinovik and A. Povitsky, “Dynamics of multiple plumes in laser ablation: Modeling of the shielding effect,” J. Appl. Phys. 100(2), 024911 (2006).
[CrossRef]

Puliafito, C. A.

C. A. Puliafito, D. Stern, R. R. Krueger, and E. R. Mandel, “High-speed photography of excimer laser ablation of the cornea,” Arch. Ophthalmol. 105(9), 1255–1259 (1987).
[PubMed]

Rácz, B.

Z. Bor, B. Hopp, B. Rácz, G. Szabó, I. Ratkay, I. Süveges, A. Füst, and J. Mohay, “Plume emission, shock wave and surface wave formation during excimer laser ablation of the cornea,” Refract. Corneal Surg. 9(2Suppl), S111–S115 (1993).
[PubMed]

Radzewicz, C.

R. R. Krueger, J. S. Krasinski, C. Radzewicz, K. G. Stonecipher, and J. J. Rowsey, “Photography of shock waves during excimer laser ablation of the cornea. Effect of helium gas on propagation velocity,” Cornea 12(4), 330–334 (1993).
[CrossRef] [PubMed]

Ratkay, I.

Z. Bor, B. Hopp, B. Rácz, G. Szabó, I. Ratkay, I. Süveges, A. Füst, and J. Mohay, “Plume emission, shock wave and surface wave formation during excimer laser ablation of the cornea,” Refract. Corneal Surg. 9(2Suppl), S111–S115 (1993).
[PubMed]

Remon, L.

Rencs, E. V.

J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar, and W. J. Stark, “Excimer laser calibration system,” J. Refract. Surg. 12(3), 401–411 (1996).
[PubMed]

Rocha, K. M.

D. T. C. Lin, S. R. Holland, K. M. Rocha, and R. R. Krueger, “Method for optimizing topography-guided ablation of highly aberrated eyes with the ALLEGRETTO WAVE Excimer Laser,” J. Refract. Surg. 24(4), S439–S445 (2008).
[PubMed]

Rose, K.

M. Mrochen, C. Wuellner, K. Rose, and C. Donitzky, “Experimental setup to determine the pulse energies and radiant exposures for excimer lasers with repetition rates ranging from 100 to 1050 Hz,” J. Cataract Refract. Surg. 35(10), 1806–1814 (2009).
[CrossRef] [PubMed]

Rowsey, J. J.

R. R. Krueger, J. S. Krasinski, C. Radzewicz, K. G. Stonecipher, and J. J. Rowsey, “Photography of shock waves during excimer laser ablation of the cornea. Effect of helium gas on propagation velocity,” Cornea 12(4), 330–334 (1993).
[CrossRef] [PubMed]

Ruff, C.

C. Dorbecker, H. Lubatschowski, S. Lohmann, C. Ruff, O. Kermani, and W. Ertmer, “Influence of the ablation plume on the removal process during ArF-excimer laser photoablation,” Proc. SPIE 2632, 2–9 (1996).
[CrossRef]

Sauerbrey, R.

G. H. Pettit and R. Sauerbrey, “Pulsed ultraviolet-laser ablation,” Appl. Phys., A Mater. Sci. Process. 56(1), 51–63 (1993).
[CrossRef]

R. Sauerbrey and G. H. Pettit, “Theory for the etching of organic materials by ultraviolet-laser pulses,” Appl. Phys. Lett. 55(5), 421–423 (1989).
[CrossRef]

Schelling, U.

M. Mrochen, U. Schelling, C. Wuellner, and C. Donitzky, “Effect of time sequences in scanning algorithms on the surface temperature during corneal laser surgery with high-repetition-rate excimer laser,” J. Cataract Refract. Surg. 35(4), 738–746 (2009).
[CrossRef] [PubMed]

M. Mrochen, U. Schelling, C. Wuellner, and C. Donitzky, “Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system,” J. Cataract Refract. Surg. 35(2), 363–373 (2009).
[CrossRef] [PubMed]

Schmidt, H.

H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, “Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained,” J. Appl. Phys. 83(10), 5458–5468 (1998).
[CrossRef]

Seiler, T.

T. Koller, H. P. Iseli, F. Hafezi, M. Mrochen, and T. Seiler, “Q-factor customized ablation profile for the correction of myopic astigmatism,” J. Cataract Refract. Surg. 32(4), 584–589 (2006).
[CrossRef] [PubMed]

M. Mrochen, R. R. Krueger, M. Bueeler, and T. Seiler, “Aberration-sensing and wavefront-guided laser in situ keratomileusis: management of decentered ablation,” J. Refract. Surg. 18(4), 418–429 (2002).
[PubMed]

M. Mrochen, M. Kaemmerer, and T. Seiler, “Wavefront-guided laser in situ keratomileusis: early results in three eyes,” J. Refract. Surg. 16(2), 116–121 (2000).
[PubMed]

Shanyfelt, L. M.

L. M. Shanyfelt, P. L. Dickrell, H. F. Edelhauser, and D. W. Hahn, “Effects of laser repetition rate on corneal tissue ablation for 193-nm excimer laser light,” Lasers Surg. Med. 40(7), 483–493 (2008).
[CrossRef] [PubMed]

Siegel, J.

Srinivasan, R.

R. Srinivasan and B. Braren, “Ultraviolet-laser ablation of organic polymers,” Chem. Rev. 89(6), 1303–1316 (1989).
[CrossRef]

Stark, W. J.

J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar, and W. J. Stark, “Excimer laser calibration system,” J. Refract. Surg. 12(3), 401–411 (1996).
[PubMed]

Staveteig, P. T.

J. T. Walsh and P. T. Staveteig, “Effect of hydrogen bonding on far-ultraviolet water absorption and potential implications for 193-nm arf excimer laser-tissue interaction,” Proc. SPIE 2391, 176–183 (1995).
[CrossRef]

Stern, D.

C. A. Puliafito, D. Stern, R. R. Krueger, and E. R. Mandel, “High-speed photography of excimer laser ablation of the cornea,” Arch. Ophthalmol. 105(9), 1255–1259 (1987).
[PubMed]

Stonecipher, K. G.

K. G. Stonecipher and G. M. Kezirian, “Wavefront-optimized versus wavefront-guided LASIK for myopic astigmatism with the ALLEGRETTO WAVE: Three-month results of a prospective FDA trial,” J. Refract. Surg. 24(4), S424–S430 (2008).
[PubMed]

R. R. Krueger, J. S. Krasinski, C. Radzewicz, K. G. Stonecipher, and J. J. Rowsey, “Photography of shock waves during excimer laser ablation of the cornea. Effect of helium gas on propagation velocity,” Cornea 12(4), 330–334 (1993).
[CrossRef] [PubMed]

Süveges, I.

Z. Bor, B. Hopp, B. Rácz, G. Szabó, I. Ratkay, I. Süveges, A. Füst, and J. Mohay, “Plume emission, shock wave and surface wave formation during excimer laser ablation of the cornea,” Refract. Corneal Surg. 9(2Suppl), S111–S115 (1993).
[PubMed]

Szabó, G.

Z. Bor, B. Hopp, B. Rácz, G. Szabó, I. Ratkay, I. Süveges, A. Füst, and J. Mohay, “Plume emission, shock wave and surface wave formation during excimer laser ablation of the cornea,” Refract. Corneal Surg. 9(2Suppl), S111–S115 (1993).
[PubMed]

Thiel, H. J.

W. Bachmann, B. Jean, T. Bende, M. Wohlrab, and H. J. Thiel, “Silicone replica technique and automatic confocal topometry for determination of corneal surface roughness,” Ger. J. Ophthalmol. 2(6), 400–403 (1993).
[PubMed]

Tonnies, R.

J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, “Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy,” Ophthalmology 104(5), 823–830 (1997).
[PubMed]

Troe, J.

H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, “Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained,” J. Appl. Phys. 83(10), 5458–5468 (1998).
[CrossRef]

Tsiklis, N. S.

M. R. Jankov, S. I. Panagopoulou, N. S. Tsiklis, G. C. Hajitanasis, M. Aslanides, and G. Pallikaris, “Topography-guided treatment of irregular astigmatism with the waveLight excimer laser,” J. Refract. Surg. 22(4), 335–344 (2006).
[PubMed]

Vogel, A.

J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, “Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy,” Ophthalmology 104(5), 823–830 (1997).
[PubMed]

Walsh, J. T.

J. T. Walsh and P. T. Staveteig, “Effect of hydrogen bonding on far-ultraviolet water absorption and potential implications for 193-nm arf excimer laser-tissue interaction,” Proc. SPIE 2391, 176–183 (1995).
[CrossRef]

Welling, H.

H. Lubatschowski, O. Kermani, H. Welling, and W. Ertmer, “A scanning and rotating slit arF excimer laser delivery system for refractive surgery,” J. Refract. Surg. 14(2Suppl), S186–S191 (1998).
[PubMed]

Wohlrab, M.

W. Bachmann, B. Jean, T. Bende, M. Wohlrab, and H. J. Thiel, “Silicone replica technique and automatic confocal topometry for determination of corneal surface roughness,” Ger. J. Ophthalmol. 2(6), 400–403 (1993).
[PubMed]

Wolff-Rottke, B.

H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, “Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained,” J. Appl. Phys. 83(10), 5458–5468 (1998).
[CrossRef]

Wuellner, C.

M. Mrochen, U. Schelling, C. Wuellner, and C. Donitzky, “Effect of time sequences in scanning algorithms on the surface temperature during corneal laser surgery with high-repetition-rate excimer laser,” J. Cataract Refract. Surg. 35(4), 738–746 (2009).
[CrossRef] [PubMed]

M. Mrochen, C. Wuellner, K. Rose, and C. Donitzky, “Experimental setup to determine the pulse energies and radiant exposures for excimer lasers with repetition rates ranging from 100 to 1050 Hz,” J. Cataract Refract. Surg. 35(10), 1806–1814 (2009).
[CrossRef] [PubMed]

M. Mrochen, U. Schelling, C. Wuellner, and C. Donitzky, “Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system,” J. Cataract Refract. Surg. 35(2), 363–373 (2009).
[CrossRef] [PubMed]

Wullner, C.

M. Mrochen, C. Donitzky, C. Wullner, and J. Loffler, “Wavefront-optimized ablation profiles: theoretical background,” J. Cataract Refract. Surg. 30(4), 775–785 (2004).
[CrossRef] [PubMed]

Zinovik, I.

I. Zinovik and A. Povitsky, “Dynamics of multiple plumes in laser ablation: Modeling of the shielding effect,” J. Appl. Phys. 100(2), 024911 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. Sauerbrey and G. H. Pettit, “Theory for the etching of organic materials by ultraviolet-laser pulses,” Appl. Phys. Lett. 55(5), 421–423 (1989).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

G. H. Pettit and R. Sauerbrey, “Pulsed ultraviolet-laser ablation,” Appl. Phys., A Mater. Sci. Process. 56(1), 51–63 (1993).
[CrossRef]

Arch. Ophthalmol. (1)

C. A. Puliafito, D. Stern, R. R. Krueger, and E. R. Mandel, “High-speed photography of excimer laser ablation of the cornea,” Arch. Ophthalmol. 105(9), 1255–1259 (1987).
[PubMed]

Chem. Rev. (1)

R. Srinivasan and B. Braren, “Ultraviolet-laser ablation of organic polymers,” Chem. Rev. 89(6), 1303–1316 (1989).
[CrossRef]

Cornea (1)

R. R. Krueger, J. S. Krasinski, C. Radzewicz, K. G. Stonecipher, and J. J. Rowsey, “Photography of shock waves during excimer laser ablation of the cornea. Effect of helium gas on propagation velocity,” Cornea 12(4), 330–334 (1993).
[CrossRef] [PubMed]

Ger. J. Ophthalmol. (1)

W. Bachmann, B. Jean, T. Bende, M. Wohlrab, and H. J. Thiel, “Silicone replica technique and automatic confocal topometry for determination of corneal surface roughness,” Ger. J. Ophthalmol. 2(6), 400–403 (1993).
[PubMed]

J. Appl. Phys. (2)

H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, “Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained,” J. Appl. Phys. 83(10), 5458–5468 (1998).
[CrossRef]

I. Zinovik and A. Povitsky, “Dynamics of multiple plumes in laser ablation: Modeling of the shielding effect,” J. Appl. Phys. 100(2), 024911 (2006).
[CrossRef]

J. Biomed. Opt. (1)

C. R. Munnerlyn, M. E. Arnoldussen, A. L. Munnerlyn, and B. A. Logan, “Theory concerning the ablation of corneal tissue with large-area, 193-nm excimer laser beams,” J. Biomed. Opt. 11(6), 064032 (2006).
[CrossRef]

J. Cataract Refract. Surg. (6)

T. Koller, H. P. Iseli, F. Hafezi, M. Mrochen, and T. Seiler, “Q-factor customized ablation profile for the correction of myopic astigmatism,” J. Cataract Refract. Surg. 32(4), 584–589 (2006).
[CrossRef] [PubMed]

E. Hauge, S. A. Naroo, and W. N. Charman, “Poly(methyl methacrylate) model study of optical surface quality after excimer laser photorefractive keratectomy,” J. Cataract Refract. Surg. 27(12), 2026–2035 (2001).
[CrossRef] [PubMed]

M. Mrochen, C. Donitzky, C. Wullner, and J. Loffler, “Wavefront-optimized ablation profiles: theoretical background,” J. Cataract Refract. Surg. 30(4), 775–785 (2004).
[CrossRef] [PubMed]

M. Mrochen, U. Schelling, C. Wuellner, and C. Donitzky, “Effect of time sequences in scanning algorithms on the surface temperature during corneal laser surgery with high-repetition-rate excimer laser,” J. Cataract Refract. Surg. 35(4), 738–746 (2009).
[CrossRef] [PubMed]

M. Mrochen, U. Schelling, C. Wuellner, and C. Donitzky, “Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system,” J. Cataract Refract. Surg. 35(2), 363–373 (2009).
[CrossRef] [PubMed]

M. Mrochen, C. Wuellner, K. Rose, and C. Donitzky, “Experimental setup to determine the pulse energies and radiant exposures for excimer lasers with repetition rates ranging from 100 to 1050 Hz,” J. Cataract Refract. Surg. 35(10), 1806–1814 (2009).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Refract. Surg. (10)

C. B. Odonnell, J. Kemner, and F. E. Odonnell, “Surface roughness in PMMA is linearly related to the amount of excimer laser ablation,” J. Refract. Surg. 12(1), 171–174 (1996).

S. A. Naroo and W. N. Charman, “Surface roughness after excimer laser ablation using a PMMA model: profilometry and effects on vision,” J. Refract. Surg. 21(3), 260–268 (2005).
[PubMed]

J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar, and W. J. Stark, “Excimer laser calibration system,” J. Refract. Surg. 12(3), 401–411 (1996).
[PubMed]

K. G. Stonecipher and G. M. Kezirian, “Wavefront-optimized versus wavefront-guided LASIK for myopic astigmatism with the ALLEGRETTO WAVE: Three-month results of a prospective FDA trial,” J. Refract. Surg. 24(4), S424–S430 (2008).
[PubMed]

D. T. C. Lin, S. R. Holland, K. M. Rocha, and R. R. Krueger, “Method for optimizing topography-guided ablation of highly aberrated eyes with the ALLEGRETTO WAVE Excimer Laser,” J. Refract. Surg. 24(4), S439–S445 (2008).
[PubMed]

M. Mrochen, M. Kaemmerer, and T. Seiler, “Wavefront-guided laser in situ keratomileusis: early results in three eyes,” J. Refract. Surg. 16(2), 116–121 (2000).
[PubMed]

M. Mrochen, R. R. Krueger, M. Bueeler, and T. Seiler, “Aberration-sensing and wavefront-guided laser in situ keratomileusis: management of decentered ablation,” J. Refract. Surg. 18(4), 418–429 (2002).
[PubMed]

A. J. Kanellopoulos, J. Conway, and L. H. Pe, “LASIK for hyperopia with the WaveLight excimer laser,” J. Refract. Surg. 22(1), 43–47 (2006).
[PubMed]

M. R. Jankov, S. I. Panagopoulou, N. S. Tsiklis, G. C. Hajitanasis, M. Aslanides, and G. Pallikaris, “Topography-guided treatment of irregular astigmatism with the waveLight excimer laser,” J. Refract. Surg. 22(4), 335–344 (2006).
[PubMed]

H. Lubatschowski, O. Kermani, H. Welling, and W. Ertmer, “A scanning and rotating slit arF excimer laser delivery system for refractive surgery,” J. Refract. Surg. 14(2Suppl), S186–S191 (1998).
[PubMed]

Lasers Surg. Med. (2)

L. M. Shanyfelt, P. L. Dickrell, H. F. Edelhauser, and D. W. Hahn, “Effects of laser repetition rate on corneal tissue ablation for 193-nm excimer laser light,” Lasers Surg. Med. 40(7), 483–493 (2008).
[CrossRef] [PubMed]

D. W. Hahn, M. N. Ediger, and G. H. Pettit, “Dynamics of ablation plume particles generated during excimer laser corneal ablation,” Lasers Surg. Med. 16(4), 384–389 (1995).
[CrossRef] [PubMed]

Ophthalmology (1)

J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, “Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy,” Ophthalmology 104(5), 823–830 (1997).
[PubMed]

Opt. Express (3)

Proc. SPIE (3)

C. Dorbecker, H. Lubatschowski, S. Lohmann, C. Ruff, O. Kermani, and W. Ertmer, “Influence of the ablation plume on the removal process during ArF-excimer laser photoablation,” Proc. SPIE 2632, 2–9 (1996).
[CrossRef]

J. T. Walsh and P. T. Staveteig, “Effect of hydrogen bonding on far-ultraviolet water absorption and potential implications for 193-nm arf excimer laser-tissue interaction,” Proc. SPIE 2391, 176–183 (1995).
[CrossRef]

R. Artigas, F. Laguarta, and C. Cadevall, “Dual-technology optical sensor head for 3D surface shape measurements on the micro- and nanoscales,” Proc. SPIE 5457, 166–174 (2004).
[CrossRef]

Refract. Corneal Surg. (1)

Z. Bor, B. Hopp, B. Rácz, G. Szabó, I. Ratkay, I. Süveges, A. Füst, and J. Mohay, “Plume emission, shock wave and surface wave formation during excimer laser ablation of the cornea,” Refract. Corneal Surg. 9(2Suppl), S111–S115 (1993).
[PubMed]

Other (6)

S. Marcos, C. Dorronsoro, and D. Cano, “Spherical aberration prevention method in e.g. laser refractive surgery system,” (Patent WO 2005/122873 A1, 2005).

C. Roberts, and W. Dupps, “Corneal biomechanics and their role in corneal ablative procedures,” in Customized corneal ablation: The quest for super vision, S. McRae, R. Krueger, and R. Applegate, eds. (Stack publising, 2001).

FDA, “Opthalmic devices panel 110th meeting,” (Food and Drug Administration, 2008).

B. Drum, “Evaluating the Safety and Effectiveness of “Aberration-Free” Ophthalmic Refractive Surgery,” in 9th Annual FDA Science Forum, (Washington, DC, 2003).

B. Drum, “Radial efficiency function in refractive surgery: Ablation losses caused by corneal curvature,” in 11th annual FDA Science Forum, (Washington, DC, 2005).

B. Drum, “The Evolution of the Optical Zone in Corneal Refractive Surgery,” in Wavefront Congress, (Santa Fe, New Mexico, 2007)

Supplementary Material (3)

» Media 1: MOV (2761 KB)     
» Media 2: MOV (2714 KB)     
» Media 3: MOV (2601 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Single-frame excerpts from video recordings of the ablations of Filofocon A samples with three different air flow conditions: a) af0, no air flow, no clinical aspiration (Media 1); b) afc, no air flow, clinical aspiration (Media 2), c) af1, 1.15 m/s air flow, no clinical aspiration (Media 3).

Fig. 2
Fig. 2

Ablated PMMA sample in holder. A region of deposited material is visible in the upper part of the sample, outside the ablation zone. This region corresponds to the ablation debris dragged by the air flow, as it always appears in the opposite direction of the air flow generator.

Fig. 3
Fig. 3

Topographies corresponding to −9 D ablations in Filofocon A, for the different air flow conditions. The depth scale (colorbar) is the same for the four ablation measurements, and has been normalized to the maximum depth (center of the af2 condition)

Fig. 4
Fig. 4

Contour maps of the ablations shown in Fig. 3. The arrows represent the direction of the air aspiration (afc) or blown air flow (af1 and af2). Each contour line represents a 1/30 step of the maximum ablation depth with the af2 condition. The lines are gray-scale coded from no ablation (white) to deepest ablation (black).

Fig. 5
Fig. 5

Example of normalized ablation profiles (horizontal direction). For different air flow conditions and materials, for −9D ablations. a) Filofocon A, b) PMMA.

Fig. 6
Fig. 6

Local standard deviations along the horizontal profiles shown in Fig. 1, across the three repetitions of each condition, for −9 D ablations. a) Filofocon A. b) PMMA.

Fig. 7
Fig. 7

Relative standard deviations of the profiles, for the three repetitions of each condition. Data were computed inside the Optical Zone (central 6.5 mm of the ablation) and are relative (in %) to the maximum ablation depth, for each material.

Fig. 8
Fig. 8

Normalized central ablation depth for each air flow condition and material. Data obtained from a central region of 0.2 mm. Data are the average across repetitions and horizontal and vertical profiles.

Fig. 9
Fig. 9

Shielding factors (in orange) for the different air flow conditions and both materials. The orange columns represent the relative ablation depth reduction attributed to shielding effects.

Fig. 10
Fig. 10

Predicted Shielding factors vs air flow speed for Filofocon A and PMMA for a repetition rate of 400 Hz. The effective clinical air flow (air flow corresponding to the Shielding factor found with the afc condition) is also shown (crosses).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d = 1 α ln ( F F t h ) ,
S = 1 d S d ,
T S = F S / F 0 ,
S = ( ln T S / ln ( F 0 / F t h ) ) ,
T S = ( F 0 / F t h ) ( S ) .

Metrics