Abstract

The principle of the polarimetric imaging method called APSCI (Adapted Polarization State Contrast Imaging) is to maximize the polarimetric contrast between an object and its background using specific polarization states of illumination and detection. We perform here a comparative study of the APSCI method with existing Classical Mueller Imaging(CMI) associated with polar decomposition in the presence of fully and partially polarized circular Gaussian speckle. The results show a noticeable increase of the Bhattacharyya distance used as our contrast parameter for the APSCI method, especially when the object and background exhibit several polarimetric properties simultaneously.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Richert, X. Orlik, and A. De Martino, “Adapted Polarization state contrast imaging,” Opt. Express 17, 14199–14210 (2009).
    [CrossRef] [PubMed]
  2. S. Y. Lu, and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996).
    [CrossRef]
  3. H. Poincaré, Théorie mathématique de la lumière (GABAY, 1892).
    [PubMed]
  4. A. Bhattacharyya, “On a measure of divergence between two statistical populations defined by probability distributions,” Bull. Calcutta Math. Soc. 35, 99–109 (1943).
  5. J. W. Goodman, Speckle Phenomena in optics (Roberts & Company Pub., Colorado, 2007) pp. 48–50.
  6. P. Drude, “Über Oberflächenschichten,” Ann. Phys. 36, 86597 (1889).
  7. I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of Thermally Reduced Graphene Oxide by Imaging Ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
    [CrossRef]
  8. M. P. Rowe, and E. N. Jr, “Pugh, J. S. Tyo, and N. Engheta, “Polarization-difference imaging: a biologically inspired technique for observation through scattering media,” Opt. Lett. 20, 608–610 (1995).
    [CrossRef] [PubMed]
  9. J. S. Tyo, M. P. Rowe, E. N. Pugh, Jr., and N. Engheta, “Target detection in optically scattering media by polarization-difference imaging,” Appl. Opt. 35, 1855–1870 (1996).
    [CrossRef] [PubMed]

2009

2008

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of Thermally Reduced Graphene Oxide by Imaging Ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[CrossRef]

1996

1995

1943

A. Bhattacharyya, “On a measure of divergence between two statistical populations defined by probability distributions,” Bull. Calcutta Math. Soc. 35, 99–109 (1943).

1889

P. Drude, “Über Oberflächenschichten,” Ann. Phys. 36, 86597 (1889).

An, J.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of Thermally Reduced Graphene Oxide by Imaging Ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[CrossRef]

Bhattacharyya, A.

A. Bhattacharyya, “On a measure of divergence between two statistical populations defined by probability distributions,” Bull. Calcutta Math. Soc. 35, 99–109 (1943).

Chipman, R. A.

De Martino, A.

Dikin, D. A.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of Thermally Reduced Graphene Oxide by Imaging Ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[CrossRef]

Drude, P.

P. Drude, “Über Oberflächenschichten,” Ann. Phys. 36, 86597 (1889).

Engheta, N.

Jr, E. N.

Jung, I.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of Thermally Reduced Graphene Oxide by Imaging Ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[CrossRef]

Lu, S. Y.

Orlik, X.

Pelton, M.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of Thermally Reduced Graphene Oxide by Imaging Ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[CrossRef]

Piner, R.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of Thermally Reduced Graphene Oxide by Imaging Ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[CrossRef]

Pugh, E. N.

Richert, M.

Rowe, M. P.

Ruoff, R. S.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of Thermally Reduced Graphene Oxide by Imaging Ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[CrossRef]

Stankovich, S.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of Thermally Reduced Graphene Oxide by Imaging Ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[CrossRef]

Tyo, J. S.

Vaupel, M.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of Thermally Reduced Graphene Oxide by Imaging Ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[CrossRef]

Ann. Phys.

P. Drude, “Über Oberflächenschichten,” Ann. Phys. 36, 86597 (1889).

Appl. Opt.

Bull. Calcutta Math. Soc.

A. Bhattacharyya, “On a measure of divergence between two statistical populations defined by probability distributions,” Bull. Calcutta Math. Soc. 35, 99–109 (1943).

J. Opt. Soc. Am. A

J. Phys. Chem. C

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of Thermally Reduced Graphene Oxide by Imaging Ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Other

H. Poincaré, Théorie mathématique de la lumière (GABAY, 1892).
[PubMed]

J. W. Goodman, Speckle Phenomena in optics (Roberts & Company Pub., Colorado, 2007) pp. 48–50.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Bhattacharyya distances obtained from different SNR levels without (case a, c, e) and with (case b, d, f) speckle noise. The object and background have a difference of 10% only in scalar birefringence, scalar dichroism and linear degree of polarization respectively for the cases a & b, c & d and e & f. In case a & b, (R, λR, ɛR) represent respectively the scalar birefringence, azimuth and ellipticity of the birefringence vector R⃗. Similarly for case c & d, (D, λD, ɛD) represent respectively the scalar dichroism, azimuth and ellipticity of the dichroism vector D⃗. For the case e & f, eigen axes of depolarization of the object and background are assumed aligned and ΔDOPL and ΔDOPC represent respectively the difference between the object and background, in their ability to depolarize linear and circular polarized light.

Fig. 2
Fig. 2

Comparison of Bhattacharyya distances vs. SNR curves for the best performing parameter of CMI (in this case the scalar dichroism) vs APSCI parameter with (ws) and without speckle noise (wos). The scene is composed of an object and a background exhibiting 10% difference in scalar birefringence R, scalar dichroism D and in the linear degree of polarisation DOPL. At the same SNR level of 3.2, the embedded images (i) and (ii) are obtained respectively using the APSCI parameter and the best parameter of the CMI.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S ˜ O = [ S O 0 , S O 1 , S O 2 , S O 3 ] T = M ˜ O S , S ˜ B = [ S B 0 , S B 1 , S B 2 , S B 3 ] T = M ˜ B S
S out 1 = [ 1 , Δ S T / Δ S ] T , S out 2 = [ 1 , Δ S T / Δ S ] T
Δ S = [ S ˜ O 1 out S ˜ B 1 out , S ˜ O 2 out S ˜ B 2 out , S ˜ O 3 out S ˜ B 3 out ] T ,
[ S ˜ O 0 out , S ˜ O 1 out , S ˜ O 2 out , S ˜ O 3 out ] T = S ˜ O out = M ˜ O S i n , [ S ˜ B 0 out , S ˜ B 1 out , S ˜ B 2 out , S ˜ B 3 out ] T = S ˜ B out = M ˜ B S i n .
APSCI ( u , v ) = I 1 ( u , v ) I 2 ( u , v ) I 1 ( u , v ) + I 2 ( u , v ) ,
p I ( I ) = 1 P I ¯ [ exp ( 2 1 + P I I ¯ ) exp ( 2 1 P I I ¯ ) ]

Metrics