Abstract

The dynamic evolution of CS2 4d and 6s Rydberg wave packet components has been experimentally visualized via femtosecond time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. The temporal evolution of the four components of the prepared Rydberg wave packet is directly observed as time-dependent changes of the intensities of different parts in the main photoelectron peak. Furthermore, time-resolved photoelectron angular distributions (PADs) clearly reflect the different component characters of 4d and 6s molecular orbitals. The lifetime of Rydberg wave packets is determined to be about 830fs and their decay is attributed to predissociation. Our results suggest the possibility of directly visualizing and determining the amplitudes and relative phases of different electronic and vibrational wave packet components in polyatomic molecules.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers,” Angew. Chem. Int. Ed. Engl. 39(15), 2586–2631 (2000).
    [CrossRef] [PubMed]
  2. J. C. Diels, and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic Press, 1996), p. 446.
  3. R. M. Bowman, M. Dantus, and A. H. Zewail, “Femtosecond transition-state spectroscopy of iodine: from strongly bound to repulsive surface dynamics,” Chem. Phys. Lett. 161(4-5), 297–302 (1989).
    [CrossRef]
  4. M. Shapiro and P. Brumer, “Laser control of product quantum state population in unimolecular reactions,” J. Chem. Phys. 84(7), 4103–4104 (1986).
    [CrossRef]
  5. S. Lochbrunner, T. Schultz, M. Schmitt, J. P. Shaffer, M. Z. Zgierski, and A. Stolow, “Dynamics of excited-state proton transfer systems via time-resolved photoelectron spectroscopy,” J. Chem. Phys. 114(6), 2519–2522 (2001).
    [CrossRef]
  6. A. Stolow, “Time-resolved photoelectron spectroscopy: non-adiabatic dynamics in polyatomic molecules,” Int. Rev. Phys. Chem. 22(2), 377–405 (2003).
    [CrossRef]
  7. I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys. 69(6), 1897–2003 (2006).
    [CrossRef]
  8. J. A. Yeazell, and T. Uzer, The Physics and Chemistry of Wave Packets, (Wiley, 2000).
  9. O. Knospe and R. Schmidt, “Revivals of wave packets: general theory and application to Rydberg clusters,” Phys. Rev. A 54(2), 1154–1160 (1996).
    [CrossRef] [PubMed]
  10. P. M. Felker and A. H. Zewail, “Purely rotational coherent effect and time-resolved sub-Doppler spectroscopy of large molecules. I. theoretical,” J. Chem. Phys. 86(5), 2460–2482 (1987).
    [CrossRef]
  11. J. A. Yeazell, M. Mallalieu, and C. R. Stroud., “Observation of the collapse and revival of a Rydberg electronic wave packet,” Phys. Rev. Lett. 64(17), 2007–2010 (1990).
    [CrossRef] [PubMed]
  12. J. A. Yeazell and C. R. Stroud., “Observation of fractional revivals in the evolution of a Rydberg atomic wave packet,” Phys. Rev. A 43(9), 5153–5156 (1991).
    [CrossRef] [PubMed]
  13. M. J. J. Vrakking, D. M. Villeneuve, and A. Stolow, “Observation of fractional revivals of a molecular wave packet,” Phys. Rev. A 54(1), R37–R40 (1996).
    [CrossRef] [PubMed]
  14. I. Fischer, M. J. J. Vrakking, D. M. Villeneuve, and A. Stolow, “Femtosecond time-resolved zero kinetic energy photoelectron and photoionization spectroscopy studies of I2 wavepacket dynamics,” Chem. Phys. 207(2-3), 331–354 (1996).
    [CrossRef]
  15. T. Baumert, V. Engel, C. Röttgermann, W. T. Strunz, and G. Gerber, “Femtosecond pump—probe study of the spreading and recurrence of a vibrational wave packet in Na2,” Chem. Phys. Lett. 191(6), 639–644 (1992).
    [CrossRef]
  16. J. S. Baskin, P. M. Felker, and A. H. Zewail, “Purely rotational coherent effect and time-resolved sub-Doppler spectroscopy of large molecules. II. experimental,” J. Chem. Phys. 86(5), 2483–2499 (1987).
    [CrossRef]
  17. E. Skovsen, M. Machholm, T. Ejdrup, J. Thøgersen, and H. Stapelfeldt, “Imaging and control of interfering wave packets in a dissociating molecule,” Phys. Rev. Lett. 89(13), 133004 (2002).
    [CrossRef] [PubMed]
  18. H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, “Visualizing picometric quantum ripples of ultrafast wave-packet interference,” Science 311(5767), 1589–1592 (2006).
    [CrossRef] [PubMed]
  19. Y. Arasaki, K. Takatsuka, K. Wang, and V. McKoy, “Pump-probe photoionization study of the passage and bifurcation of a quantum wave packet across an avoided crossing,” Phys. Rev. Lett. 90(24), 248303 (2003).
    [CrossRef] [PubMed]
  20. T. Suzuki, “Femtosecond time-resolved photoelectron imaging,” Annu. Rev. Phys. Chem. 57(1), 555–592 (2006).
    [CrossRef] [PubMed]
  21. K. L. Knappenberger, E. B. Lerch, P. Wen, and S. R. Leone, “Coherent polyatomic dynamics studied by femtosecond time-resolved photoelectron spectroscopy: dissociation of vibrationally excited CS2 in the 6s and 4d Rydberg states,” J. Chem. Phys. 125(17), 174314 (2006).
    [CrossRef] [PubMed]
  22. K. L. Knappenberger, E. B. Lerch, P. Wen, and S. R. Leone, “Stark-assisted population control of coherent CS(2) 4f and 5p Rydberg wave packets studied by femtosecond time-resolved photoelectron spectroscopy,” J. Chem. Phys. 127(12), 124318 (2007).
    [CrossRef] [PubMed]
  23. I. Fischer, A. Lochschmidt, A. Strobel, G. Niedner-Schatteburg, K. Muller-Dethlefs, and V. E. Bondybey, “The non-resonant two-photon zero kinetic energy photoelectron spectrum of CS2,” Chem. Phys. Lett. 202(6), 542–548 (1993).
    [CrossRef]
  24. J. Baker and S. Couris, “A two-color (1+1’)+1 multiphoton ionization study of CS2 in the 61000–65600 cm−1 energy region,” J. Chem. Phys. 103(12), 4847–4854 (1995).
    [CrossRef]
  25. J. Baker and S. Couris, “A (1+1’)+1 multiphoton ionization study of CS2 in the 68500–73000 cm−1 energy region. the 3d and 5s Rydberg states,” J. Chem. Phys. 105(1), 62–67 (1996).
    [CrossRef]
  26. R. A. Morgan, M. A. Baldwin, A. J. Orr-Ewing, M. N. R. Ashfold, W. J. Buma, J. B. Milan, and C. A. de Lange, “Resonance enhanced multiphoton ionization spectroscopy of carbon disulphide,” J. Chem. Phys. 104(16), 6117–6129 (1996).
    [CrossRef]
  27. C. Cossart-Magos, M. Jungen, and F. Launay, “High-resolution absorption spectrum of jet-cooled CS2 between 70500 and 81550 cm−1: np and nf Rydberg series converging to the first ionization potential,” J. Chem. Phys. 109(16), 6666–6683 (1998).
    [CrossRef]
  28. Y. Wang, H. Shen, L. Hua, C. Hu, and B. Zhang, “Predissociation dynamics of the B state of CH3I by femtosecond pump-probe technique,” Opt. Express 17(13), 10506–10513 (2009).
    [CrossRef] [PubMed]
  29. Y. Liu, B. Tang, H. Shen, S. Zhang, and B. Zhang, “Probing ultrafast internal conversion of o-xylene via femtosecond time-resolved photoelectron imaging,” Opt. Express 18(6), 5791–5801 (2010).
    [CrossRef] [PubMed]
  30. Y. Wang, S. Zhang, Z. Wei, Q. Zheng, and B. Zhang, “Br(2Pj) atom formation dynamics in ultraviolet photodissociation of tert-butyl bromide and iso-butyl bromide,” J. Chem. Phys. 125(18), 184307 (2006).
    [CrossRef] [PubMed]
  31. V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, “Reconstruction of Abel-transformable images: the Gaussian basis-set expansion Abel transform method,” Rev. Sci. Instrum. 73(7), 2634–2642 (2002).
    [CrossRef]
  32. J. E. Dove, H. Hippler, J. Plach, and J. Troe, “Ultraviolet spectra of vibrationally highly excited CS2 molecules,” J. Chem. Phys. 81(3), 1209–1214 (1984).
    [CrossRef]
  33. H. Liu, J. Zhang, S. Yin, L. Wang, and N. Lou, “CS2 decay dynamics investigated by two-color femtosecond laser pulses,” Phys. Rev. A 70(4), 042501 (2004).
    [CrossRef]
  34. V. Blanchet, S. Lochbrunner, M. Schmitt, J. P. Shaffer, J. J. Larsen, M. Z. Zgierski, T. Seideman, and A. Stolow, “Towards disentangling coupled electronic-vibrational dynamics in ultrafast non-adiabatic processes,” Faraday Discuss. 115(115), 33–48, discussion 79–102 (2000).
    [CrossRef] [PubMed]
  35. T. Seideman, “Time-resolved photoelectron angular distributions: concepts, applications, and directions,” Annu. Rev. Phys. Chem. 53(1), 41–65 (2002).
    [CrossRef] [PubMed]
  36. H. A. Bethe, Handbuch der Physik (Springer-Verlag, 1933), Vol. 24.
  37. M. B. Robin, Higher Excited States of Polyatomic Molecules (Academic Press, 1974), Vol. 1.
  38. C. P. Schick and P. M. Weber, “Ultrafast dynamics in superexcited states of phenol,” J. Phys. Chem. A 105(15), 3725–3734 (2001).
    [CrossRef]
  39. J. W. Rabalais, Principles of Ultraviolet Photoelectron Spectroscopy (John Wiley and Sons: 1977).

2010 (1)

2009 (1)

2007 (1)

K. L. Knappenberger, E. B. Lerch, P. Wen, and S. R. Leone, “Stark-assisted population control of coherent CS(2) 4f and 5p Rydberg wave packets studied by femtosecond time-resolved photoelectron spectroscopy,” J. Chem. Phys. 127(12), 124318 (2007).
[CrossRef] [PubMed]

2006 (5)

Y. Wang, S. Zhang, Z. Wei, Q. Zheng, and B. Zhang, “Br(2Pj) atom formation dynamics in ultraviolet photodissociation of tert-butyl bromide and iso-butyl bromide,” J. Chem. Phys. 125(18), 184307 (2006).
[CrossRef] [PubMed]

I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys. 69(6), 1897–2003 (2006).
[CrossRef]

H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, “Visualizing picometric quantum ripples of ultrafast wave-packet interference,” Science 311(5767), 1589–1592 (2006).
[CrossRef] [PubMed]

T. Suzuki, “Femtosecond time-resolved photoelectron imaging,” Annu. Rev. Phys. Chem. 57(1), 555–592 (2006).
[CrossRef] [PubMed]

K. L. Knappenberger, E. B. Lerch, P. Wen, and S. R. Leone, “Coherent polyatomic dynamics studied by femtosecond time-resolved photoelectron spectroscopy: dissociation of vibrationally excited CS2 in the 6s and 4d Rydberg states,” J. Chem. Phys. 125(17), 174314 (2006).
[CrossRef] [PubMed]

2004 (1)

H. Liu, J. Zhang, S. Yin, L. Wang, and N. Lou, “CS2 decay dynamics investigated by two-color femtosecond laser pulses,” Phys. Rev. A 70(4), 042501 (2004).
[CrossRef]

2003 (2)

Y. Arasaki, K. Takatsuka, K. Wang, and V. McKoy, “Pump-probe photoionization study of the passage and bifurcation of a quantum wave packet across an avoided crossing,” Phys. Rev. Lett. 90(24), 248303 (2003).
[CrossRef] [PubMed]

A. Stolow, “Time-resolved photoelectron spectroscopy: non-adiabatic dynamics in polyatomic molecules,” Int. Rev. Phys. Chem. 22(2), 377–405 (2003).
[CrossRef]

2002 (3)

T. Seideman, “Time-resolved photoelectron angular distributions: concepts, applications, and directions,” Annu. Rev. Phys. Chem. 53(1), 41–65 (2002).
[CrossRef] [PubMed]

V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, “Reconstruction of Abel-transformable images: the Gaussian basis-set expansion Abel transform method,” Rev. Sci. Instrum. 73(7), 2634–2642 (2002).
[CrossRef]

E. Skovsen, M. Machholm, T. Ejdrup, J. Thøgersen, and H. Stapelfeldt, “Imaging and control of interfering wave packets in a dissociating molecule,” Phys. Rev. Lett. 89(13), 133004 (2002).
[CrossRef] [PubMed]

2001 (2)

C. P. Schick and P. M. Weber, “Ultrafast dynamics in superexcited states of phenol,” J. Phys. Chem. A 105(15), 3725–3734 (2001).
[CrossRef]

S. Lochbrunner, T. Schultz, M. Schmitt, J. P. Shaffer, M. Z. Zgierski, and A. Stolow, “Dynamics of excited-state proton transfer systems via time-resolved photoelectron spectroscopy,” J. Chem. Phys. 114(6), 2519–2522 (2001).
[CrossRef]

2000 (2)

A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers,” Angew. Chem. Int. Ed. Engl. 39(15), 2586–2631 (2000).
[CrossRef] [PubMed]

V. Blanchet, S. Lochbrunner, M. Schmitt, J. P. Shaffer, J. J. Larsen, M. Z. Zgierski, T. Seideman, and A. Stolow, “Towards disentangling coupled electronic-vibrational dynamics in ultrafast non-adiabatic processes,” Faraday Discuss. 115(115), 33–48, discussion 79–102 (2000).
[CrossRef] [PubMed]

1998 (1)

C. Cossart-Magos, M. Jungen, and F. Launay, “High-resolution absorption spectrum of jet-cooled CS2 between 70500 and 81550 cm−1: np and nf Rydberg series converging to the first ionization potential,” J. Chem. Phys. 109(16), 6666–6683 (1998).
[CrossRef]

1996 (5)

J. Baker and S. Couris, “A (1+1’)+1 multiphoton ionization study of CS2 in the 68500–73000 cm−1 energy region. the 3d and 5s Rydberg states,” J. Chem. Phys. 105(1), 62–67 (1996).
[CrossRef]

R. A. Morgan, M. A. Baldwin, A. J. Orr-Ewing, M. N. R. Ashfold, W. J. Buma, J. B. Milan, and C. A. de Lange, “Resonance enhanced multiphoton ionization spectroscopy of carbon disulphide,” J. Chem. Phys. 104(16), 6117–6129 (1996).
[CrossRef]

O. Knospe and R. Schmidt, “Revivals of wave packets: general theory and application to Rydberg clusters,” Phys. Rev. A 54(2), 1154–1160 (1996).
[CrossRef] [PubMed]

M. J. J. Vrakking, D. M. Villeneuve, and A. Stolow, “Observation of fractional revivals of a molecular wave packet,” Phys. Rev. A 54(1), R37–R40 (1996).
[CrossRef] [PubMed]

I. Fischer, M. J. J. Vrakking, D. M. Villeneuve, and A. Stolow, “Femtosecond time-resolved zero kinetic energy photoelectron and photoionization spectroscopy studies of I2 wavepacket dynamics,” Chem. Phys. 207(2-3), 331–354 (1996).
[CrossRef]

1995 (1)

J. Baker and S. Couris, “A two-color (1+1’)+1 multiphoton ionization study of CS2 in the 61000–65600 cm−1 energy region,” J. Chem. Phys. 103(12), 4847–4854 (1995).
[CrossRef]

1993 (1)

I. Fischer, A. Lochschmidt, A. Strobel, G. Niedner-Schatteburg, K. Muller-Dethlefs, and V. E. Bondybey, “The non-resonant two-photon zero kinetic energy photoelectron spectrum of CS2,” Chem. Phys. Lett. 202(6), 542–548 (1993).
[CrossRef]

1992 (1)

T. Baumert, V. Engel, C. Röttgermann, W. T. Strunz, and G. Gerber, “Femtosecond pump—probe study of the spreading and recurrence of a vibrational wave packet in Na2,” Chem. Phys. Lett. 191(6), 639–644 (1992).
[CrossRef]

1991 (1)

J. A. Yeazell and C. R. Stroud., “Observation of fractional revivals in the evolution of a Rydberg atomic wave packet,” Phys. Rev. A 43(9), 5153–5156 (1991).
[CrossRef] [PubMed]

1990 (1)

J. A. Yeazell, M. Mallalieu, and C. R. Stroud., “Observation of the collapse and revival of a Rydberg electronic wave packet,” Phys. Rev. Lett. 64(17), 2007–2010 (1990).
[CrossRef] [PubMed]

1989 (1)

R. M. Bowman, M. Dantus, and A. H. Zewail, “Femtosecond transition-state spectroscopy of iodine: from strongly bound to repulsive surface dynamics,” Chem. Phys. Lett. 161(4-5), 297–302 (1989).
[CrossRef]

1987 (2)

P. M. Felker and A. H. Zewail, “Purely rotational coherent effect and time-resolved sub-Doppler spectroscopy of large molecules. I. theoretical,” J. Chem. Phys. 86(5), 2460–2482 (1987).
[CrossRef]

J. S. Baskin, P. M. Felker, and A. H. Zewail, “Purely rotational coherent effect and time-resolved sub-Doppler spectroscopy of large molecules. II. experimental,” J. Chem. Phys. 86(5), 2483–2499 (1987).
[CrossRef]

1986 (1)

M. Shapiro and P. Brumer, “Laser control of product quantum state population in unimolecular reactions,” J. Chem. Phys. 84(7), 4103–4104 (1986).
[CrossRef]

1984 (1)

J. E. Dove, H. Hippler, J. Plach, and J. Troe, “Ultraviolet spectra of vibrationally highly excited CS2 molecules,” J. Chem. Phys. 81(3), 1209–1214 (1984).
[CrossRef]

Arasaki, Y.

Y. Arasaki, K. Takatsuka, K. Wang, and V. McKoy, “Pump-probe photoionization study of the passage and bifurcation of a quantum wave packet across an avoided crossing,” Phys. Rev. Lett. 90(24), 248303 (2003).
[CrossRef] [PubMed]

Ashfold, M. N. R.

R. A. Morgan, M. A. Baldwin, A. J. Orr-Ewing, M. N. R. Ashfold, W. J. Buma, J. B. Milan, and C. A. de Lange, “Resonance enhanced multiphoton ionization spectroscopy of carbon disulphide,” J. Chem. Phys. 104(16), 6117–6129 (1996).
[CrossRef]

Baker, J.

J. Baker and S. Couris, “A (1+1’)+1 multiphoton ionization study of CS2 in the 68500–73000 cm−1 energy region. the 3d and 5s Rydberg states,” J. Chem. Phys. 105(1), 62–67 (1996).
[CrossRef]

J. Baker and S. Couris, “A two-color (1+1’)+1 multiphoton ionization study of CS2 in the 61000–65600 cm−1 energy region,” J. Chem. Phys. 103(12), 4847–4854 (1995).
[CrossRef]

Baldwin, M. A.

R. A. Morgan, M. A. Baldwin, A. J. Orr-Ewing, M. N. R. Ashfold, W. J. Buma, J. B. Milan, and C. A. de Lange, “Resonance enhanced multiphoton ionization spectroscopy of carbon disulphide,” J. Chem. Phys. 104(16), 6117–6129 (1996).
[CrossRef]

Baskin, J. S.

J. S. Baskin, P. M. Felker, and A. H. Zewail, “Purely rotational coherent effect and time-resolved sub-Doppler spectroscopy of large molecules. II. experimental,” J. Chem. Phys. 86(5), 2483–2499 (1987).
[CrossRef]

Baumert, T.

T. Baumert, V. Engel, C. Röttgermann, W. T. Strunz, and G. Gerber, “Femtosecond pump—probe study of the spreading and recurrence of a vibrational wave packet in Na2,” Chem. Phys. Lett. 191(6), 639–644 (1992).
[CrossRef]

Blanchet, V.

V. Blanchet, S. Lochbrunner, M. Schmitt, J. P. Shaffer, J. J. Larsen, M. Z. Zgierski, T. Seideman, and A. Stolow, “Towards disentangling coupled electronic-vibrational dynamics in ultrafast non-adiabatic processes,” Faraday Discuss. 115(115), 33–48, discussion 79–102 (2000).
[CrossRef] [PubMed]

Bondybey, V. E.

I. Fischer, A. Lochschmidt, A. Strobel, G. Niedner-Schatteburg, K. Muller-Dethlefs, and V. E. Bondybey, “The non-resonant two-photon zero kinetic energy photoelectron spectrum of CS2,” Chem. Phys. Lett. 202(6), 542–548 (1993).
[CrossRef]

Bowman, R. M.

R. M. Bowman, M. Dantus, and A. H. Zewail, “Femtosecond transition-state spectroscopy of iodine: from strongly bound to repulsive surface dynamics,” Chem. Phys. Lett. 161(4-5), 297–302 (1989).
[CrossRef]

Brumer, P.

M. Shapiro and P. Brumer, “Laser control of product quantum state population in unimolecular reactions,” J. Chem. Phys. 84(7), 4103–4104 (1986).
[CrossRef]

Buma, W. J.

R. A. Morgan, M. A. Baldwin, A. J. Orr-Ewing, M. N. R. Ashfold, W. J. Buma, J. B. Milan, and C. A. de Lange, “Resonance enhanced multiphoton ionization spectroscopy of carbon disulphide,” J. Chem. Phys. 104(16), 6117–6129 (1996).
[CrossRef]

Chiba, H.

H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, “Visualizing picometric quantum ripples of ultrafast wave-packet interference,” Science 311(5767), 1589–1592 (2006).
[CrossRef] [PubMed]

Cossart-Magos, C.

C. Cossart-Magos, M. Jungen, and F. Launay, “High-resolution absorption spectrum of jet-cooled CS2 between 70500 and 81550 cm−1: np and nf Rydberg series converging to the first ionization potential,” J. Chem. Phys. 109(16), 6666–6683 (1998).
[CrossRef]

Couris, S.

J. Baker and S. Couris, “A (1+1’)+1 multiphoton ionization study of CS2 in the 68500–73000 cm−1 energy region. the 3d and 5s Rydberg states,” J. Chem. Phys. 105(1), 62–67 (1996).
[CrossRef]

J. Baker and S. Couris, “A two-color (1+1’)+1 multiphoton ionization study of CS2 in the 61000–65600 cm−1 energy region,” J. Chem. Phys. 103(12), 4847–4854 (1995).
[CrossRef]

Dantus, M.

R. M. Bowman, M. Dantus, and A. H. Zewail, “Femtosecond transition-state spectroscopy of iodine: from strongly bound to repulsive surface dynamics,” Chem. Phys. Lett. 161(4-5), 297–302 (1989).
[CrossRef]

de Lange, C. A.

R. A. Morgan, M. A. Baldwin, A. J. Orr-Ewing, M. N. R. Ashfold, W. J. Buma, J. B. Milan, and C. A. de Lange, “Resonance enhanced multiphoton ionization spectroscopy of carbon disulphide,” J. Chem. Phys. 104(16), 6117–6129 (1996).
[CrossRef]

Dove, J. E.

J. E. Dove, H. Hippler, J. Plach, and J. Troe, “Ultraviolet spectra of vibrationally highly excited CS2 molecules,” J. Chem. Phys. 81(3), 1209–1214 (1984).
[CrossRef]

Dribinski, V.

V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, “Reconstruction of Abel-transformable images: the Gaussian basis-set expansion Abel transform method,” Rev. Sci. Instrum. 73(7), 2634–2642 (2002).
[CrossRef]

Ejdrup, T.

E. Skovsen, M. Machholm, T. Ejdrup, J. Thøgersen, and H. Stapelfeldt, “Imaging and control of interfering wave packets in a dissociating molecule,” Phys. Rev. Lett. 89(13), 133004 (2002).
[CrossRef] [PubMed]

Engel, V.

T. Baumert, V. Engel, C. Röttgermann, W. T. Strunz, and G. Gerber, “Femtosecond pump—probe study of the spreading and recurrence of a vibrational wave packet in Na2,” Chem. Phys. Lett. 191(6), 639–644 (1992).
[CrossRef]

Felker, P. M.

P. M. Felker and A. H. Zewail, “Purely rotational coherent effect and time-resolved sub-Doppler spectroscopy of large molecules. I. theoretical,” J. Chem. Phys. 86(5), 2460–2482 (1987).
[CrossRef]

J. S. Baskin, P. M. Felker, and A. H. Zewail, “Purely rotational coherent effect and time-resolved sub-Doppler spectroscopy of large molecules. II. experimental,” J. Chem. Phys. 86(5), 2483–2499 (1987).
[CrossRef]

Fischer, I.

I. Fischer, M. J. J. Vrakking, D. M. Villeneuve, and A. Stolow, “Femtosecond time-resolved zero kinetic energy photoelectron and photoionization spectroscopy studies of I2 wavepacket dynamics,” Chem. Phys. 207(2-3), 331–354 (1996).
[CrossRef]

I. Fischer, A. Lochschmidt, A. Strobel, G. Niedner-Schatteburg, K. Muller-Dethlefs, and V. E. Bondybey, “The non-resonant two-photon zero kinetic energy photoelectron spectrum of CS2,” Chem. Phys. Lett. 202(6), 542–548 (1993).
[CrossRef]

Gerber, G.

T. Baumert, V. Engel, C. Röttgermann, W. T. Strunz, and G. Gerber, “Femtosecond pump—probe study of the spreading and recurrence of a vibrational wave packet in Na2,” Chem. Phys. Lett. 191(6), 639–644 (1992).
[CrossRef]

Girard, B.

H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, “Visualizing picometric quantum ripples of ultrafast wave-packet interference,” Science 311(5767), 1589–1592 (2006).
[CrossRef] [PubMed]

Hertel, I. V.

I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys. 69(6), 1897–2003 (2006).
[CrossRef]

Hippler, H.

J. E. Dove, H. Hippler, J. Plach, and J. Troe, “Ultraviolet spectra of vibrationally highly excited CS2 molecules,” J. Chem. Phys. 81(3), 1209–1214 (1984).
[CrossRef]

Hu, C.

Hua, L.

Jungen, M.

C. Cossart-Magos, M. Jungen, and F. Launay, “High-resolution absorption spectrum of jet-cooled CS2 between 70500 and 81550 cm−1: np and nf Rydberg series converging to the first ionization potential,” J. Chem. Phys. 109(16), 6666–6683 (1998).
[CrossRef]

Katsuki, H.

H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, “Visualizing picometric quantum ripples of ultrafast wave-packet interference,” Science 311(5767), 1589–1592 (2006).
[CrossRef] [PubMed]

Knappenberger, K. L.

K. L. Knappenberger, E. B. Lerch, P. Wen, and S. R. Leone, “Stark-assisted population control of coherent CS(2) 4f and 5p Rydberg wave packets studied by femtosecond time-resolved photoelectron spectroscopy,” J. Chem. Phys. 127(12), 124318 (2007).
[CrossRef] [PubMed]

K. L. Knappenberger, E. B. Lerch, P. Wen, and S. R. Leone, “Coherent polyatomic dynamics studied by femtosecond time-resolved photoelectron spectroscopy: dissociation of vibrationally excited CS2 in the 6s and 4d Rydberg states,” J. Chem. Phys. 125(17), 174314 (2006).
[CrossRef] [PubMed]

Knospe, O.

O. Knospe and R. Schmidt, “Revivals of wave packets: general theory and application to Rydberg clusters,” Phys. Rev. A 54(2), 1154–1160 (1996).
[CrossRef] [PubMed]

Larsen, J. J.

V. Blanchet, S. Lochbrunner, M. Schmitt, J. P. Shaffer, J. J. Larsen, M. Z. Zgierski, T. Seideman, and A. Stolow, “Towards disentangling coupled electronic-vibrational dynamics in ultrafast non-adiabatic processes,” Faraday Discuss. 115(115), 33–48, discussion 79–102 (2000).
[CrossRef] [PubMed]

Launay, F.

C. Cossart-Magos, M. Jungen, and F. Launay, “High-resolution absorption spectrum of jet-cooled CS2 between 70500 and 81550 cm−1: np and nf Rydberg series converging to the first ionization potential,” J. Chem. Phys. 109(16), 6666–6683 (1998).
[CrossRef]

Leone, S. R.

K. L. Knappenberger, E. B. Lerch, P. Wen, and S. R. Leone, “Stark-assisted population control of coherent CS(2) 4f and 5p Rydberg wave packets studied by femtosecond time-resolved photoelectron spectroscopy,” J. Chem. Phys. 127(12), 124318 (2007).
[CrossRef] [PubMed]

K. L. Knappenberger, E. B. Lerch, P. Wen, and S. R. Leone, “Coherent polyatomic dynamics studied by femtosecond time-resolved photoelectron spectroscopy: dissociation of vibrationally excited CS2 in the 6s and 4d Rydberg states,” J. Chem. Phys. 125(17), 174314 (2006).
[CrossRef] [PubMed]

Lerch, E. B.

K. L. Knappenberger, E. B. Lerch, P. Wen, and S. R. Leone, “Stark-assisted population control of coherent CS(2) 4f and 5p Rydberg wave packets studied by femtosecond time-resolved photoelectron spectroscopy,” J. Chem. Phys. 127(12), 124318 (2007).
[CrossRef] [PubMed]

K. L. Knappenberger, E. B. Lerch, P. Wen, and S. R. Leone, “Coherent polyatomic dynamics studied by femtosecond time-resolved photoelectron spectroscopy: dissociation of vibrationally excited CS2 in the 6s and 4d Rydberg states,” J. Chem. Phys. 125(17), 174314 (2006).
[CrossRef] [PubMed]

Liu, H.

H. Liu, J. Zhang, S. Yin, L. Wang, and N. Lou, “CS2 decay dynamics investigated by two-color femtosecond laser pulses,” Phys. Rev. A 70(4), 042501 (2004).
[CrossRef]

Liu, Y.

Lochbrunner, S.

S. Lochbrunner, T. Schultz, M. Schmitt, J. P. Shaffer, M. Z. Zgierski, and A. Stolow, “Dynamics of excited-state proton transfer systems via time-resolved photoelectron spectroscopy,” J. Chem. Phys. 114(6), 2519–2522 (2001).
[CrossRef]

V. Blanchet, S. Lochbrunner, M. Schmitt, J. P. Shaffer, J. J. Larsen, M. Z. Zgierski, T. Seideman, and A. Stolow, “Towards disentangling coupled electronic-vibrational dynamics in ultrafast non-adiabatic processes,” Faraday Discuss. 115(115), 33–48, discussion 79–102 (2000).
[CrossRef] [PubMed]

Lochschmidt, A.

I. Fischer, A. Lochschmidt, A. Strobel, G. Niedner-Schatteburg, K. Muller-Dethlefs, and V. E. Bondybey, “The non-resonant two-photon zero kinetic energy photoelectron spectrum of CS2,” Chem. Phys. Lett. 202(6), 542–548 (1993).
[CrossRef]

Lou, N.

H. Liu, J. Zhang, S. Yin, L. Wang, and N. Lou, “CS2 decay dynamics investigated by two-color femtosecond laser pulses,” Phys. Rev. A 70(4), 042501 (2004).
[CrossRef]

Machholm, M.

E. Skovsen, M. Machholm, T. Ejdrup, J. Thøgersen, and H. Stapelfeldt, “Imaging and control of interfering wave packets in a dissociating molecule,” Phys. Rev. Lett. 89(13), 133004 (2002).
[CrossRef] [PubMed]

Mallalieu, M.

J. A. Yeazell, M. Mallalieu, and C. R. Stroud., “Observation of the collapse and revival of a Rydberg electronic wave packet,” Phys. Rev. Lett. 64(17), 2007–2010 (1990).
[CrossRef] [PubMed]

Mandelshtam, V. A.

V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, “Reconstruction of Abel-transformable images: the Gaussian basis-set expansion Abel transform method,” Rev. Sci. Instrum. 73(7), 2634–2642 (2002).
[CrossRef]

McKoy, V.

Y. Arasaki, K. Takatsuka, K. Wang, and V. McKoy, “Pump-probe photoionization study of the passage and bifurcation of a quantum wave packet across an avoided crossing,” Phys. Rev. Lett. 90(24), 248303 (2003).
[CrossRef] [PubMed]

Meier, C.

H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, “Visualizing picometric quantum ripples of ultrafast wave-packet interference,” Science 311(5767), 1589–1592 (2006).
[CrossRef] [PubMed]

Milan, J. B.

R. A. Morgan, M. A. Baldwin, A. J. Orr-Ewing, M. N. R. Ashfold, W. J. Buma, J. B. Milan, and C. A. de Lange, “Resonance enhanced multiphoton ionization spectroscopy of carbon disulphide,” J. Chem. Phys. 104(16), 6117–6129 (1996).
[CrossRef]

Morgan, R. A.

R. A. Morgan, M. A. Baldwin, A. J. Orr-Ewing, M. N. R. Ashfold, W. J. Buma, J. B. Milan, and C. A. de Lange, “Resonance enhanced multiphoton ionization spectroscopy of carbon disulphide,” J. Chem. Phys. 104(16), 6117–6129 (1996).
[CrossRef]

Muller-Dethlefs, K.

I. Fischer, A. Lochschmidt, A. Strobel, G. Niedner-Schatteburg, K. Muller-Dethlefs, and V. E. Bondybey, “The non-resonant two-photon zero kinetic energy photoelectron spectrum of CS2,” Chem. Phys. Lett. 202(6), 542–548 (1993).
[CrossRef]

Niedner-Schatteburg, G.

I. Fischer, A. Lochschmidt, A. Strobel, G. Niedner-Schatteburg, K. Muller-Dethlefs, and V. E. Bondybey, “The non-resonant two-photon zero kinetic energy photoelectron spectrum of CS2,” Chem. Phys. Lett. 202(6), 542–548 (1993).
[CrossRef]

Ohmori, K.

H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, “Visualizing picometric quantum ripples of ultrafast wave-packet interference,” Science 311(5767), 1589–1592 (2006).
[CrossRef] [PubMed]

Orr-Ewing, A. J.

R. A. Morgan, M. A. Baldwin, A. J. Orr-Ewing, M. N. R. Ashfold, W. J. Buma, J. B. Milan, and C. A. de Lange, “Resonance enhanced multiphoton ionization spectroscopy of carbon disulphide,” J. Chem. Phys. 104(16), 6117–6129 (1996).
[CrossRef]

Ossadtchi, A.

V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, “Reconstruction of Abel-transformable images: the Gaussian basis-set expansion Abel transform method,” Rev. Sci. Instrum. 73(7), 2634–2642 (2002).
[CrossRef]

Plach, J.

J. E. Dove, H. Hippler, J. Plach, and J. Troe, “Ultraviolet spectra of vibrationally highly excited CS2 molecules,” J. Chem. Phys. 81(3), 1209–1214 (1984).
[CrossRef]

Radloff, W.

I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys. 69(6), 1897–2003 (2006).
[CrossRef]

Reisler, H.

V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, “Reconstruction of Abel-transformable images: the Gaussian basis-set expansion Abel transform method,” Rev. Sci. Instrum. 73(7), 2634–2642 (2002).
[CrossRef]

Röttgermann, C.

T. Baumert, V. Engel, C. Röttgermann, W. T. Strunz, and G. Gerber, “Femtosecond pump—probe study of the spreading and recurrence of a vibrational wave packet in Na2,” Chem. Phys. Lett. 191(6), 639–644 (1992).
[CrossRef]

Schick, C. P.

C. P. Schick and P. M. Weber, “Ultrafast dynamics in superexcited states of phenol,” J. Phys. Chem. A 105(15), 3725–3734 (2001).
[CrossRef]

Schmidt, R.

O. Knospe and R. Schmidt, “Revivals of wave packets: general theory and application to Rydberg clusters,” Phys. Rev. A 54(2), 1154–1160 (1996).
[CrossRef] [PubMed]

Schmitt, M.

S. Lochbrunner, T. Schultz, M. Schmitt, J. P. Shaffer, M. Z. Zgierski, and A. Stolow, “Dynamics of excited-state proton transfer systems via time-resolved photoelectron spectroscopy,” J. Chem. Phys. 114(6), 2519–2522 (2001).
[CrossRef]

V. Blanchet, S. Lochbrunner, M. Schmitt, J. P. Shaffer, J. J. Larsen, M. Z. Zgierski, T. Seideman, and A. Stolow, “Towards disentangling coupled electronic-vibrational dynamics in ultrafast non-adiabatic processes,” Faraday Discuss. 115(115), 33–48, discussion 79–102 (2000).
[CrossRef] [PubMed]

Schultz, T.

S. Lochbrunner, T. Schultz, M. Schmitt, J. P. Shaffer, M. Z. Zgierski, and A. Stolow, “Dynamics of excited-state proton transfer systems via time-resolved photoelectron spectroscopy,” J. Chem. Phys. 114(6), 2519–2522 (2001).
[CrossRef]

Seideman, T.

T. Seideman, “Time-resolved photoelectron angular distributions: concepts, applications, and directions,” Annu. Rev. Phys. Chem. 53(1), 41–65 (2002).
[CrossRef] [PubMed]

V. Blanchet, S. Lochbrunner, M. Schmitt, J. P. Shaffer, J. J. Larsen, M. Z. Zgierski, T. Seideman, and A. Stolow, “Towards disentangling coupled electronic-vibrational dynamics in ultrafast non-adiabatic processes,” Faraday Discuss. 115(115), 33–48, discussion 79–102 (2000).
[CrossRef] [PubMed]

Shaffer, J. P.

S. Lochbrunner, T. Schultz, M. Schmitt, J. P. Shaffer, M. Z. Zgierski, and A. Stolow, “Dynamics of excited-state proton transfer systems via time-resolved photoelectron spectroscopy,” J. Chem. Phys. 114(6), 2519–2522 (2001).
[CrossRef]

V. Blanchet, S. Lochbrunner, M. Schmitt, J. P. Shaffer, J. J. Larsen, M. Z. Zgierski, T. Seideman, and A. Stolow, “Towards disentangling coupled electronic-vibrational dynamics in ultrafast non-adiabatic processes,” Faraday Discuss. 115(115), 33–48, discussion 79–102 (2000).
[CrossRef] [PubMed]

Shapiro, M.

M. Shapiro and P. Brumer, “Laser control of product quantum state population in unimolecular reactions,” J. Chem. Phys. 84(7), 4103–4104 (1986).
[CrossRef]

Shen, H.

Skovsen, E.

E. Skovsen, M. Machholm, T. Ejdrup, J. Thøgersen, and H. Stapelfeldt, “Imaging and control of interfering wave packets in a dissociating molecule,” Phys. Rev. Lett. 89(13), 133004 (2002).
[CrossRef] [PubMed]

Stapelfeldt, H.

E. Skovsen, M. Machholm, T. Ejdrup, J. Thøgersen, and H. Stapelfeldt, “Imaging and control of interfering wave packets in a dissociating molecule,” Phys. Rev. Lett. 89(13), 133004 (2002).
[CrossRef] [PubMed]

Stolow, A.

A. Stolow, “Time-resolved photoelectron spectroscopy: non-adiabatic dynamics in polyatomic molecules,” Int. Rev. Phys. Chem. 22(2), 377–405 (2003).
[CrossRef]

S. Lochbrunner, T. Schultz, M. Schmitt, J. P. Shaffer, M. Z. Zgierski, and A. Stolow, “Dynamics of excited-state proton transfer systems via time-resolved photoelectron spectroscopy,” J. Chem. Phys. 114(6), 2519–2522 (2001).
[CrossRef]

V. Blanchet, S. Lochbrunner, M. Schmitt, J. P. Shaffer, J. J. Larsen, M. Z. Zgierski, T. Seideman, and A. Stolow, “Towards disentangling coupled electronic-vibrational dynamics in ultrafast non-adiabatic processes,” Faraday Discuss. 115(115), 33–48, discussion 79–102 (2000).
[CrossRef] [PubMed]

I. Fischer, M. J. J. Vrakking, D. M. Villeneuve, and A. Stolow, “Femtosecond time-resolved zero kinetic energy photoelectron and photoionization spectroscopy studies of I2 wavepacket dynamics,” Chem. Phys. 207(2-3), 331–354 (1996).
[CrossRef]

M. J. J. Vrakking, D. M. Villeneuve, and A. Stolow, “Observation of fractional revivals of a molecular wave packet,” Phys. Rev. A 54(1), R37–R40 (1996).
[CrossRef] [PubMed]

Strobel, A.

I. Fischer, A. Lochschmidt, A. Strobel, G. Niedner-Schatteburg, K. Muller-Dethlefs, and V. E. Bondybey, “The non-resonant two-photon zero kinetic energy photoelectron spectrum of CS2,” Chem. Phys. Lett. 202(6), 542–548 (1993).
[CrossRef]

Stroud, C. R.

J. A. Yeazell and C. R. Stroud., “Observation of fractional revivals in the evolution of a Rydberg atomic wave packet,” Phys. Rev. A 43(9), 5153–5156 (1991).
[CrossRef] [PubMed]

J. A. Yeazell, M. Mallalieu, and C. R. Stroud., “Observation of the collapse and revival of a Rydberg electronic wave packet,” Phys. Rev. Lett. 64(17), 2007–2010 (1990).
[CrossRef] [PubMed]

Strunz, W. T.

T. Baumert, V. Engel, C. Röttgermann, W. T. Strunz, and G. Gerber, “Femtosecond pump—probe study of the spreading and recurrence of a vibrational wave packet in Na2,” Chem. Phys. Lett. 191(6), 639–644 (1992).
[CrossRef]

Suzuki, T.

T. Suzuki, “Femtosecond time-resolved photoelectron imaging,” Annu. Rev. Phys. Chem. 57(1), 555–592 (2006).
[CrossRef] [PubMed]

Takatsuka, K.

Y. Arasaki, K. Takatsuka, K. Wang, and V. McKoy, “Pump-probe photoionization study of the passage and bifurcation of a quantum wave packet across an avoided crossing,” Phys. Rev. Lett. 90(24), 248303 (2003).
[CrossRef] [PubMed]

Tang, B.

Thøgersen, J.

E. Skovsen, M. Machholm, T. Ejdrup, J. Thøgersen, and H. Stapelfeldt, “Imaging and control of interfering wave packets in a dissociating molecule,” Phys. Rev. Lett. 89(13), 133004 (2002).
[CrossRef] [PubMed]

Troe, J.

J. E. Dove, H. Hippler, J. Plach, and J. Troe, “Ultraviolet spectra of vibrationally highly excited CS2 molecules,” J. Chem. Phys. 81(3), 1209–1214 (1984).
[CrossRef]

Villeneuve, D. M.

I. Fischer, M. J. J. Vrakking, D. M. Villeneuve, and A. Stolow, “Femtosecond time-resolved zero kinetic energy photoelectron and photoionization spectroscopy studies of I2 wavepacket dynamics,” Chem. Phys. 207(2-3), 331–354 (1996).
[CrossRef]

M. J. J. Vrakking, D. M. Villeneuve, and A. Stolow, “Observation of fractional revivals of a molecular wave packet,” Phys. Rev. A 54(1), R37–R40 (1996).
[CrossRef] [PubMed]

Vrakking, M. J. J.

I. Fischer, M. J. J. Vrakking, D. M. Villeneuve, and A. Stolow, “Femtosecond time-resolved zero kinetic energy photoelectron and photoionization spectroscopy studies of I2 wavepacket dynamics,” Chem. Phys. 207(2-3), 331–354 (1996).
[CrossRef]

M. J. J. Vrakking, D. M. Villeneuve, and A. Stolow, “Observation of fractional revivals of a molecular wave packet,” Phys. Rev. A 54(1), R37–R40 (1996).
[CrossRef] [PubMed]

Wang, K.

Y. Arasaki, K. Takatsuka, K. Wang, and V. McKoy, “Pump-probe photoionization study of the passage and bifurcation of a quantum wave packet across an avoided crossing,” Phys. Rev. Lett. 90(24), 248303 (2003).
[CrossRef] [PubMed]

Wang, L.

H. Liu, J. Zhang, S. Yin, L. Wang, and N. Lou, “CS2 decay dynamics investigated by two-color femtosecond laser pulses,” Phys. Rev. A 70(4), 042501 (2004).
[CrossRef]

Wang, Y.

Y. Wang, H. Shen, L. Hua, C. Hu, and B. Zhang, “Predissociation dynamics of the B state of CH3I by femtosecond pump-probe technique,” Opt. Express 17(13), 10506–10513 (2009).
[CrossRef] [PubMed]

Y. Wang, S. Zhang, Z. Wei, Q. Zheng, and B. Zhang, “Br(2Pj) atom formation dynamics in ultraviolet photodissociation of tert-butyl bromide and iso-butyl bromide,” J. Chem. Phys. 125(18), 184307 (2006).
[CrossRef] [PubMed]

Weber, P. M.

C. P. Schick and P. M. Weber, “Ultrafast dynamics in superexcited states of phenol,” J. Phys. Chem. A 105(15), 3725–3734 (2001).
[CrossRef]

Wei, Z.

Y. Wang, S. Zhang, Z. Wei, Q. Zheng, and B. Zhang, “Br(2Pj) atom formation dynamics in ultraviolet photodissociation of tert-butyl bromide and iso-butyl bromide,” J. Chem. Phys. 125(18), 184307 (2006).
[CrossRef] [PubMed]

Wen, P.

K. L. Knappenberger, E. B. Lerch, P. Wen, and S. R. Leone, “Stark-assisted population control of coherent CS(2) 4f and 5p Rydberg wave packets studied by femtosecond time-resolved photoelectron spectroscopy,” J. Chem. Phys. 127(12), 124318 (2007).
[CrossRef] [PubMed]

K. L. Knappenberger, E. B. Lerch, P. Wen, and S. R. Leone, “Coherent polyatomic dynamics studied by femtosecond time-resolved photoelectron spectroscopy: dissociation of vibrationally excited CS2 in the 6s and 4d Rydberg states,” J. Chem. Phys. 125(17), 174314 (2006).
[CrossRef] [PubMed]

Yeazell, J. A.

J. A. Yeazell and C. R. Stroud., “Observation of fractional revivals in the evolution of a Rydberg atomic wave packet,” Phys. Rev. A 43(9), 5153–5156 (1991).
[CrossRef] [PubMed]

J. A. Yeazell, M. Mallalieu, and C. R. Stroud., “Observation of the collapse and revival of a Rydberg electronic wave packet,” Phys. Rev. Lett. 64(17), 2007–2010 (1990).
[CrossRef] [PubMed]

Yin, S.

H. Liu, J. Zhang, S. Yin, L. Wang, and N. Lou, “CS2 decay dynamics investigated by two-color femtosecond laser pulses,” Phys. Rev. A 70(4), 042501 (2004).
[CrossRef]

Zewail, A. H.

A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers,” Angew. Chem. Int. Ed. Engl. 39(15), 2586–2631 (2000).
[CrossRef] [PubMed]

R. M. Bowman, M. Dantus, and A. H. Zewail, “Femtosecond transition-state spectroscopy of iodine: from strongly bound to repulsive surface dynamics,” Chem. Phys. Lett. 161(4-5), 297–302 (1989).
[CrossRef]

P. M. Felker and A. H. Zewail, “Purely rotational coherent effect and time-resolved sub-Doppler spectroscopy of large molecules. I. theoretical,” J. Chem. Phys. 86(5), 2460–2482 (1987).
[CrossRef]

J. S. Baskin, P. M. Felker, and A. H. Zewail, “Purely rotational coherent effect and time-resolved sub-Doppler spectroscopy of large molecules. II. experimental,” J. Chem. Phys. 86(5), 2483–2499 (1987).
[CrossRef]

Zgierski, M. Z.

S. Lochbrunner, T. Schultz, M. Schmitt, J. P. Shaffer, M. Z. Zgierski, and A. Stolow, “Dynamics of excited-state proton transfer systems via time-resolved photoelectron spectroscopy,” J. Chem. Phys. 114(6), 2519–2522 (2001).
[CrossRef]

V. Blanchet, S. Lochbrunner, M. Schmitt, J. P. Shaffer, J. J. Larsen, M. Z. Zgierski, T. Seideman, and A. Stolow, “Towards disentangling coupled electronic-vibrational dynamics in ultrafast non-adiabatic processes,” Faraday Discuss. 115(115), 33–48, discussion 79–102 (2000).
[CrossRef] [PubMed]

Zhang, B.

Zhang, J.

H. Liu, J. Zhang, S. Yin, L. Wang, and N. Lou, “CS2 decay dynamics investigated by two-color femtosecond laser pulses,” Phys. Rev. A 70(4), 042501 (2004).
[CrossRef]

Zhang, S.

Y. Liu, B. Tang, H. Shen, S. Zhang, and B. Zhang, “Probing ultrafast internal conversion of o-xylene via femtosecond time-resolved photoelectron imaging,” Opt. Express 18(6), 5791–5801 (2010).
[CrossRef] [PubMed]

Y. Wang, S. Zhang, Z. Wei, Q. Zheng, and B. Zhang, “Br(2Pj) atom formation dynamics in ultraviolet photodissociation of tert-butyl bromide and iso-butyl bromide,” J. Chem. Phys. 125(18), 184307 (2006).
[CrossRef] [PubMed]

Zheng, Q.

Y. Wang, S. Zhang, Z. Wei, Q. Zheng, and B. Zhang, “Br(2Pj) atom formation dynamics in ultraviolet photodissociation of tert-butyl bromide and iso-butyl bromide,” J. Chem. Phys. 125(18), 184307 (2006).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers,” Angew. Chem. Int. Ed. Engl. 39(15), 2586–2631 (2000).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (2)

T. Suzuki, “Femtosecond time-resolved photoelectron imaging,” Annu. Rev. Phys. Chem. 57(1), 555–592 (2006).
[CrossRef] [PubMed]

T. Seideman, “Time-resolved photoelectron angular distributions: concepts, applications, and directions,” Annu. Rev. Phys. Chem. 53(1), 41–65 (2002).
[CrossRef] [PubMed]

Chem. Phys. (1)

I. Fischer, M. J. J. Vrakking, D. M. Villeneuve, and A. Stolow, “Femtosecond time-resolved zero kinetic energy photoelectron and photoionization spectroscopy studies of I2 wavepacket dynamics,” Chem. Phys. 207(2-3), 331–354 (1996).
[CrossRef]

Chem. Phys. Lett. (3)

T. Baumert, V. Engel, C. Röttgermann, W. T. Strunz, and G. Gerber, “Femtosecond pump—probe study of the spreading and recurrence of a vibrational wave packet in Na2,” Chem. Phys. Lett. 191(6), 639–644 (1992).
[CrossRef]

R. M. Bowman, M. Dantus, and A. H. Zewail, “Femtosecond transition-state spectroscopy of iodine: from strongly bound to repulsive surface dynamics,” Chem. Phys. Lett. 161(4-5), 297–302 (1989).
[CrossRef]

I. Fischer, A. Lochschmidt, A. Strobel, G. Niedner-Schatteburg, K. Muller-Dethlefs, and V. E. Bondybey, “The non-resonant two-photon zero kinetic energy photoelectron spectrum of CS2,” Chem. Phys. Lett. 202(6), 542–548 (1993).
[CrossRef]

Faraday Discuss. (1)

V. Blanchet, S. Lochbrunner, M. Schmitt, J. P. Shaffer, J. J. Larsen, M. Z. Zgierski, T. Seideman, and A. Stolow, “Towards disentangling coupled electronic-vibrational dynamics in ultrafast non-adiabatic processes,” Faraday Discuss. 115(115), 33–48, discussion 79–102 (2000).
[CrossRef] [PubMed]

Int. Rev. Phys. Chem. (1)

A. Stolow, “Time-resolved photoelectron spectroscopy: non-adiabatic dynamics in polyatomic molecules,” Int. Rev. Phys. Chem. 22(2), 377–405 (2003).
[CrossRef]

J. Chem. Phys. (12)

P. M. Felker and A. H. Zewail, “Purely rotational coherent effect and time-resolved sub-Doppler spectroscopy of large molecules. I. theoretical,” J. Chem. Phys. 86(5), 2460–2482 (1987).
[CrossRef]

M. Shapiro and P. Brumer, “Laser control of product quantum state population in unimolecular reactions,” J. Chem. Phys. 84(7), 4103–4104 (1986).
[CrossRef]

S. Lochbrunner, T. Schultz, M. Schmitt, J. P. Shaffer, M. Z. Zgierski, and A. Stolow, “Dynamics of excited-state proton transfer systems via time-resolved photoelectron spectroscopy,” J. Chem. Phys. 114(6), 2519–2522 (2001).
[CrossRef]

J. S. Baskin, P. M. Felker, and A. H. Zewail, “Purely rotational coherent effect and time-resolved sub-Doppler spectroscopy of large molecules. II. experimental,” J. Chem. Phys. 86(5), 2483–2499 (1987).
[CrossRef]

J. Baker and S. Couris, “A two-color (1+1’)+1 multiphoton ionization study of CS2 in the 61000–65600 cm−1 energy region,” J. Chem. Phys. 103(12), 4847–4854 (1995).
[CrossRef]

J. Baker and S. Couris, “A (1+1’)+1 multiphoton ionization study of CS2 in the 68500–73000 cm−1 energy region. the 3d and 5s Rydberg states,” J. Chem. Phys. 105(1), 62–67 (1996).
[CrossRef]

R. A. Morgan, M. A. Baldwin, A. J. Orr-Ewing, M. N. R. Ashfold, W. J. Buma, J. B. Milan, and C. A. de Lange, “Resonance enhanced multiphoton ionization spectroscopy of carbon disulphide,” J. Chem. Phys. 104(16), 6117–6129 (1996).
[CrossRef]

C. Cossart-Magos, M. Jungen, and F. Launay, “High-resolution absorption spectrum of jet-cooled CS2 between 70500 and 81550 cm−1: np and nf Rydberg series converging to the first ionization potential,” J. Chem. Phys. 109(16), 6666–6683 (1998).
[CrossRef]

Y. Wang, S. Zhang, Z. Wei, Q. Zheng, and B. Zhang, “Br(2Pj) atom formation dynamics in ultraviolet photodissociation of tert-butyl bromide and iso-butyl bromide,” J. Chem. Phys. 125(18), 184307 (2006).
[CrossRef] [PubMed]

K. L. Knappenberger, E. B. Lerch, P. Wen, and S. R. Leone, “Coherent polyatomic dynamics studied by femtosecond time-resolved photoelectron spectroscopy: dissociation of vibrationally excited CS2 in the 6s and 4d Rydberg states,” J. Chem. Phys. 125(17), 174314 (2006).
[CrossRef] [PubMed]

K. L. Knappenberger, E. B. Lerch, P. Wen, and S. R. Leone, “Stark-assisted population control of coherent CS(2) 4f and 5p Rydberg wave packets studied by femtosecond time-resolved photoelectron spectroscopy,” J. Chem. Phys. 127(12), 124318 (2007).
[CrossRef] [PubMed]

J. E. Dove, H. Hippler, J. Plach, and J. Troe, “Ultraviolet spectra of vibrationally highly excited CS2 molecules,” J. Chem. Phys. 81(3), 1209–1214 (1984).
[CrossRef]

J. Phys. Chem. A (1)

C. P. Schick and P. M. Weber, “Ultrafast dynamics in superexcited states of phenol,” J. Phys. Chem. A 105(15), 3725–3734 (2001).
[CrossRef]

Opt. Express (2)

Phys. Rev. A (4)

H. Liu, J. Zhang, S. Yin, L. Wang, and N. Lou, “CS2 decay dynamics investigated by two-color femtosecond laser pulses,” Phys. Rev. A 70(4), 042501 (2004).
[CrossRef]

J. A. Yeazell and C. R. Stroud., “Observation of fractional revivals in the evolution of a Rydberg atomic wave packet,” Phys. Rev. A 43(9), 5153–5156 (1991).
[CrossRef] [PubMed]

M. J. J. Vrakking, D. M. Villeneuve, and A. Stolow, “Observation of fractional revivals of a molecular wave packet,” Phys. Rev. A 54(1), R37–R40 (1996).
[CrossRef] [PubMed]

O. Knospe and R. Schmidt, “Revivals of wave packets: general theory and application to Rydberg clusters,” Phys. Rev. A 54(2), 1154–1160 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

Y. Arasaki, K. Takatsuka, K. Wang, and V. McKoy, “Pump-probe photoionization study of the passage and bifurcation of a quantum wave packet across an avoided crossing,” Phys. Rev. Lett. 90(24), 248303 (2003).
[CrossRef] [PubMed]

E. Skovsen, M. Machholm, T. Ejdrup, J. Thøgersen, and H. Stapelfeldt, “Imaging and control of interfering wave packets in a dissociating molecule,” Phys. Rev. Lett. 89(13), 133004 (2002).
[CrossRef] [PubMed]

J. A. Yeazell, M. Mallalieu, and C. R. Stroud., “Observation of the collapse and revival of a Rydberg electronic wave packet,” Phys. Rev. Lett. 64(17), 2007–2010 (1990).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys. 69(6), 1897–2003 (2006).
[CrossRef]

Rev. Sci. Instrum. (1)

V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, “Reconstruction of Abel-transformable images: the Gaussian basis-set expansion Abel transform method,” Rev. Sci. Instrum. 73(7), 2634–2642 (2002).
[CrossRef]

Science (1)

H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, “Visualizing picometric quantum ripples of ultrafast wave-packet interference,” Science 311(5767), 1589–1592 (2006).
[CrossRef] [PubMed]

Other (5)

J. A. Yeazell, and T. Uzer, The Physics and Chemistry of Wave Packets, (Wiley, 2000).

J. C. Diels, and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic Press, 1996), p. 446.

J. W. Rabalais, Principles of Ultraviolet Photoelectron Spectroscopy (John Wiley and Sons: 1977).

H. A. Bethe, Handbuch der Physik (Springer-Verlag, 1933), Vol. 24.

M. B. Robin, Higher Excited States of Polyatomic Molecules (Academic Press, 1974), Vol. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Energy level diagram for the 266.7 nm and 800 nm (2 + 1’ or 2’) REMPI photoelectron scheme. The single photon ionization process is indicated by the solid red arrows, and the two-photon ionization process is indicated by the dotted red arrows. The states accessible are taken from Refs. [2127], and the spectral assignments are CS24d[1/2]→CS2 +X[1/2], CS24d[3/2]→CS2 +X[3/2], CS26s[1/2]→CS2 +X[1/2] and CS26s[3/2]→ CS2 +X[3/2], composing the four components of the Rydberg wave packet. The blue windowed area represents the anticipated excitation region for the resonant two-photon excitation with a 490 cm−1 excitation bandwidth. (b) Ultraviolet Spectrum of CS2 at 300K in the gas phase [32]. The blue arrow shows the pump wavelength of 266.7 nm with a 490 cm−1 excitation bandwidth.

Fig. 2
Fig. 2

Results from time-resolved mass spectrometry. (a) Typical TOF mass spectrum of CS2, recorded with the 266.7 nm pump and 800 nm probe at zero delay time. (b) Time-resolved total ion signals of parent ion as a function of delay time between the pump pulse and the probe pulse. The circles are the experimental results, and solid lines are the fitting results. (c) The brow-up of the fit in (b) in the first 200 fs is presented. (d) The fit residue is presented. The black line shows the fit residue. The green line is included to guide the eye.

Fig. 3
Fig. 3

(a) Time-resolved photoelectron raw images (shown in the upper row) and BASEX-inverted images (shown in the lower row) at six time delays obtained by using a pump laser wavelength of 266.7 nm and a probe wavelength of 800 nm. The linear polarizations of the pump and probe lasers are aligned vertical in the plane of the figure. (b) Photoelectron kinetic energy distributions (PKEDs) extracted from the images of Fig. 3(a). The PKEDs are characterized by a relative change of main peak intensities with the delay time changing. This can be more readily visualized from the lower energy photoelectron peaks, which are amplified in the inset. (c) 3D map of tens of the time-dependent photoelectron energy spectra for the lower energy photoelectron peaks as a function of photoelectron kinetic energy (PKE) and pump-probe delay time, which fully demonstrates the dynamic characteristic of PKEDs of Fig. 3(b), indicating the temporal evolution of the four components of the Rydberg wave packet.

Fig. 4
Fig. 4

(a) Time dependence of the PADs for the lower energy photoelectron peaks in the angle range between 0 and 180 degree obtained by using a pump laser wavelength of 266.7 nm and a probe wavelength of 800 nm. (b-g) Polar plots of measured (blue dots) and fitting (red lines) PADs for the lower energy photoelectron peaks at six typical delay times. The linear polarizations of the pump and probe lasers are aligned vertical in the plane of the figure.

Tables (1)

Tables Icon

Table 1 Fitted Anisotropy Coefficients for the lower energy photoelectron peaks

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ψ ( t ) = c 1 Ψ 4 d [ 1 / 2 ] e i E 4 d [ 1 / 2 ] t / + c 2 Ψ 4 d [ 3 / 2 ] e i E 4 d [ 3 / 2 ] t / + c 3 Ψ 6 s [ 1 / 2 ] e i E 6 s [ 1 / 2 ] t / + c 4 Ψ 6 s [ 3 / 2 ] e i E 6 s [ 3 / 2 ] t /
I ( θ ; t ) = σ ( t ) [ 1 + β 2 ( t ) P 2 ( cos θ ) + β 4 ( t ) P 4 ( cos θ ) + β 6 ( t ) P 6 ( cos θ ) ] ,
P K E = T ( R y d b e r g ) + h ν p r - I P = h ν p r - R ( n - δ ) 2 ,

Metrics