Abstract

A new design of signal to noise ratio (SNR) measurement for single shot laser pulses, based on a stepped grating and an optical Kerr gate (OKG), is presented. A single shot laser pulse was simultaneously divided into multi-pulses in both time and space. Intensity-space distribution of laser multi-pulses, which was recorded with a CCD detector, was transformed into intensity-time distribution. Time resolution of 1.95 ps and detection time range of 42.9 ps were obtained, respectively. Moreover, optical spatial localization attenuators were introduced into optical path to acquire wide dynamic range in the SNR measurement and, as a result, the dynamic range has been extended remarkably.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Bromage, S. W. Bahk, D. Irwin, J. Kwiatkowski, A. Pruyne, M. Millecchia, M. Moore, and J. D. Zuegel, “A focal-spot diagnostic for on-shot characterization of high-energy petawatt lasers,” Opt. Express 16(21), 16561–16572 (2008).
    [PubMed]
  2. V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, “Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16(3), 2109–2114 (2008).
    [CrossRef] [PubMed]
  3. S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, “Characterization of focal field formed by a large numerical aperture paraboloidal mirror and generation of ultra-high intensity (1022 W/cm2),” Appl. Phys. B 80(7), 823–832 (2005).
    [CrossRef]
  4. G. A. Mourou, C. P. J. Barry, and M. D. Perry, “Ultrahigh-Intensity Lasers: Physics of the extreme on a tabletop,” Phys. Today 51(1), 22–28 (1998).
    [CrossRef]
  5. V. I. Kukulin and V. T. Voronchev, “Pinch-based thermonuclear D3He fusion driven by a femtosecond laser,” Physics of Atomic Nuclei 73(8), 1376–1383 (2010).
    [CrossRef]
  6. P. M. McKenty, V. N. Goncharov, R. P. J. Town, S. Skupsky, R. Betti, and R. L. McCrory, “Analysis of a direct-drive ignition capsule designed for the National Ignition Facility,” Phys. Plasmas 8(5), 2315–2322 (2001).
    [CrossRef]
  7. C. Dorrer, J. Bromage, and J. D. Zuegel, “High-dynamic-range single-shot cross-correlator based on an optical pulse replicator,” Opt. Express 16(18), 13534–13544 (2008).
    [CrossRef] [PubMed]
  8. A. Brun, P. Georges, G. Le Saux, and F. Satin, “Single-shot characterization of ultrashort light pulses,” J. Phys. D Appl. Phys. 24(8), 1225–1233 (1991).
    [CrossRef]
  9. J. Collier, C. Hernandez-Gomez, R. Allott, C. Danson, and A. Hall, “A single-shot third-order autocorrelator for pulse contrast and pulse shape measurements,” Laser Part. Beams 19(2), 231–235 (2001).
    [CrossRef]
  10. D. Zhang, L. Qian, P. Yuan, H. Zhu, S. Wen, and C. Xu, “Fiber-array-based detection scheme for single-shot pulse contrast characterization,” Opt. Lett. 33(17), 1969–1971 (2008).
    [CrossRef] [PubMed]
  11. R. C. Shah, R. P. Johnson, T. Shimada, and B. M. Hegelich, “Large temporal window contrast measurement using optical parametric amplification and low-sensitivity detectors,” Eur. Phys. J. D 55(2), 305–309 (2009).
    [CrossRef]
  12. E. J. Divall and I. N. Ross, “High dynamic range contrast measurements by use of an optical parametric amplifier correlator,” Opt. Lett. 29(19), 2273–2275 (2004).
    [CrossRef] [PubMed]
  13. F. Tavella, K. Schmid, N. Ishii, A. Marcinkevičius, L. Veisz, and F. Krausz, “High-dynamic range pulse-contrast measurements of a broadband optical parametric chirped-pulse amplifier,” Appl. Phys. B 81(6), 753–756 (2005).
    [CrossRef]
  14. G. Mayer and F. Gires, “Action d′une onde lumineuse intense sur l′indice de refraction des liquids,” Compt. Rend. Acad. Sci. (Paris) 258, 2039–2042 (1964).
  15. M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
    [CrossRef]
  16. L. H. Yan, J. J. Yue, J. H. Si, and X. Hou, “Influence of self-diffraction effect on femtosecond pump-probe optical Kerr measurements,” Opt. Express 16(16), 12069–12074 (2008).
    [CrossRef] [PubMed]
  17. S. Kinoshita, H. Ozawa, Y. Kanematsu, I. Tanaka, N. Sugimoto, and S. Fujiwara, “Efficient optical Kerr shutter for femtosecond time-resolved luminescence spectroscopy,” Rev. Sci. Instrum. 71(9), 3317–3322 (2000).
    [CrossRef]
  18. R. Nakamura and Y. Kanematsu, “Femtosecond spectral snapshots based on electronic optical Kerr effect,” Rev. Sci. Instrum. 75(3), 636–644 (2004).
    [CrossRef]
  19. J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Femtosecond optical Kerr gate fluorescence spectroscopy for ultrafast relaxation processes,” J. Lumin. 87–89, 927–929 (2000).
    [CrossRef]
  20. J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62(15), 10083–10087 (2000).
    [CrossRef]
  21. K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, and C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38(10), 1758–1762 (1999).
    [CrossRef]
  22. L. Wang, P. P. Ho, and R. R. Alfano, “Time-resolved Fourier spectrum and imaging in highly scattering media,” Appl. Opt. 32(26), 5043–5048 (1993).
    [CrossRef] [PubMed]
  23. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
    [CrossRef] [PubMed]
  24. H.-S. Albrecht, P. Heist, J. Kleinschmidt, D. V. Lap, and T. Schröder, “Single-shot measurement of ultraviolet and visible femtosecond pulses using the optical Kerr effect,” Appl. Opt. 32(33), 6659–6663 (1993).
    [CrossRef] [PubMed]
  25. E. B. Treacy, “Measurement and Interpretation of Dynamic Spectrograms of Picosecond Light Pulses,” J. Appl. Phys. 42(10), 3848–3858 (1971).
    [CrossRef]
  26. M. R. Topp, “Oscilloscope display of picosecond fluctuations in light intensity,” Opt. Commun. 14(1), 126–130 (1975).
    [CrossRef]

2010 (1)

V. I. Kukulin and V. T. Voronchev, “Pinch-based thermonuclear D3He fusion driven by a femtosecond laser,” Physics of Atomic Nuclei 73(8), 1376–1383 (2010).
[CrossRef]

2009 (1)

R. C. Shah, R. P. Johnson, T. Shimada, and B. M. Hegelich, “Large temporal window contrast measurement using optical parametric amplification and low-sensitivity detectors,” Eur. Phys. J. D 55(2), 305–309 (2009).
[CrossRef]

2008 (5)

2005 (2)

S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, “Characterization of focal field formed by a large numerical aperture paraboloidal mirror and generation of ultra-high intensity (1022 W/cm2),” Appl. Phys. B 80(7), 823–832 (2005).
[CrossRef]

F. Tavella, K. Schmid, N. Ishii, A. Marcinkevičius, L. Veisz, and F. Krausz, “High-dynamic range pulse-contrast measurements of a broadband optical parametric chirped-pulse amplifier,” Appl. Phys. B 81(6), 753–756 (2005).
[CrossRef]

2004 (2)

E. J. Divall and I. N. Ross, “High dynamic range contrast measurements by use of an optical parametric amplifier correlator,” Opt. Lett. 29(19), 2273–2275 (2004).
[CrossRef] [PubMed]

R. Nakamura and Y. Kanematsu, “Femtosecond spectral snapshots based on electronic optical Kerr effect,” Rev. Sci. Instrum. 75(3), 636–644 (2004).
[CrossRef]

2001 (2)

J. Collier, C. Hernandez-Gomez, R. Allott, C. Danson, and A. Hall, “A single-shot third-order autocorrelator for pulse contrast and pulse shape measurements,” Laser Part. Beams 19(2), 231–235 (2001).
[CrossRef]

P. M. McKenty, V. N. Goncharov, R. P. J. Town, S. Skupsky, R. Betti, and R. L. McCrory, “Analysis of a direct-drive ignition capsule designed for the National Ignition Facility,” Phys. Plasmas 8(5), 2315–2322 (2001).
[CrossRef]

2000 (3)

S. Kinoshita, H. Ozawa, Y. Kanematsu, I. Tanaka, N. Sugimoto, and S. Fujiwara, “Efficient optical Kerr shutter for femtosecond time-resolved luminescence spectroscopy,” Rev. Sci. Instrum. 71(9), 3317–3322 (2000).
[CrossRef]

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Femtosecond optical Kerr gate fluorescence spectroscopy for ultrafast relaxation processes,” J. Lumin. 87–89, 927–929 (2000).
[CrossRef]

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62(15), 10083–10087 (2000).
[CrossRef]

1999 (1)

K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, and C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38(10), 1758–1762 (1999).
[CrossRef]

1998 (1)

G. A. Mourou, C. P. J. Barry, and M. D. Perry, “Ultrahigh-Intensity Lasers: Physics of the extreme on a tabletop,” Phys. Today 51(1), 22–28 (1998).
[CrossRef]

1993 (2)

1991 (2)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[CrossRef] [PubMed]

A. Brun, P. Georges, G. Le Saux, and F. Satin, “Single-shot characterization of ultrashort light pulses,” J. Phys. D Appl. Phys. 24(8), 1225–1233 (1991).
[CrossRef]

1975 (1)

M. R. Topp, “Oscilloscope display of picosecond fluctuations in light intensity,” Opt. Commun. 14(1), 126–130 (1975).
[CrossRef]

1971 (1)

E. B. Treacy, “Measurement and Interpretation of Dynamic Spectrograms of Picosecond Light Pulses,” J. Appl. Phys. 42(10), 3848–3858 (1971).
[CrossRef]

1969 (1)

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
[CrossRef]

1964 (1)

G. Mayer and F. Gires, “Action d′une onde lumineuse intense sur l′indice de refraction des liquids,” Compt. Rend. Acad. Sci. (Paris) 258, 2039–2042 (1964).

Abraham, E.

K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, and C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38(10), 1758–1762 (1999).
[CrossRef]

Albrecht, H.-S.

Alfano, R. R.

L. Wang, P. P. Ho, and R. R. Alfano, “Time-resolved Fourier spectrum and imaging in highly scattering media,” Appl. Opt. 32(26), 5043–5048 (1993).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Allott, R.

J. Collier, C. Hernandez-Gomez, R. Allott, C. Danson, and A. Hall, “A single-shot third-order autocorrelator for pulse contrast and pulse shape measurements,” Laser Part. Beams 19(2), 231–235 (2001).
[CrossRef]

Bahk, S. W.

Bahk, S.-W.

S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, “Characterization of focal field formed by a large numerical aperture paraboloidal mirror and generation of ultra-high intensity (1022 W/cm2),” Appl. Phys. B 80(7), 823–832 (2005).
[CrossRef]

Barry, C. P. J.

G. A. Mourou, C. P. J. Barry, and M. D. Perry, “Ultrahigh-Intensity Lasers: Physics of the extreme on a tabletop,” Phys. Today 51(1), 22–28 (1998).
[CrossRef]

Betti, R.

P. M. McKenty, V. N. Goncharov, R. P. J. Town, S. Skupsky, R. Betti, and R. L. McCrory, “Analysis of a direct-drive ignition capsule designed for the National Ignition Facility,” Phys. Plasmas 8(5), 2315–2322 (2001).
[CrossRef]

Bromage, J.

Brun, A.

A. Brun, P. Georges, G. Le Saux, and F. Satin, “Single-shot characterization of ultrashort light pulses,” J. Phys. D Appl. Phys. 24(8), 1225–1233 (1991).
[CrossRef]

Cheriaux, G.

Chvykov, V.

V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, “Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16(3), 2109–2114 (2008).
[CrossRef] [PubMed]

S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, “Characterization of focal field formed by a large numerical aperture paraboloidal mirror and generation of ultra-high intensity (1022 W/cm2),” Appl. Phys. B 80(7), 823–832 (2005).
[CrossRef]

Collier, J.

J. Collier, C. Hernandez-Gomez, R. Allott, C. Danson, and A. Hall, “A single-shot third-order autocorrelator for pulse contrast and pulse shape measurements,” Laser Part. Beams 19(2), 231–235 (2001).
[CrossRef]

Danson, C.

J. Collier, C. Hernandez-Gomez, R. Allott, C. Danson, and A. Hall, “A single-shot third-order autocorrelator for pulse contrast and pulse shape measurements,” Laser Part. Beams 19(2), 231–235 (2001).
[CrossRef]

Divall, E. J.

Dorrer, C.

Duguay, M. A.

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
[CrossRef]

Fujiwara, S.

S. Kinoshita, H. Ozawa, Y. Kanematsu, I. Tanaka, N. Sugimoto, and S. Fujiwara, “Efficient optical Kerr shutter for femtosecond time-resolved luminescence spectroscopy,” Rev. Sci. Instrum. 71(9), 3317–3322 (2000).
[CrossRef]

Georges, P.

A. Brun, P. Georges, G. Le Saux, and F. Satin, “Single-shot characterization of ultrashort light pulses,” J. Phys. D Appl. Phys. 24(8), 1225–1233 (1991).
[CrossRef]

Gires, F.

G. Mayer and F. Gires, “Action d′une onde lumineuse intense sur l′indice de refraction des liquids,” Compt. Rend. Acad. Sci. (Paris) 258, 2039–2042 (1964).

Goncharov, V. N.

P. M. McKenty, V. N. Goncharov, R. P. J. Town, S. Skupsky, R. Betti, and R. L. McCrory, “Analysis of a direct-drive ignition capsule designed for the National Ignition Facility,” Phys. Plasmas 8(5), 2315–2322 (2001).
[CrossRef]

Hall, A.

J. Collier, C. Hernandez-Gomez, R. Allott, C. Danson, and A. Hall, “A single-shot third-order autocorrelator for pulse contrast and pulse shape measurements,” Laser Part. Beams 19(2), 231–235 (2001).
[CrossRef]

Hansen, J. W.

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
[CrossRef]

Hegelich, B. M.

R. C. Shah, R. P. Johnson, T. Shimada, and B. M. Hegelich, “Large temporal window contrast measurement using optical parametric amplification and low-sensitivity detectors,” Eur. Phys. J. D 55(2), 305–309 (2009).
[CrossRef]

Heist, P.

Hernandez-Gomez, C.

J. Collier, C. Hernandez-Gomez, R. Allott, C. Danson, and A. Hall, “A single-shot third-order autocorrelator for pulse contrast and pulse shape measurements,” Laser Part. Beams 19(2), 231–235 (2001).
[CrossRef]

Ho, P. P.

L. Wang, P. P. Ho, and R. R. Alfano, “Time-resolved Fourier spectrum and imaging in highly scattering media,” Appl. Opt. 32(26), 5043–5048 (1993).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Hou, X.

Irwin, D.

Ishii, N.

F. Tavella, K. Schmid, N. Ishii, A. Marcinkevičius, L. Veisz, and F. Krausz, “High-dynamic range pulse-contrast measurements of a broadband optical parametric chirped-pulse amplifier,” Appl. Phys. B 81(6), 753–756 (2005).
[CrossRef]

Johnson, R. P.

R. C. Shah, R. P. Johnson, T. Shimada, and B. M. Hegelich, “Large temporal window contrast measurement using optical parametric amplification and low-sensitivity detectors,” Eur. Phys. J. D 55(2), 305–309 (2009).
[CrossRef]

Jonusauskas, G.

K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, and C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38(10), 1758–1762 (1999).
[CrossRef]

Kalinchenko, G.

Kalintchenko, G.

S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, “Characterization of focal field formed by a large numerical aperture paraboloidal mirror and generation of ultra-high intensity (1022 W/cm2),” Appl. Phys. B 80(7), 823–832 (2005).
[CrossRef]

Kanematsu, Y.

R. Nakamura and Y. Kanematsu, “Femtosecond spectral snapshots based on electronic optical Kerr effect,” Rev. Sci. Instrum. 75(3), 636–644 (2004).
[CrossRef]

S. Kinoshita, H. Ozawa, Y. Kanematsu, I. Tanaka, N. Sugimoto, and S. Fujiwara, “Efficient optical Kerr shutter for femtosecond time-resolved luminescence spectroscopy,” Rev. Sci. Instrum. 71(9), 3317–3322 (2000).
[CrossRef]

Kinoshita, S.

S. Kinoshita, H. Ozawa, Y. Kanematsu, I. Tanaka, N. Sugimoto, and S. Fujiwara, “Efficient optical Kerr shutter for femtosecond time-resolved luminescence spectroscopy,” Rev. Sci. Instrum. 71(9), 3317–3322 (2000).
[CrossRef]

Kleinschmidt, J.

Krausz, F.

F. Tavella, K. Schmid, N. Ishii, A. Marcinkevičius, L. Veisz, and F. Krausz, “High-dynamic range pulse-contrast measurements of a broadband optical parametric chirped-pulse amplifier,” Appl. Phys. B 81(6), 753–756 (2005).
[CrossRef]

Krushelnick, K.

Kukulin, V. I.

V. I. Kukulin and V. T. Voronchev, “Pinch-based thermonuclear D3He fusion driven by a femtosecond laser,” Physics of Atomic Nuclei 73(8), 1376–1383 (2010).
[CrossRef]

Kurita, S.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Femtosecond optical Kerr gate fluorescence spectroscopy for ultrafast relaxation processes,” J. Lumin. 87–89, 927–929 (2000).
[CrossRef]

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62(15), 10083–10087 (2000).
[CrossRef]

Kwiatkowski, J.

Lap, D. V.

Le Saux, G.

A. Brun, P. Georges, G. Le Saux, and F. Satin, “Single-shot characterization of ultrashort light pulses,” J. Phys. D Appl. Phys. 24(8), 1225–1233 (1991).
[CrossRef]

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Maksimchuk, A.

V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, “Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16(3), 2109–2114 (2008).
[CrossRef] [PubMed]

S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, “Characterization of focal field formed by a large numerical aperture paraboloidal mirror and generation of ultra-high intensity (1022 W/cm2),” Appl. Phys. B 80(7), 823–832 (2005).
[CrossRef]

Marcinkevicius, A.

F. Tavella, K. Schmid, N. Ishii, A. Marcinkevičius, L. Veisz, and F. Krausz, “High-dynamic range pulse-contrast measurements of a broadband optical parametric chirped-pulse amplifier,” Appl. Phys. B 81(6), 753–756 (2005).
[CrossRef]

Matsumoto, H.

K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, and C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38(10), 1758–1762 (1999).
[CrossRef]

Matsuoka, T.

Mayer, G.

G. Mayer and F. Gires, “Action d′une onde lumineuse intense sur l′indice de refraction des liquids,” Compt. Rend. Acad. Sci. (Paris) 258, 2039–2042 (1964).

McCrory, R. L.

P. M. McKenty, V. N. Goncharov, R. P. J. Town, S. Skupsky, R. Betti, and R. L. McCrory, “Analysis of a direct-drive ignition capsule designed for the National Ignition Facility,” Phys. Plasmas 8(5), 2315–2322 (2001).
[CrossRef]

McKenty, P. M.

P. M. McKenty, V. N. Goncharov, R. P. J. Town, S. Skupsky, R. Betti, and R. L. McCrory, “Analysis of a direct-drive ignition capsule designed for the National Ignition Facility,” Phys. Plasmas 8(5), 2315–2322 (2001).
[CrossRef]

Millecchia, M.

Minoshima, K.

K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, and C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38(10), 1758–1762 (1999).
[CrossRef]

Moore, M.

Mourou, G.

Mourou, G. A.

S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, “Characterization of focal field formed by a large numerical aperture paraboloidal mirror and generation of ultra-high intensity (1022 W/cm2),” Appl. Phys. B 80(7), 823–832 (2005).
[CrossRef]

G. A. Mourou, C. P. J. Barry, and M. D. Perry, “Ultrahigh-Intensity Lasers: Physics of the extreme on a tabletop,” Phys. Today 51(1), 22–28 (1998).
[CrossRef]

Nakajima, K.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Femtosecond optical Kerr gate fluorescence spectroscopy for ultrafast relaxation processes,” J. Lumin. 87–89, 927–929 (2000).
[CrossRef]

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62(15), 10083–10087 (2000).
[CrossRef]

Nakamura, R.

R. Nakamura and Y. Kanematsu, “Femtosecond spectral snapshots based on electronic optical Kerr effect,” Rev. Sci. Instrum. 75(3), 636–644 (2004).
[CrossRef]

Nees, J.

Ozawa, H.

S. Kinoshita, H. Ozawa, Y. Kanematsu, I. Tanaka, N. Sugimoto, and S. Fujiwara, “Efficient optical Kerr shutter for femtosecond time-resolved luminescence spectroscopy,” Rev. Sci. Instrum. 71(9), 3317–3322 (2000).
[CrossRef]

Perry, M. D.

G. A. Mourou, C. P. J. Barry, and M. D. Perry, “Ultrahigh-Intensity Lasers: Physics of the extreme on a tabletop,” Phys. Today 51(1), 22–28 (1998).
[CrossRef]

Planchon, T.

Planchon, T. A.

S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, “Characterization of focal field formed by a large numerical aperture paraboloidal mirror and generation of ultra-high intensity (1022 W/cm2),” Appl. Phys. B 80(7), 823–832 (2005).
[CrossRef]

Pruyne, A.

Qian, L.

Ross, I. N.

Rousseau, P.

V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, “Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16(3), 2109–2114 (2008).
[CrossRef] [PubMed]

S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, “Characterization of focal field formed by a large numerical aperture paraboloidal mirror and generation of ultra-high intensity (1022 W/cm2),” Appl. Phys. B 80(7), 823–832 (2005).
[CrossRef]

Rullière, C.

K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, and C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38(10), 1758–1762 (1999).
[CrossRef]

Saito, S.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Femtosecond optical Kerr gate fluorescence spectroscopy for ultrafast relaxation processes,” J. Lumin. 87–89, 927–929 (2000).
[CrossRef]

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62(15), 10083–10087 (2000).
[CrossRef]

Satin, F.

A. Brun, P. Georges, G. Le Saux, and F. Satin, “Single-shot characterization of ultrashort light pulses,” J. Phys. D Appl. Phys. 24(8), 1225–1233 (1991).
[CrossRef]

Schmid, K.

F. Tavella, K. Schmid, N. Ishii, A. Marcinkevičius, L. Veisz, and F. Krausz, “High-dynamic range pulse-contrast measurements of a broadband optical parametric chirped-pulse amplifier,” Appl. Phys. B 81(6), 753–756 (2005).
[CrossRef]

Schröder, T.

Shah, R. C.

R. C. Shah, R. P. Johnson, T. Shimada, and B. M. Hegelich, “Large temporal window contrast measurement using optical parametric amplification and low-sensitivity detectors,” Eur. Phys. J. D 55(2), 305–309 (2009).
[CrossRef]

Shimada, T.

R. C. Shah, R. P. Johnson, T. Shimada, and B. M. Hegelich, “Large temporal window contrast measurement using optical parametric amplification and low-sensitivity detectors,” Eur. Phys. J. D 55(2), 305–309 (2009).
[CrossRef]

Si, J. H.

Skupsky, S.

P. M. McKenty, V. N. Goncharov, R. P. J. Town, S. Skupsky, R. Betti, and R. L. McCrory, “Analysis of a direct-drive ignition capsule designed for the National Ignition Facility,” Phys. Plasmas 8(5), 2315–2322 (2001).
[CrossRef]

Suemoto, T.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62(15), 10083–10087 (2000).
[CrossRef]

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Femtosecond optical Kerr gate fluorescence spectroscopy for ultrafast relaxation processes,” J. Lumin. 87–89, 927–929 (2000).
[CrossRef]

Sugimoto, N.

S. Kinoshita, H. Ozawa, Y. Kanematsu, I. Tanaka, N. Sugimoto, and S. Fujiwara, “Efficient optical Kerr shutter for femtosecond time-resolved luminescence spectroscopy,” Rev. Sci. Instrum. 71(9), 3317–3322 (2000).
[CrossRef]

Takeda, J.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Femtosecond optical Kerr gate fluorescence spectroscopy for ultrafast relaxation processes,” J. Lumin. 87–89, 927–929 (2000).
[CrossRef]

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62(15), 10083–10087 (2000).
[CrossRef]

Tanaka, I.

S. Kinoshita, H. Ozawa, Y. Kanematsu, I. Tanaka, N. Sugimoto, and S. Fujiwara, “Efficient optical Kerr shutter for femtosecond time-resolved luminescence spectroscopy,” Rev. Sci. Instrum. 71(9), 3317–3322 (2000).
[CrossRef]

Tavella, F.

F. Tavella, K. Schmid, N. Ishii, A. Marcinkevičius, L. Veisz, and F. Krausz, “High-dynamic range pulse-contrast measurements of a broadband optical parametric chirped-pulse amplifier,” Appl. Phys. B 81(6), 753–756 (2005).
[CrossRef]

Tomimoto, S.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Femtosecond optical Kerr gate fluorescence spectroscopy for ultrafast relaxation processes,” J. Lumin. 87–89, 927–929 (2000).
[CrossRef]

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62(15), 10083–10087 (2000).
[CrossRef]

Topp, M. R.

M. R. Topp, “Oscilloscope display of picosecond fluctuations in light intensity,” Opt. Commun. 14(1), 126–130 (1975).
[CrossRef]

Town, R. P. J.

P. M. McKenty, V. N. Goncharov, R. P. J. Town, S. Skupsky, R. Betti, and R. L. McCrory, “Analysis of a direct-drive ignition capsule designed for the National Ignition Facility,” Phys. Plasmas 8(5), 2315–2322 (2001).
[CrossRef]

Treacy, E. B.

E. B. Treacy, “Measurement and Interpretation of Dynamic Spectrograms of Picosecond Light Pulses,” J. Appl. Phys. 42(10), 3848–3858 (1971).
[CrossRef]

Veisz, L.

F. Tavella, K. Schmid, N. Ishii, A. Marcinkevičius, L. Veisz, and F. Krausz, “High-dynamic range pulse-contrast measurements of a broadband optical parametric chirped-pulse amplifier,” Appl. Phys. B 81(6), 753–756 (2005).
[CrossRef]

Voronchev, V. T.

V. I. Kukulin and V. T. Voronchev, “Pinch-based thermonuclear D3He fusion driven by a femtosecond laser,” Physics of Atomic Nuclei 73(8), 1376–1383 (2010).
[CrossRef]

Wang, L.

L. Wang, P. P. Ho, and R. R. Alfano, “Time-resolved Fourier spectrum and imaging in highly scattering media,” Appl. Opt. 32(26), 5043–5048 (1993).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Wen, S.

Xu, C.

Yan, L. H.

Yanovsky, V.

V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, “Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16(3), 2109–2114 (2008).
[CrossRef] [PubMed]

S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, “Characterization of focal field formed by a large numerical aperture paraboloidal mirror and generation of ultra-high intensity (1022 W/cm2),” Appl. Phys. B 80(7), 823–832 (2005).
[CrossRef]

Yasui, T.

K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, and C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38(10), 1758–1762 (1999).
[CrossRef]

Yuan, P.

Yue, J. J.

Zhang, D.

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Zhu, H.

Zuegel, J. D.

Appl. Opt. (2)

Appl. Phys. B (2)

S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, “Characterization of focal field formed by a large numerical aperture paraboloidal mirror and generation of ultra-high intensity (1022 W/cm2),” Appl. Phys. B 80(7), 823–832 (2005).
[CrossRef]

F. Tavella, K. Schmid, N. Ishii, A. Marcinkevičius, L. Veisz, and F. Krausz, “High-dynamic range pulse-contrast measurements of a broadband optical parametric chirped-pulse amplifier,” Appl. Phys. B 81(6), 753–756 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
[CrossRef]

Compt. Rend. Acad. Sci. (Paris) (1)

G. Mayer and F. Gires, “Action d′une onde lumineuse intense sur l′indice de refraction des liquids,” Compt. Rend. Acad. Sci. (Paris) 258, 2039–2042 (1964).

Eur. Phys. J. D (1)

R. C. Shah, R. P. Johnson, T. Shimada, and B. M. Hegelich, “Large temporal window contrast measurement using optical parametric amplification and low-sensitivity detectors,” Eur. Phys. J. D 55(2), 305–309 (2009).
[CrossRef]

J. Appl. Phys. (1)

E. B. Treacy, “Measurement and Interpretation of Dynamic Spectrograms of Picosecond Light Pulses,” J. Appl. Phys. 42(10), 3848–3858 (1971).
[CrossRef]

J. Lumin. (1)

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Femtosecond optical Kerr gate fluorescence spectroscopy for ultrafast relaxation processes,” J. Lumin. 87–89, 927–929 (2000).
[CrossRef]

J. Phys. D Appl. Phys. (1)

A. Brun, P. Georges, G. Le Saux, and F. Satin, “Single-shot characterization of ultrashort light pulses,” J. Phys. D Appl. Phys. 24(8), 1225–1233 (1991).
[CrossRef]

Laser Part. Beams (1)

J. Collier, C. Hernandez-Gomez, R. Allott, C. Danson, and A. Hall, “A single-shot third-order autocorrelator for pulse contrast and pulse shape measurements,” Laser Part. Beams 19(2), 231–235 (2001).
[CrossRef]

Opt. Commun. (1)

M. R. Topp, “Oscilloscope display of picosecond fluctuations in light intensity,” Opt. Commun. 14(1), 126–130 (1975).
[CrossRef]

Opt. Eng. (1)

K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, and C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38(10), 1758–1762 (1999).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Plasmas (1)

P. M. McKenty, V. N. Goncharov, R. P. J. Town, S. Skupsky, R. Betti, and R. L. McCrory, “Analysis of a direct-drive ignition capsule designed for the National Ignition Facility,” Phys. Plasmas 8(5), 2315–2322 (2001).
[CrossRef]

Phys. Rev. B (1)

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62(15), 10083–10087 (2000).
[CrossRef]

Phys. Today (1)

G. A. Mourou, C. P. J. Barry, and M. D. Perry, “Ultrahigh-Intensity Lasers: Physics of the extreme on a tabletop,” Phys. Today 51(1), 22–28 (1998).
[CrossRef]

Physics of Atomic Nuclei (1)

V. I. Kukulin and V. T. Voronchev, “Pinch-based thermonuclear D3He fusion driven by a femtosecond laser,” Physics of Atomic Nuclei 73(8), 1376–1383 (2010).
[CrossRef]

Rev. Sci. Instrum. (2)

S. Kinoshita, H. Ozawa, Y. Kanematsu, I. Tanaka, N. Sugimoto, and S. Fujiwara, “Efficient optical Kerr shutter for femtosecond time-resolved luminescence spectroscopy,” Rev. Sci. Instrum. 71(9), 3317–3322 (2000).
[CrossRef]

R. Nakamura and Y. Kanematsu, “Femtosecond spectral snapshots based on electronic optical Kerr effect,” Rev. Sci. Instrum. 75(3), 636–644 (2004).
[CrossRef]

Science (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Principle diagram of signal to noise ratio measurement for a single shot laser pulse.

Fig. 2
Fig. 2

Schematics of experiment arrangement. BS, beam splitter to separate the single pulse into signal pulse and gating pulse; DL, delay line; E, beam expander; S, slit; D, single pulse optical delay device; OKM, optical Kerr material; L1, L2, cylindrical lens; P1, P2, P3, polarizers.

Fig. 3
Fig. 3

Dynamic response curve of CS2. The FWHM is 570 fs.

Fig. 4
Fig. 4

Detection result of the single shot laser with a pre-pulse. (a) Detection result by CCD and (b) intensity-time distribution by spatio-temporal transformation. The time positions of pre-pulse and main pulse are 8.15 ps and 17.9 ps, respectively.

Fig. 5
Fig. 5

Detection result of the single shot laser with a pre-pulse (Only the main pulse was attenuated).

Metrics