Abstract

Down-conversion of a high-frequency beat note to an intermediate frequency is realized by a Mach-Zehnder intensity modulator. Optically-carried microwave signals in the 10–60 GHz range are synthesized by using a two-frequency solid-state microchip laser as a voltage-controlled oscillator inside a digital phase-locked loop. We report an in-loop relative frequency stability better than 2.5 × 10−11. The principle is applicable to beat notes in the millimeter-wave range.

© 2011 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Non-linear optoelectronic phase-locked loop for stabilization of opto-millimeter waves: towards a narrow linewidth tunable THz source

A. Rolland, G. Loas, M. Brunel, L. Frein, M. Vallet, and M. Alouini
Opt. Express 19(19) 17944-17950 (2011)

PLL-Stabilized Optical Communications in Millimeter-Wave RoF Systems

Friederike Brendel, Thomas Zwick, Julien Poëtte, and Béatrice Cabon
J. Opt. Commun. Netw. 6(1) 45-53 (2014)

Photonic generation of millimeter and terahertz waves with high phase stability

Dongning Sun, Yi Dong, Lilin Yi, Siwei Wang, Hongxiao Shi, Zongyang Xia, Weilin Xie, and Weisheng Hu
Opt. Lett. 39(6) 1493-1496 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
    [Crossref]
  2. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  3. M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13(4), 367–369 (2001).
    [Crossref]
  4. G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
    [Crossref]
  5. M. Brunel, A. Amon, and M. Vallet, “Dual-polarization microchip laser at 1.53 μm,” Opt. Lett. 30(18), 2418–2420 (2005).
    [Crossref] [PubMed]
  6. A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett. 21(7), 480–482 (2009).
    [Crossref]
  7. R. Wang and Y. Li, “Dual-polarization spatial-hole-burning-free microchip laser,” IEEE Photon. Technol. Lett. 21(17), 1214–1216 (2009).
    [Crossref]
  8. M. Vallet, M. Brunel, and M. Oger, “RF photonic synthesizer,” Electron. Lett. 43(25), 1437–1438 (2007).
    [Crossref]
  9. A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photon. Technol. Lett. 22(23), 1738–1740 (2010).
    [Crossref]
  10. K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6–34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989).
    [Crossref]
  11. Y. Li, J. C. Vieira, S. M. Goldwasser, and P. R. Herczfeld, “Rapidly tunable millimeter-wave optical transmitter for Lidar-Radar,” IEEE Trans. Microw. Theory Tech. 49(10), 2048–2054 (2001).
    [Crossref]
  12. H. R. Rideout, J. S. Seregelyi, S. Paquet, and J. Yao, “Discriminator-aided optical phase-lock loop incorporating a frequency down-conversion module,” IEEE Photon. Technol. Lett. 18(22), 2344–2346 (2006).
    [Crossref]
  13. S. Hisatake, Y. Nakase, K. Shibuya, and T. Kobayashi, “Generation of flat power-envelope terahertz-wide modulation sidebands from a continuous-wave laser based on an external electro-optic phase modulator,” Opt. Lett. 30(7), 777–779 (2005).
    [Crossref] [PubMed]
  14. G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
    [Crossref]

2010 (1)

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photon. Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

2009 (3)

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett. 21(7), 480–482 (2009).
[Crossref]

R. Wang and Y. Li, “Dual-polarization spatial-hole-burning-free microchip laser,” IEEE Photon. Technol. Lett. 21(17), 1214–1216 (2009).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

2008 (1)

2007 (2)

M. Vallet, M. Brunel, and M. Oger, “RF photonic synthesizer,” Electron. Lett. 43(25), 1437–1438 (2007).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

2006 (1)

H. R. Rideout, J. S. Seregelyi, S. Paquet, and J. Yao, “Discriminator-aided optical phase-lock loop incorporating a frequency down-conversion module,” IEEE Photon. Technol. Lett. 18(22), 2344–2346 (2006).
[Crossref]

2005 (3)

2001 (2)

Y. Li, J. C. Vieira, S. M. Goldwasser, and P. R. Herczfeld, “Rapidly tunable millimeter-wave optical transmitter for Lidar-Radar,” IEEE Trans. Microw. Theory Tech. 49(10), 2048–2054 (2001).
[Crossref]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13(4), 367–369 (2001).
[Crossref]

1989 (1)

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6–34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989).
[Crossref]

Alouini, M.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13(4), 367–369 (2001).
[Crossref]

Amon, A.

Bélisle, C.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[Crossref]

Benazet, B.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13(4), 367–369 (2001).
[Crossref]

Bondu, F.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photon. Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

Bretenaker, F.

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
[Crossref]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13(4), 367–369 (2001).
[Crossref]

Brunel, M.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photon. Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
[Crossref]

M. Vallet, M. Brunel, and M. Oger, “RF photonic synthesizer,” Electron. Lett. 43(25), 1437–1438 (2007).
[Crossref]

M. Brunel, A. Amon, and M. Vallet, “Dual-polarization microchip laser at 1.53 μm,” Opt. Lett. 30(18), 2418–2420 (2005).
[Crossref] [PubMed]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13(4), 367–369 (2001).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

Dagenais, M.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6–34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989).
[Crossref]

Dawes, J. M.

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett. 21(7), 480–482 (2009).
[Crossref]

Di Bin, P.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13(4), 367–369 (2001).
[Crossref]

Dolfi, D.

Esman, R. D.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6–34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989).
[Crossref]

Frein, L.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photon. Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

Goldberg, L.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6–34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989).
[Crossref]

Goldwasser, S. M.

Y. Li, J. C. Vieira, S. M. Goldwasser, and P. R. Herczfeld, “Rapidly tunable millimeter-wave optical transmitter for Lidar-Radar,” IEEE Trans. Microw. Theory Tech. 49(10), 2048–2054 (2001).
[Crossref]

Herczfeld, P. R.

Y. Li, J. C. Vieira, S. M. Goldwasser, and P. R. Herczfeld, “Rapidly tunable millimeter-wave optical transmitter for Lidar-Radar,” IEEE Trans. Microw. Theory Tech. 49(10), 2048–2054 (2001).
[Crossref]

Hisatake, S.

Huignard, J.-P.

Kobayashi, T.

Le Floch, A.

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
[Crossref]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13(4), 367–369 (2001).
[Crossref]

Li, Y.

R. Wang and Y. Li, “Dual-polarization spatial-hole-burning-free microchip laser,” IEEE Photon. Technol. Lett. 21(17), 1214–1216 (2009).
[Crossref]

Y. Li, J. C. Vieira, S. M. Goldwasser, and P. R. Herczfeld, “Rapidly tunable millimeter-wave optical transmitter for Lidar-Radar,” IEEE Trans. Microw. Theory Tech. 49(10), 2048–2054 (2001).
[Crossref]

McKay, A.

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett. 21(7), 480–482 (2009).
[Crossref]

Merlet, T.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photon. Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

Morvan, L.

Nakase, Y.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

Oger, M.

M. Vallet, M. Brunel, and M. Oger, “RF photonic synthesizer,” Electron. Lett. 43(25), 1437–1438 (2007).
[Crossref]

Paquet, S.

H. R. Rideout, J. S. Seregelyi, S. Paquet, and J. Yao, “Discriminator-aided optical phase-lock loop incorporating a frequency down-conversion module,” IEEE Photon. Technol. Lett. 18(22), 2344–2346 (2006).
[Crossref]

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[Crossref]

Pillet, G.

Qi, G.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[Crossref]

Rideout, H. R.

H. R. Rideout, J. S. Seregelyi, S. Paquet, and J. Yao, “Discriminator-aided optical phase-lock loop incorporating a frequency down-conversion module,” IEEE Photon. Technol. Lett. 18(22), 2344–2346 (2006).
[Crossref]

Rolland, A.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photon. Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

Seregelyi, J.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[Crossref]

Seregelyi, J. S.

H. R. Rideout, J. S. Seregelyi, S. Paquet, and J. Yao, “Discriminator-aided optical phase-lock loop incorporating a frequency down-conversion module,” IEEE Photon. Technol. Lett. 18(22), 2344–2346 (2006).
[Crossref]

Shibuya, K.

Thony, P.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13(4), 367–369 (2001).
[Crossref]

Vallet, M.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photon. Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
[Crossref]

M. Vallet, M. Brunel, and M. Oger, “RF photonic synthesizer,” Electron. Lett. 43(25), 1437–1438 (2007).
[Crossref]

M. Brunel, A. Amon, and M. Vallet, “Dual-polarization microchip laser at 1.53 μm,” Opt. Lett. 30(18), 2418–2420 (2005).
[Crossref] [PubMed]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13(4), 367–369 (2001).
[Crossref]

Vieira, J. C.

Y. Li, J. C. Vieira, S. M. Goldwasser, and P. R. Herczfeld, “Rapidly tunable millimeter-wave optical transmitter for Lidar-Radar,” IEEE Trans. Microw. Theory Tech. 49(10), 2048–2054 (2001).
[Crossref]

Wang, R.

R. Wang and Y. Li, “Dual-polarization spatial-hole-burning-free microchip laser,” IEEE Photon. Technol. Lett. 21(17), 1214–1216 (2009).
[Crossref]

Weller, J. F.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6–34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989).
[Crossref]

Williams, K. J.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6–34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989).
[Crossref]

Yao, J.

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

H. R. Rideout, J. S. Seregelyi, S. Paquet, and J. Yao, “Discriminator-aided optical phase-lock loop incorporating a frequency down-conversion module,” IEEE Photon. Technol. Lett. 18(22), 2344–2346 (2006).
[Crossref]

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[Crossref]

Electron. Lett. (2)

M. Vallet, M. Brunel, and M. Oger, “RF photonic synthesizer,” Electron. Lett. 43(25), 1437–1438 (2007).
[Crossref]

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6–34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989).
[Crossref]

IEEE Photon. Technol. Lett. (5)

H. R. Rideout, J. S. Seregelyi, S. Paquet, and J. Yao, “Discriminator-aided optical phase-lock loop incorporating a frequency down-conversion module,” IEEE Photon. Technol. Lett. 18(22), 2344–2346 (2006).
[Crossref]

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photon. Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett. 21(7), 480–482 (2009).
[Crossref]

R. Wang and Y. Li, “Dual-polarization spatial-hole-burning-free microchip laser,” IEEE Photon. Technol. Lett. 21(17), 1214–1216 (2009).
[Crossref]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13(4), 367–369 (2001).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

Y. Li, J. C. Vieira, S. M. Goldwasser, and P. R. Herczfeld, “Rapidly tunable millimeter-wave optical transmitter for Lidar-Radar,” IEEE Trans. Microw. Theory Tech. 49(10), 2048–2054 (2001).
[Crossref]

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[Crossref]

J. Lightwave Technol. (2)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical down-conversion. (a) Set-up: dual-frequency microchip laser; P, polarizer; MZM, intensity modulator. (b) MZM transmission when Vbias = Vπ/2, leading to the output spectrum (c). (d) MZM transmission when Vbias =0 leading to the output spectrum (e).

Fig. 2
Fig. 2

Schematic of the experiemental setup. See text for details

Fig. 3
Fig. 3

Illustration of the optical down-conversion. Electrical spectrum of the photocurrent with Δν = 21 GHz and fRF = 8.5 GHz, yielding fi = 4 GHz.

Fig. 4
Fig. 4

(a) Free-running beat fluctuation over 10 minutes, measured with the MaxHold function of the electrical spectrum analyzer. (b) Thermo-optic tuning of the beat note. (c)–(d) Stabilized IF signals when the servo-loop is closed. Resolution bandwidth 1 Hz, video averaging 10. In (c), Δν = 20 GHz, fRF = 9.75 GHz, a = 0.5 (quadrature) ). In (d), Δν = 40 GHz, fRF = 9.875 GHz, a = 1 (phase).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I out ( t ) = I in 2 I in [ J 1 ( b π ) sin ( ω R F t ) + J 3 ( b π ) sin ( 3 ω R F t ) + J 5 ( b π ) sin ( 5 ω R F t ) + ] ,
I out ( t ) = I in 2 + I in 2 J 0 ( b π ) + I in [ J 2 ( b π ) cos ( 2 ω R F t ) + J 4 ( b π ) cos ( 4 ω R F t ) + ] .

Metrics