## Abstract

Experimental results are shown for an integrated computational imaging system with a phase-coded aperture. A spatial light modulator works as a phase screen that diffracts light from a point object into a uniformly redundant array (URA). Excellent imaging results are achieved after correlation processing. The system has the same depth of field as a diffraction-limited lens. Potential applications are discussed.

© 2011 OSA

Full Article |

PDF Article

**Related Articles**
### Equations (8)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$i\left(x,y\right)=\int o\left(\xi ,\eta \right)h\left(x-\xi ,y-\eta \right)d\xi d\eta .$$
(2)
$$L\left\{h\left(x,y\right)\right\}={f}_{\delta}\left(x,y\right)+g\left(x,y\right),$$
(3)
$$L\left\{i\left(x,y\right)\right\}=\int o\left(\xi ,\eta \right){f}_{\delta}\left(x-\xi ,y-\eta \right)d\xi d\eta +\int o\left(\xi ,\eta \right)g\left(x-\xi ,y-\eta \right)d\xi d\eta .$$
(4)
$$h\left(x,y\right)=t\left(x,y\right)*b\left(x,y\right),$$
(5)
$$L\left\{h\left(x,y\right)\right\}=h\left(x,y\right)\otimes {t}_{R}\left(x,y\right),$$
(6)
$${t}_{R}\left(x,y\right)=\int \left[t\left(x-\xi ,y-\eta \right)-t\right]\text{comb}\left(\xi /{D}_{x},\eta /{D}_{y}\right)d\xi d\eta ,$$
(7)
$$L\left\{h\left(x,y\right)\right\}=C\text{comb}\left(x/{D}_{x},y/{D}_{y}\right)*\Lambda \left(x/{\Delta}_{x},y/{\Delta}_{y}\right)*b\left(x,y\right),$$
(8)
$${f}_{\delta}\left(x,y\right)=\Lambda \left(x/{\Delta}_{x},y/{\Delta}_{y}\right)*b\left(x,y\right),$$