Abstract

We present an imaging system based on low coherence interferometric detection of multiply scattered light for extended depth imaging into highly scattering media. By incorporating angle-resolved detection, coherence imaging with multiply scattered photons is shown to be both feasible and potentially superior to existing techniques for performing time-resolved measurements of scattered light. Imaging is demonstrated through nearly 100 mean free paths of scattering phantom in a single-ended geometry. The resolution and imaging contrast are compared to those obtained with conventional OCT systems which chiefly detect singly scattered light.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
    [CrossRef] [PubMed]
  2. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  3. M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, and E. A. Swanson, “Femtosecond transillumination optical coherence tomography,” Opt. Lett. 18(12), 950–952 (1993).
    [CrossRef] [PubMed]
  4. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” Signal Process. 21, 57–75 (2002).
  5. J. Swartling, A. Bassi, C. D’Andrea, A. Pifferi, A. Torricelli, and R. Cubeddu, “Dynamic time-resolved diffuse spectroscopy based on supercontinuum light pulses,” Appl. Opt. 44(22), 4684–4692 (2005).
    [CrossRef] [PubMed]
  6. G. Kumar and J. M. Schmitt, “Optimal probe geometry for near-infrared spectroscopy of biological tissue,” Appl. Opt. 36(10), 2286–2293 (1997).
    [CrossRef] [PubMed]
  7. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256 (2000).
    [CrossRef]
  8. B. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express 1(13), 391–403 (1997).
    [CrossRef] [PubMed]
  9. K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000).
    [CrossRef] [PubMed]
  10. C. V. Zint, W. Uhring, M. Torregrossa, B. Cunin, and P. Poulet, “Streak camera: a multidetector for diffuse optical tomography,” Appl. Opt. 42(16), 3313–3320 (2003).
    [CrossRef] [PubMed]
  11. M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple scattering in optical coherence microscopy,” Appl. Opt. 34(25), 5699–5707 (1995).
    [CrossRef] [PubMed]
  12. A. Wax and J. E. Thomas, “Measurement of smoothed Wigner phase-space distributions for small-angle scattering in a turbid medium,” J. Opt. Soc. Am. A 15(7), 1896–1908 (1998).
    [CrossRef]
  13. R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
    [CrossRef] [PubMed]
  14. S. Farsiu, J. Christofferson, B. Eriksson, P. Milanfar, B. Friedlander, A. Shakouri, and R. Nowak, “Statistical detection and imaging of objects hidden in turbid media using ballistic photons,” Appl. Opt. 46(23), 5805–5822 (2007).
    [CrossRef] [PubMed]
  15. J. W. Pyhtila, R. N. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Opt. Express 11(25), 3473–3484 (2003).
    [CrossRef] [PubMed]
  16. R. N. Graf, W. J. Brown, and A. Wax, “Parallel frequency-domain optical coherence tomography scatter-mode imaging of the hamster cheek pouch using a thermal light source,” Opt. Lett. 33(12), 1285–1287 (2008).
    [CrossRef] [PubMed]
  17. R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd: YAG wavelength,” Lasers Surg. Med. 11(2), 117–124 (1991).
    [CrossRef] [PubMed]
  18. R. Splinter, W. F. Cheong, M. J. van Gemert, and A. J. Welch, “In vitro optical properties of human and canine brain and urinary bladder tissues at 633 nm,” Lasers Surg. Med. 9(1), 37–41 (1989).
    [CrossRef] [PubMed]
  19. N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependant photon scatter for diffuse optical tomography,” J. Biomed. Opt. 15(6), 065006 (2010).
    [CrossRef]
  20. M. Burcin Unlu, O. Birgul, R. Shafiiha, G. Gulsen, and O. Nalcioglu, “Diffuse optical tomographic reconstruction using multifrequency data,” J. Biomed. Opt. 11(5), 054008 (2006).
    [CrossRef] [PubMed]

2010

N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependant photon scatter for diffuse optical tomography,” J. Biomed. Opt. 15(6), 065006 (2010).
[CrossRef]

2008

2007

2006

M. Burcin Unlu, O. Birgul, R. Shafiiha, G. Gulsen, and O. Nalcioglu, “Diffuse optical tomographic reconstruction using multifrequency data,” J. Biomed. Opt. 11(5), 054008 (2006).
[CrossRef] [PubMed]

2005

2003

2002

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” Signal Process. 21, 57–75 (2002).

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
[CrossRef] [PubMed]

2000

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256 (2000).
[CrossRef]

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000).
[CrossRef] [PubMed]

1998

1997

1995

1994

1993

1991

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd: YAG wavelength,” Lasers Surg. Med. 11(2), 117–124 (1991).
[CrossRef] [PubMed]

1989

R. Splinter, W. F. Cheong, M. J. van Gemert, and A. J. Welch, “In vitro optical properties of human and canine brain and urinary bladder tissues at 633 nm,” Lasers Surg. Med. 9(1), 37–41 (1989).
[CrossRef] [PubMed]

Bassi, A.

Birgul, O.

M. Burcin Unlu, O. Birgul, R. Shafiiha, G. Gulsen, and O. Nalcioglu, “Diffuse optical tomographic reconstruction using multifrequency data,” J. Biomed. Opt. 11(5), 054008 (2006).
[CrossRef] [PubMed]

Boas, D. A.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” Signal Process. 21, 57–75 (2002).

Bonner, R. F.

Brock, J.

N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependant photon scatter for diffuse optical tomography,” J. Biomed. Opt. 15(6), 065006 (2010).
[CrossRef]

Brooks, D. H.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” Signal Process. 21, 57–75 (2002).

Brown, W. J.

Burcin Unlu, M.

M. Burcin Unlu, O. Birgul, R. Shafiiha, G. Gulsen, and O. Nalcioglu, “Diffuse optical tomographic reconstruction using multifrequency data,” J. Biomed. Opt. 11(5), 054008 (2006).
[CrossRef] [PubMed]

Chen, K.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000).
[CrossRef] [PubMed]

Cheong, W. F.

R. Splinter, W. F. Cheong, M. J. van Gemert, and A. J. Welch, “In vitro optical properties of human and canine brain and urinary bladder tissues at 633 nm,” Lasers Surg. Med. 9(1), 37–41 (1989).
[CrossRef] [PubMed]

Choma, M. A.

Christofferson, J.

Chuang, C. H.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd: YAG wavelength,” Lasers Surg. Med. 11(2), 117–124 (1991).
[CrossRef] [PubMed]

Cubeddu, R.

Cunin, B.

D’Andrea, C.

Dasari, R. R.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000).
[CrossRef] [PubMed]

Delpy, D. T.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256 (2000).
[CrossRef]

DiMarzio, C. A.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” Signal Process. 21, 57–75 (2002).

Eriksson, B.

Farsiu, S.

Feld, M. S.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000).
[CrossRef] [PubMed]

Friedlander, B.

Fry, M. E.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256 (2000).
[CrossRef]

Fujimoto, J. G.

Gaudette, R. J.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” Signal Process. 21, 57–75 (2002).

Graf, R. N.

Gulsen, G.

M. Burcin Unlu, O. Birgul, R. Shafiiha, G. Gulsen, and O. Nalcioglu, “Diffuse optical tomographic reconstruction using multifrequency data,” J. Biomed. Opt. 11(5), 054008 (2006).
[CrossRef] [PubMed]

Hebden, J. C.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256 (2000).
[CrossRef]

Hee, M. R.

Hillman, E. M. C.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256 (2000).
[CrossRef]

Izatt, J. A.

Jacobson, J. M.

Kilmer, M.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” Signal Process. 21, 57–75 (2002).

Kumar, G.

Littmann, L.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd: YAG wavelength,” Lasers Surg. Med. 11(2), 117–124 (1991).
[CrossRef] [PubMed]

McBride, T.

Milanfar, P.

Miller, E. L.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” Signal Process. 21, 57–75 (2002).

Nalcioglu, O.

M. Burcin Unlu, O. Birgul, R. Shafiiha, G. Gulsen, and O. Nalcioglu, “Diffuse optical tomographic reconstruction using multifrequency data,” J. Biomed. Opt. 11(5), 054008 (2006).
[CrossRef] [PubMed]

Niedre, M.

N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependant photon scatter for diffuse optical tomography,” J. Biomed. Opt. 15(6), 065006 (2010).
[CrossRef]

Nowak, R.

Osterberg, U.

Owen, G. M.

Paulsen, K.

Perelman, L. T.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000).
[CrossRef] [PubMed]

Pifferi, A.

Pogue, B.

Poulet, P.

Pyhtila, J. W.

Sarunic, M. V.

Schmidt, F. E. W.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256 (2000).
[CrossRef]

Schmitt, J. M.

Shafiiha, R.

M. Burcin Unlu, O. Birgul, R. Shafiiha, G. Gulsen, and O. Nalcioglu, “Diffuse optical tomographic reconstruction using multifrequency data,” J. Biomed. Opt. 11(5), 054008 (2006).
[CrossRef] [PubMed]

Shakouri, A.

Splinter, R.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd: YAG wavelength,” Lasers Surg. Med. 11(2), 117–124 (1991).
[CrossRef] [PubMed]

R. Splinter, W. F. Cheong, M. J. van Gemert, and A. J. Welch, “In vitro optical properties of human and canine brain and urinary bladder tissues at 633 nm,” Lasers Surg. Med. 9(1), 37–41 (1989).
[CrossRef] [PubMed]

Svenson, R. H.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd: YAG wavelength,” Lasers Surg. Med. 11(2), 117–124 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

Swartling, J.

Tatsis, G. P.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd: YAG wavelength,” Lasers Surg. Med. 11(2), 117–124 (1991).
[CrossRef] [PubMed]

Testorf, M.

Thomas, J. E.

Thompson, M.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd: YAG wavelength,” Lasers Surg. Med. 11(2), 117–124 (1991).
[CrossRef] [PubMed]

Torregrossa, M.

Torricelli, A.

Tuntelder, J. R.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd: YAG wavelength,” Lasers Surg. Med. 11(2), 117–124 (1991).
[CrossRef] [PubMed]

Uhring, W.

Valim, N.

N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependant photon scatter for diffuse optical tomography,” J. Biomed. Opt. 15(6), 065006 (2010).
[CrossRef]

van Gemert, M. J.

R. Splinter, W. F. Cheong, M. J. van Gemert, and A. J. Welch, “In vitro optical properties of human and canine brain and urinary bladder tissues at 633 nm,” Lasers Surg. Med. 9(1), 37–41 (1989).
[CrossRef] [PubMed]

Wang, R. K.

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
[CrossRef] [PubMed]

Wax, A.

Welch, A. J.

R. Splinter, W. F. Cheong, M. J. van Gemert, and A. J. Welch, “In vitro optical properties of human and canine brain and urinary bladder tissues at 633 nm,” Lasers Surg. Med. 9(1), 37–41 (1989).
[CrossRef] [PubMed]

Yadlowsky, M. J.

Yang, C. H.

Zhang, Q.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” Signal Process. 21, 57–75 (2002).

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000).
[CrossRef] [PubMed]

Zint, C. V.

Appl. Opt.

J. Biomed. Opt.

N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependant photon scatter for diffuse optical tomography,” J. Biomed. Opt. 15(6), 065006 (2010).
[CrossRef]

M. Burcin Unlu, O. Birgul, R. Shafiiha, G. Gulsen, and O. Nalcioglu, “Diffuse optical tomographic reconstruction using multifrequency data,” J. Biomed. Opt. 11(5), 054008 (2006).
[CrossRef] [PubMed]

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Lasers Surg. Med.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd: YAG wavelength,” Lasers Surg. Med. 11(2), 117–124 (1991).
[CrossRef] [PubMed]

R. Splinter, W. F. Cheong, M. J. van Gemert, and A. J. Welch, “In vitro optical properties of human and canine brain and urinary bladder tissues at 633 nm,” Lasers Surg. Med. 9(1), 37–41 (1989).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256 (2000).
[CrossRef]

Signal Process.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” Signal Process. 21, 57–75 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the time domain MS/LCI system. a) 830 nm Ti:Saphire light is divided into sample (blue) and reference (red) arm paths. A pair of acousto-optic modulators (AOMs) frequency shift the sample and reference arms such that a 10MHz frequency offset exists between them. Mirror M1 adjusts the illumination angle onto the sample, while lens L3 (f = 100 mm) adjusts the collection angle. A retro-reflecting prism (RR) is used to perform depth scans, while B scans are performed by translating the entire sample enclosure. L1 (f = 35 mm) and L2 (f = 100 mm) form a 4f relay onto the center of L4 which can be translated to adjust the collection angle. b) Close up of the sample chamber. A 4 mm gold coated reflector is suspended in the middle of a 2x2 cm box filled with scattering media.

Fig. 2
Fig. 2

Tomographic images of a 3.3 mm wide test reflector located 10 mm beneath the surface of 1 μm microsphere scattering media for increasing concentrations, corresponding to 20, 25, 30, 35, and 40 mfp. Contrast gradually decreases until at 40 mfp the object is obscured. The 20 and 30 mfp scans have axial and lateral profiles shown through the center of the reflector, highlighting the axial and lateral extent of the diffusely scattered signal. Note that the 20 mfp image has both ballistic and diffuse peaks.

Fig. 3
Fig. 3

Axial (top) and lateral (bottom) resolution comparison for the 20 mfp ballistic (black), 20 mfp diffuse (blue) and 30 mfp diffuse (red) imaging experiments.

Fig. 4
Fig. 4

Tomographic images of a 3.3 mm wide test reflector located 10 mm beneath the surface of 11 μm microsphere scattering media for increasing concentrations, corresponding to 50 mfp, 62 mfp, 83 mfp and 94 mfp. With increasing scattering the reflector signal broadens out in both time and lateral position, resulting in progressively decreased resolution. However, even at 94 mfp photons that have interacted with the reflector remain distinct from the diffuse background signal.

Fig. 5
Fig. 5

Detected power relative to illumination power for both bead sizes as a function of mean free paths into the scattering media. Least squares fits to the attenuation verses mean free scattering events yield attenuation coefficients for multiply scattered photons of −1.05 and −0.8 dB/mfp for 1 and 11 μm microspheres respectively, significantly less than the 4.34 dB/mfp for ballistic attenuation.

Fig. 6
Fig. 6

Lateral and axial resolution plots for imaging through samples of 1 and 11 μm beads of various concentrations, given by mean free path (mfp). Resolution was defined as the 10 to 90% rise in each dimension. Error bars are computed from the standard deviation of the background signal immediately adjacent to the reflector surface. Lateral resolution is relatively insensitive to number of scattering events, while axial resolution degrades continuously with increasing scattering.

Metrics