Abstract

We propose a compound metallic grating with perpendicular bumps in each slit and investigate its transmission property theoretically. As the bumps are set symmetrically in the slits, the waveguide resonant peaks for the even (odd) modes exhibit a red-shift (blue-shift) compared with the resonant peaks of grating composed of bare slit. As the bumps are set asymmetrically, we show that the dips in transmission spectrum can be tuned by shifting the position and changing the size of bumps in the slit. The corresponding physical mechanisms for above phenomenon are discussed, followed by some qualitative explanations in terms of field distribution. We also investigate the optical transmission through a compound metallic grating with perpendicular bumps in one slit and cuts in another slit, and find that the dips in transmission spectrum are more sensitive to the simultaneous change of the bumps and cuts.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  4. F. Medina, J. A. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95(7), 071102 (2009).
    [CrossRef]
  5. Z. C. Ruan and M. Qiu, “Enhanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
    [CrossRef] [PubMed]
  6. H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
    [CrossRef] [PubMed]
  7. W. Dai and C. M. Soukoulis, “Theoretical analysis of the surface wave along a metal-dielectric interface,” Phys. Rev. B 80(15), 155407 (2009).
    [CrossRef]
  8. D. C. Skigin and R. A. Depine, “Transmission resonances of metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95(21), 217402 (2005).
    [CrossRef] [PubMed]
  9. M. Navarro-Cia, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94(9), 091107 (2009).
    [CrossRef]
  10. H. J. Rance, O. K. Hamilton, J. R. Sambles, and A. P. Hibbins, “Phase resonances on metal gratings of identical, equally spaced alternately tapered slits,” Appl. Phys. Lett. 95(4), 041905 (2009).
    [CrossRef]
  11. J.-Q. Liu, M.-D. He, X. Zhai, L.-L. Wang, S. Wen, L. Chen, Z. Shao, Q. Wan, B. S. Zou, and J. Yao, “Tailoring optical transmission via the arrangement of compound subwavelength hole arrays,” Opt. Express 17(3), 1859–1864 (2009).
    [CrossRef] [PubMed]
  12. J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L. Wang, Q. Wan, and Y. Wang, “Multiple enhanced transmission bands through compound periodic array of rectangular holes,” J. Appl. Phys. 106(9), 093108 (2009).
    [CrossRef]
  13. Z. Liu and G. Jin, “Phase effects in the enhanced transmission through compound subwavelength rectangular hole arrays,” J. Appl. Phys. 106(6), 063122 (2009).
    [CrossRef]
  14. Y. Wang, Y. Wang, Y. Zhang, and S. Liu, “Transmission through metallic array slits with perpendicular cuts,” Opt. Express 17(7), 5014–5022 (2009).
    [CrossRef] [PubMed]
  15. M.-D. He, Z.-Q. Gong, S. Li, Y.-F. Luo, J.-Q. Liu, and X. Chen, “Light transmission through metallic slit with a bar,” Solid State Commun. 150(29-30), 1283–1286 (2010).
    [CrossRef]
  16. X. Zhai, J. Q. Liu, M. D. He, L. L. Wang, S. C. Wen, and D. Y. Fan, “Adjustable phase resonances in a compound metallic grating with perpendicular cuts,” Opt. Express 18(7), 6871–6876 (2010).
    [CrossRef] [PubMed]
  17. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference-Time-Domain Method, 2nd ed. (Artech House, 2000).
  18. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14, 302 (1966).
    [CrossRef]
  19. E. D. Palik, Handbook of Optical Constants in Solids (Academic, 1982).
  20. Y. Takakura, “Optical Resonance in a Narrow Slit in a Thick Metallic Screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
    [CrossRef] [PubMed]
  21. A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, “The resonant electromagnetic fields of an array of metallic slits acting as Fabry-Perot cavities,” J. Appl. Phys. 99(12), 124903 (2006).
    [CrossRef]
  22. Z. Liu and G. Jin, “Resonant acoustic transmission through compound subwavelength hole arrays: the role of phase resonances,” J. Phys. Condens. Matter 21(44), 445401 (2009).
    [CrossRef] [PubMed]

2010 (2)

M.-D. He, Z.-Q. Gong, S. Li, Y.-F. Luo, J.-Q. Liu, and X. Chen, “Light transmission through metallic slit with a bar,” Solid State Commun. 150(29-30), 1283–1286 (2010).
[CrossRef]

X. Zhai, J. Q. Liu, M. D. He, L. L. Wang, S. C. Wen, and D. Y. Fan, “Adjustable phase resonances in a compound metallic grating with perpendicular cuts,” Opt. Express 18(7), 6871–6876 (2010).
[CrossRef] [PubMed]

2009 (9)

M. Navarro-Cia, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94(9), 091107 (2009).
[CrossRef]

H. J. Rance, O. K. Hamilton, J. R. Sambles, and A. P. Hibbins, “Phase resonances on metal gratings of identical, equally spaced alternately tapered slits,” Appl. Phys. Lett. 95(4), 041905 (2009).
[CrossRef]

J.-Q. Liu, M.-D. He, X. Zhai, L.-L. Wang, S. Wen, L. Chen, Z. Shao, Q. Wan, B. S. Zou, and J. Yao, “Tailoring optical transmission via the arrangement of compound subwavelength hole arrays,” Opt. Express 17(3), 1859–1864 (2009).
[CrossRef] [PubMed]

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L. Wang, Q. Wan, and Y. Wang, “Multiple enhanced transmission bands through compound periodic array of rectangular holes,” J. Appl. Phys. 106(9), 093108 (2009).
[CrossRef]

Z. Liu and G. Jin, “Phase effects in the enhanced transmission through compound subwavelength rectangular hole arrays,” J. Appl. Phys. 106(6), 063122 (2009).
[CrossRef]

Y. Wang, Y. Wang, Y. Zhang, and S. Liu, “Transmission through metallic array slits with perpendicular cuts,” Opt. Express 17(7), 5014–5022 (2009).
[CrossRef] [PubMed]

F. Medina, J. A. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95(7), 071102 (2009).
[CrossRef]

W. Dai and C. M. Soukoulis, “Theoretical analysis of the surface wave along a metal-dielectric interface,” Phys. Rev. B 80(15), 155407 (2009).
[CrossRef]

Z. Liu and G. Jin, “Resonant acoustic transmission through compound subwavelength hole arrays: the role of phase resonances,” J. Phys. Condens. Matter 21(44), 445401 (2009).
[CrossRef] [PubMed]

2008 (1)

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[CrossRef] [PubMed]

2007 (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

2006 (2)

Z. C. Ruan and M. Qiu, “Enhanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, “The resonant electromagnetic fields of an array of metallic slits acting as Fabry-Perot cavities,” J. Appl. Phys. 99(12), 124903 (2006).
[CrossRef]

2005 (1)

D. C. Skigin and R. A. Depine, “Transmission resonances of metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95(21), 217402 (2005).
[CrossRef] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2001 (1)

Y. Takakura, “Optical Resonance in a Narrow Slit in a Thick Metallic Screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[CrossRef] [PubMed]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14, 302 (1966).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Beruete, M.

M. Navarro-Cia, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94(9), 091107 (2009).
[CrossRef]

Chao, X. B.

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L. Wang, Q. Wan, and Y. Wang, “Multiple enhanced transmission bands through compound periodic array of rectangular holes,” J. Appl. Phys. 106(9), 093108 (2009).
[CrossRef]

Chen, L.

Chen, X.

M.-D. He, Z.-Q. Gong, S. Li, Y.-F. Luo, J.-Q. Liu, and X. Chen, “Light transmission through metallic slit with a bar,” Solid State Commun. 150(29-30), 1283–1286 (2010).
[CrossRef]

Dai, W.

W. Dai and C. M. Soukoulis, “Theoretical analysis of the surface wave along a metal-dielectric interface,” Phys. Rev. B 80(15), 155407 (2009).
[CrossRef]

Depine, R. A.

D. C. Skigin and R. A. Depine, “Transmission resonances of metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95(21), 217402 (2005).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Fan, D. Y.

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Gong, Z.-Q.

M.-D. He, Z.-Q. Gong, S. Li, Y.-F. Luo, J.-Q. Liu, and X. Chen, “Light transmission through metallic slit with a bar,” Solid State Commun. 150(29-30), 1283–1286 (2010).
[CrossRef]

Hamilton, O. K.

H. J. Rance, O. K. Hamilton, J. R. Sambles, and A. P. Hibbins, “Phase resonances on metal gratings of identical, equally spaced alternately tapered slits,” Appl. Phys. Lett. 95(4), 041905 (2009).
[CrossRef]

He, M. D.

X. Zhai, J. Q. Liu, M. D. He, L. L. Wang, S. C. Wen, and D. Y. Fan, “Adjustable phase resonances in a compound metallic grating with perpendicular cuts,” Opt. Express 18(7), 6871–6876 (2010).
[CrossRef] [PubMed]

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L. Wang, Q. Wan, and Y. Wang, “Multiple enhanced transmission bands through compound periodic array of rectangular holes,” J. Appl. Phys. 106(9), 093108 (2009).
[CrossRef]

He, M.-D.

Hibbins, A. P.

H. J. Rance, O. K. Hamilton, J. R. Sambles, and A. P. Hibbins, “Phase resonances on metal gratings of identical, equally spaced alternately tapered slits,” Appl. Phys. Lett. 95(4), 041905 (2009).
[CrossRef]

A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, “The resonant electromagnetic fields of an array of metallic slits acting as Fabry-Perot cavities,” J. Appl. Phys. 99(12), 124903 (2006).
[CrossRef]

Jin, G.

Z. Liu and G. Jin, “Phase effects in the enhanced transmission through compound subwavelength rectangular hole arrays,” J. Appl. Phys. 106(6), 063122 (2009).
[CrossRef]

Z. Liu and G. Jin, “Resonant acoustic transmission through compound subwavelength hole arrays: the role of phase resonances,” J. Phys. Condens. Matter 21(44), 445401 (2009).
[CrossRef] [PubMed]

Lalanne, P.

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, S.

M.-D. He, Z.-Q. Gong, S. Li, Y.-F. Luo, J.-Q. Liu, and X. Chen, “Light transmission through metallic slit with a bar,” Solid State Commun. 150(29-30), 1283–1286 (2010).
[CrossRef]

Liu, H. T.

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[CrossRef] [PubMed]

Liu, J. Q.

X. Zhai, J. Q. Liu, M. D. He, L. L. Wang, S. C. Wen, and D. Y. Fan, “Adjustable phase resonances in a compound metallic grating with perpendicular cuts,” Opt. Express 18(7), 6871–6876 (2010).
[CrossRef] [PubMed]

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L. Wang, Q. Wan, and Y. Wang, “Multiple enhanced transmission bands through compound periodic array of rectangular holes,” J. Appl. Phys. 106(9), 093108 (2009).
[CrossRef]

Liu, J.-Q.

Liu, S.

Liu, Z.

Z. Liu and G. Jin, “Resonant acoustic transmission through compound subwavelength hole arrays: the role of phase resonances,” J. Phys. Condens. Matter 21(44), 445401 (2009).
[CrossRef] [PubMed]

Z. Liu and G. Jin, “Phase effects in the enhanced transmission through compound subwavelength rectangular hole arrays,” J. Appl. Phys. 106(6), 063122 (2009).
[CrossRef]

Lockyear, M. J.

A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, “The resonant electromagnetic fields of an array of metallic slits acting as Fabry-Perot cavities,” J. Appl. Phys. 99(12), 124903 (2006).
[CrossRef]

Luo, Y.-F.

M.-D. He, Z.-Q. Gong, S. Li, Y.-F. Luo, J.-Q. Liu, and X. Chen, “Light transmission through metallic slit with a bar,” Solid State Commun. 150(29-30), 1283–1286 (2010).
[CrossRef]

Marqués, R.

F. Medina, J. A. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95(7), 071102 (2009).
[CrossRef]

Medina, F.

F. Medina, J. A. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95(7), 071102 (2009).
[CrossRef]

Mesa, F.

F. Medina, J. A. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95(7), 071102 (2009).
[CrossRef]

Montejo-Garai, J. R.

F. Medina, J. A. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95(7), 071102 (2009).
[CrossRef]

Navarro-Cia, M.

M. Navarro-Cia, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94(9), 091107 (2009).
[CrossRef]

Qiu, M.

Z. C. Ruan and M. Qiu, “Enhanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

Rance, H. J.

H. J. Rance, O. K. Hamilton, J. R. Sambles, and A. P. Hibbins, “Phase resonances on metal gratings of identical, equally spaced alternately tapered slits,” Appl. Phys. Lett. 95(4), 041905 (2009).
[CrossRef]

Rebollar, J. M.

F. Medina, J. A. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95(7), 071102 (2009).
[CrossRef]

Ruan, Z. C.

Z. C. Ruan and M. Qiu, “Enhanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

Ruiz-Cruz, J. A.

F. Medina, J. A. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95(7), 071102 (2009).
[CrossRef]

Sambles, J. R.

H. J. Rance, O. K. Hamilton, J. R. Sambles, and A. P. Hibbins, “Phase resonances on metal gratings of identical, equally spaced alternately tapered slits,” Appl. Phys. Lett. 95(4), 041905 (2009).
[CrossRef]

A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, “The resonant electromagnetic fields of an array of metallic slits acting as Fabry-Perot cavities,” J. Appl. Phys. 99(12), 124903 (2006).
[CrossRef]

Shao, Z.

Skigin, D. C.

M. Navarro-Cia, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94(9), 091107 (2009).
[CrossRef]

D. C. Skigin and R. A. Depine, “Transmission resonances of metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95(21), 217402 (2005).
[CrossRef] [PubMed]

Sorolla, M.

M. Navarro-Cia, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94(9), 091107 (2009).
[CrossRef]

Soukoulis, C. M.

W. Dai and C. M. Soukoulis, “Theoretical analysis of the surface wave along a metal-dielectric interface,” Phys. Rev. B 80(15), 155407 (2009).
[CrossRef]

Takakura, Y.

Y. Takakura, “Optical Resonance in a Narrow Slit in a Thick Metallic Screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wan, Q.

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L. Wang, Q. Wan, and Y. Wang, “Multiple enhanced transmission bands through compound periodic array of rectangular holes,” J. Appl. Phys. 106(9), 093108 (2009).
[CrossRef]

J.-Q. Liu, M.-D. He, X. Zhai, L.-L. Wang, S. Wen, L. Chen, Z. Shao, Q. Wan, B. S. Zou, and J. Yao, “Tailoring optical transmission via the arrangement of compound subwavelength hole arrays,” Opt. Express 17(3), 1859–1864 (2009).
[CrossRef] [PubMed]

Wang, L. L.

X. Zhai, J. Q. Liu, M. D. He, L. L. Wang, S. C. Wen, and D. Y. Fan, “Adjustable phase resonances in a compound metallic grating with perpendicular cuts,” Opt. Express 18(7), 6871–6876 (2010).
[CrossRef] [PubMed]

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L. Wang, Q. Wan, and Y. Wang, “Multiple enhanced transmission bands through compound periodic array of rectangular holes,” J. Appl. Phys. 106(9), 093108 (2009).
[CrossRef]

Wang, L.-L.

Wang, Y.

Wei, J. N.

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L. Wang, Q. Wan, and Y. Wang, “Multiple enhanced transmission bands through compound periodic array of rectangular holes,” J. Appl. Phys. 106(9), 093108 (2009).
[CrossRef]

Wen, S.

Wen, S. C.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Yao, J.

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14, 302 (1966).
[CrossRef]

Zhai, X.

Zhang, Y.

Zou, B. S.

Appl. Phys. Lett. (3)

F. Medina, J. A. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95(7), 071102 (2009).
[CrossRef]

M. Navarro-Cia, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94(9), 091107 (2009).
[CrossRef]

H. J. Rance, O. K. Hamilton, J. R. Sambles, and A. P. Hibbins, “Phase resonances on metal gratings of identical, equally spaced alternately tapered slits,” Appl. Phys. Lett. 95(4), 041905 (2009).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14, 302 (1966).
[CrossRef]

J. Appl. Phys. (3)

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L. Wang, Q. Wan, and Y. Wang, “Multiple enhanced transmission bands through compound periodic array of rectangular holes,” J. Appl. Phys. 106(9), 093108 (2009).
[CrossRef]

Z. Liu and G. Jin, “Phase effects in the enhanced transmission through compound subwavelength rectangular hole arrays,” J. Appl. Phys. 106(6), 063122 (2009).
[CrossRef]

A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, “The resonant electromagnetic fields of an array of metallic slits acting as Fabry-Perot cavities,” J. Appl. Phys. 99(12), 124903 (2006).
[CrossRef]

J. Phys. Condens. Matter (1)

Z. Liu and G. Jin, “Resonant acoustic transmission through compound subwavelength hole arrays: the role of phase resonances,” J. Phys. Condens. Matter 21(44), 445401 (2009).
[CrossRef] [PubMed]

Nature (4)

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (1)

W. Dai and C. M. Soukoulis, “Theoretical analysis of the surface wave along a metal-dielectric interface,” Phys. Rev. B 80(15), 155407 (2009).
[CrossRef]

Phys. Rev. Lett. (3)

D. C. Skigin and R. A. Depine, “Transmission resonances of metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95(21), 217402 (2005).
[CrossRef] [PubMed]

Z. C. Ruan and M. Qiu, “Enhanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

Y. Takakura, “Optical Resonance in a Narrow Slit in a Thick Metallic Screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[CrossRef] [PubMed]

Solid State Commun. (1)

M.-D. He, Z.-Q. Gong, S. Li, Y.-F. Luo, J.-Q. Liu, and X. Chen, “Light transmission through metallic slit with a bar,” Solid State Commun. 150(29-30), 1283–1286 (2010).
[CrossRef]

Other (2)

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference-Time-Domain Method, 2nd ed. (Artech House, 2000).

E. D. Palik, Handbook of Optical Constants in Solids (Academic, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Scheme of a unit cell of the compound metallic grating. (b-d) Transmission spectra as a function of wavelength for different positions of bumps. The blue solid curve denotes the transmission spectra of grating without bumps. The lengths and widths of bumps are w 1 = w 2 = 200nm, w 31 = w 32 = w 41 = w 42 = 25nm, the value of insets shows the position (h 2) of one bump and another bump is located at the center of slit (h 1 = 750nm).

Fig. 2
Fig. 2

(a-b) The magnitudes of electric (magnetic) field |Ex | (|H z|) of gratings composed of bare slit without bumps for waveguide mode N = 2. (c-d) The magnitudes of electric (magnetic) field |Ex | (|H z|) for λ = 2067nm in Fig. 1(c). (e-f) The magnitude of electric field |Ex | at λ = 2183nm and λ = 1962nm in Fig. 1(d).

Fig. 3
Fig. 3

(a) Scheme of a unit cell of the compound metallic grating with bump in one slit and with cut in another slit. (b-c) Transmission spectra as a function of wavelength for different widths of bumps and cuts. The lengths and positions of bumps and cuts are w 1 = w 2 = 200nm, h 1 = h 2 = 750nm, the value of insets shows the widths of bumps and cuts.

Metrics