Abstract

We showed experimentally interference could be occurred between incoherent lights in a double-Λ lambda transition implemented with rubidium atomic vapor. Switching of probe transmission was controlled by the phases of two` independent probe lasers with low light intensity. More than 70% of the probe transmission could be switched by ultra-weak incoherent field. We suggested optically cryptic information could be delivered by the phase-controlled switching with incoherent fields in a double-Λ system.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36 (1997).
    [CrossRef]
  2. J. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in Coherent Media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [CrossRef]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [CrossRef]
  4. S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36 (1997).
    [CrossRef]
  5. H. Schmidt and A. Imamogdlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21(23), 1936–1938 (1996).
    [CrossRef] [PubMed]
  6. S. E. Harris and Y. Yamamoto, “Photon Switching by Quantum Interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
    [CrossRef]
  7. H. Kang and Y. Zhu, “Observation of Large Kerr Nonlinearity at Low Light Intensities,” Phys. Rev. Lett. 91(9), 093601 (2003).
    [CrossRef] [PubMed]
  8. M. D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75(2), 457–472 (2003).
    [CrossRef]
  9. M. D. Eisaman, L. Childress, A. André, F. Massou, A. S. Zibrov, and M. D. Lukin, “Shaping quantum pulses of light via coherent atomic memory,” Phys. Rev. Lett. 93(23), 233602 (2004).
    [CrossRef] [PubMed]
  10. C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90(19), 197902 (2003).
    [CrossRef] [PubMed]
  11. Z.-B. Wang, K.-P. Marzlin, and B. C. Sanders, “Large cross-phase modulation between slow copropagating weak pulses in 87Rb,” Phys. Rev. Lett. 97(6), 063901 (2006).
    [CrossRef] [PubMed]
  12. L. Deng and M. G. Payne, “Achieving induced transparency with one- and three-photon destructive interference in a two-mode, three-level, double-Λ system,” Phys. Rev. A 71(1), 011803 (2005) (R).
    [CrossRef]
  13. H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73(1), 011802 (2006) (R).
    [CrossRef]
  14. J. Zhang, G. Hernandez, and Y. Zhu, “All-optical switching at ultralow light levels,” Opt. Lett. 32(10), 1317–1319 (2007).
    [CrossRef] [PubMed]
  15. N. Ph. Georgiades, E. S. Polzik, and H. J. Kimble, “Frequency metrology by use of quantum interference,” Opt. Lett. 21(20), 1688–1690 (1996).
    [CrossRef] [PubMed]
  16. E. A. Korsunsky, N. Leinfellner, A. Huss, S. Baluschev, and L. Windholz, “Phase-dependent electromagnetically induced transparency,” Phys. Rev. A 59(3), 2302–2305 (1999).
    [CrossRef]
  17. A. F. Huss, R. Lammegger, C. Neureiter, E. A. Korsunsky, and L. Windholz, “Phase correlation of laser waves with arbitrary frequency spacing,” Phys. Rev. Lett. 93(22), 223601 (2004).
    [CrossRef] [PubMed]
  18. H. Kang, Y. Park, I. Sohn, and M. Jeong, “All-optical switching with a biexcitonic double lambda system,” Opt. Commun. in press.
  19. P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
    [CrossRef] [PubMed]

2007 (1)

2006 (3)

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73(1), 011802 (2006) (R).
[CrossRef]

Z.-B. Wang, K.-P. Marzlin, and B. C. Sanders, “Large cross-phase modulation between slow copropagating weak pulses in 87Rb,” Phys. Rev. Lett. 97(6), 063901 (2006).
[CrossRef] [PubMed]

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
[CrossRef] [PubMed]

2005 (2)

L. Deng and M. G. Payne, “Achieving induced transparency with one- and three-photon destructive interference in a two-mode, three-level, double-Λ system,” Phys. Rev. A 71(1), 011803 (2005) (R).
[CrossRef]

J. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in Coherent Media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[CrossRef]

2004 (2)

M. D. Eisaman, L. Childress, A. André, F. Massou, A. S. Zibrov, and M. D. Lukin, “Shaping quantum pulses of light via coherent atomic memory,” Phys. Rev. Lett. 93(23), 233602 (2004).
[CrossRef] [PubMed]

A. F. Huss, R. Lammegger, C. Neureiter, E. A. Korsunsky, and L. Windholz, “Phase correlation of laser waves with arbitrary frequency spacing,” Phys. Rev. Lett. 93(22), 223601 (2004).
[CrossRef] [PubMed]

2003 (3)

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90(19), 197902 (2003).
[CrossRef] [PubMed]

H. Kang and Y. Zhu, “Observation of Large Kerr Nonlinearity at Low Light Intensities,” Phys. Rev. Lett. 91(9), 093601 (2003).
[CrossRef] [PubMed]

M. D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75(2), 457–472 (2003).
[CrossRef]

1999 (2)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

E. A. Korsunsky, N. Leinfellner, A. Huss, S. Baluschev, and L. Windholz, “Phase-dependent electromagnetically induced transparency,” Phys. Rev. A 59(3), 2302–2305 (1999).
[CrossRef]

1998 (1)

S. E. Harris and Y. Yamamoto, “Photon Switching by Quantum Interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[CrossRef]

1997 (2)

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36 (1997).
[CrossRef]

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36 (1997).
[CrossRef]

1996 (2)

André, A.

M. D. Eisaman, L. Childress, A. André, F. Massou, A. S. Zibrov, and M. D. Lukin, “Shaping quantum pulses of light via coherent atomic memory,” Phys. Rev. Lett. 93(23), 233602 (2004).
[CrossRef] [PubMed]

Artoni, M.

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90(19), 197902 (2003).
[CrossRef] [PubMed]

Baluschev, S.

E. A. Korsunsky, N. Leinfellner, A. Huss, S. Baluschev, and L. Windholz, “Phase-dependent electromagnetically induced transparency,” Phys. Rev. A 59(3), 2302–2305 (1999).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Belthangady, C.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
[CrossRef] [PubMed]

Cataliotti, F.

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90(19), 197902 (2003).
[CrossRef] [PubMed]

Childress, L.

M. D. Eisaman, L. Childress, A. André, F. Massou, A. S. Zibrov, and M. D. Lukin, “Shaping quantum pulses of light via coherent atomic memory,” Phys. Rev. Lett. 93(23), 233602 (2004).
[CrossRef] [PubMed]

Deng, L.

L. Deng and M. G. Payne, “Achieving induced transparency with one- and three-photon destructive interference in a two-mode, three-level, double-Λ system,” Phys. Rev. A 71(1), 011803 (2005) (R).
[CrossRef]

Du, S.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
[CrossRef] [PubMed]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Eisaman, M. D.

M. D. Eisaman, L. Childress, A. André, F. Massou, A. S. Zibrov, and M. D. Lukin, “Shaping quantum pulses of light via coherent atomic memory,” Phys. Rev. Lett. 93(23), 233602 (2004).
[CrossRef] [PubMed]

Fleischhauer, J. M.

J. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in Coherent Media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[CrossRef]

Georgiades, N. Ph.

Harris, S. E.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

S. E. Harris and Y. Yamamoto, “Photon Switching by Quantum Interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[CrossRef]

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36 (1997).
[CrossRef]

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36 (1997).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Hernandez, G.

J. Zhang, G. Hernandez, and Y. Zhu, “All-optical switching at ultralow light levels,” Opt. Lett. 32(10), 1317–1319 (2007).
[CrossRef] [PubMed]

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73(1), 011802 (2006) (R).
[CrossRef]

Huss, A.

E. A. Korsunsky, N. Leinfellner, A. Huss, S. Baluschev, and L. Windholz, “Phase-dependent electromagnetically induced transparency,” Phys. Rev. A 59(3), 2302–2305 (1999).
[CrossRef]

Huss, A. F.

A. F. Huss, R. Lammegger, C. Neureiter, E. A. Korsunsky, and L. Windholz, “Phase correlation of laser waves with arbitrary frequency spacing,” Phys. Rev. Lett. 93(22), 223601 (2004).
[CrossRef] [PubMed]

Imamogdlu, A.

Imamoglu, A.

J. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in Coherent Media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[CrossRef]

Jeong, M.

H. Kang, Y. Park, I. Sohn, and M. Jeong, “All-optical switching with a biexcitonic double lambda system,” Opt. Commun. in press.

Kang, H.

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73(1), 011802 (2006) (R).
[CrossRef]

H. Kang and Y. Zhu, “Observation of Large Kerr Nonlinearity at Low Light Intensities,” Phys. Rev. Lett. 91(9), 093601 (2003).
[CrossRef] [PubMed]

H. Kang, Y. Park, I. Sohn, and M. Jeong, “All-optical switching with a biexcitonic double lambda system,” Opt. Commun. in press.

Kimble, H. J.

Kolchin, P.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
[CrossRef] [PubMed]

Korsunsky, E. A.

A. F. Huss, R. Lammegger, C. Neureiter, E. A. Korsunsky, and L. Windholz, “Phase correlation of laser waves with arbitrary frequency spacing,” Phys. Rev. Lett. 93(22), 223601 (2004).
[CrossRef] [PubMed]

E. A. Korsunsky, N. Leinfellner, A. Huss, S. Baluschev, and L. Windholz, “Phase-dependent electromagnetically induced transparency,” Phys. Rev. A 59(3), 2302–2305 (1999).
[CrossRef]

Lammegger, R.

A. F. Huss, R. Lammegger, C. Neureiter, E. A. Korsunsky, and L. Windholz, “Phase correlation of laser waves with arbitrary frequency spacing,” Phys. Rev. Lett. 93(22), 223601 (2004).
[CrossRef] [PubMed]

Leinfellner, N.

E. A. Korsunsky, N. Leinfellner, A. Huss, S. Baluschev, and L. Windholz, “Phase-dependent electromagnetically induced transparency,” Phys. Rev. A 59(3), 2302–2305 (1999).
[CrossRef]

Lukin, M. D.

M. D. Eisaman, L. Childress, A. André, F. Massou, A. S. Zibrov, and M. D. Lukin, “Shaping quantum pulses of light via coherent atomic memory,” Phys. Rev. Lett. 93(23), 233602 (2004).
[CrossRef] [PubMed]

M. D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75(2), 457–472 (2003).
[CrossRef]

Marangos, J. P.

J. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in Coherent Media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[CrossRef]

Marzlin, K.-P.

Z.-B. Wang, K.-P. Marzlin, and B. C. Sanders, “Large cross-phase modulation between slow copropagating weak pulses in 87Rb,” Phys. Rev. Lett. 97(6), 063901 (2006).
[CrossRef] [PubMed]

Massou, F.

M. D. Eisaman, L. Childress, A. André, F. Massou, A. S. Zibrov, and M. D. Lukin, “Shaping quantum pulses of light via coherent atomic memory,” Phys. Rev. Lett. 93(23), 233602 (2004).
[CrossRef] [PubMed]

Neureiter, C.

A. F. Huss, R. Lammegger, C. Neureiter, E. A. Korsunsky, and L. Windholz, “Phase correlation of laser waves with arbitrary frequency spacing,” Phys. Rev. Lett. 93(22), 223601 (2004).
[CrossRef] [PubMed]

Ottaviani, C.

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90(19), 197902 (2003).
[CrossRef] [PubMed]

Park, Y.

H. Kang, Y. Park, I. Sohn, and M. Jeong, “All-optical switching with a biexcitonic double lambda system,” Opt. Commun. in press.

Payne, M. G.

L. Deng and M. G. Payne, “Achieving induced transparency with one- and three-photon destructive interference in a two-mode, three-level, double-Λ system,” Phys. Rev. A 71(1), 011803 (2005) (R).
[CrossRef]

Polzik, E. S.

Sanders, B. C.

Z.-B. Wang, K.-P. Marzlin, and B. C. Sanders, “Large cross-phase modulation between slow copropagating weak pulses in 87Rb,” Phys. Rev. Lett. 97(6), 063901 (2006).
[CrossRef] [PubMed]

Schmidt, H.

Sohn, I.

H. Kang, Y. Park, I. Sohn, and M. Jeong, “All-optical switching with a biexcitonic double lambda system,” Opt. Commun. in press.

Tombesi, P.

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90(19), 197902 (2003).
[CrossRef] [PubMed]

Vitali, D.

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90(19), 197902 (2003).
[CrossRef] [PubMed]

Wang, Z.-B.

Z.-B. Wang, K.-P. Marzlin, and B. C. Sanders, “Large cross-phase modulation between slow copropagating weak pulses in 87Rb,” Phys. Rev. Lett. 97(6), 063901 (2006).
[CrossRef] [PubMed]

Windholz, L.

A. F. Huss, R. Lammegger, C. Neureiter, E. A. Korsunsky, and L. Windholz, “Phase correlation of laser waves with arbitrary frequency spacing,” Phys. Rev. Lett. 93(22), 223601 (2004).
[CrossRef] [PubMed]

E. A. Korsunsky, N. Leinfellner, A. Huss, S. Baluschev, and L. Windholz, “Phase-dependent electromagnetically induced transparency,” Phys. Rev. A 59(3), 2302–2305 (1999).
[CrossRef]

Yamamoto, Y.

S. E. Harris and Y. Yamamoto, “Photon Switching by Quantum Interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[CrossRef]

Yin, G. Y.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, G. Hernandez, and Y. Zhu, “All-optical switching at ultralow light levels,” Opt. Lett. 32(10), 1317–1319 (2007).
[CrossRef] [PubMed]

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73(1), 011802 (2006) (R).
[CrossRef]

Zhu, Y.

J. Zhang, G. Hernandez, and Y. Zhu, “All-optical switching at ultralow light levels,” Opt. Lett. 32(10), 1317–1319 (2007).
[CrossRef] [PubMed]

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73(1), 011802 (2006) (R).
[CrossRef]

H. Kang and Y. Zhu, “Observation of Large Kerr Nonlinearity at Low Light Intensities,” Phys. Rev. Lett. 91(9), 093601 (2003).
[CrossRef] [PubMed]

Zibrov, A. S.

M. D. Eisaman, L. Childress, A. André, F. Massou, A. S. Zibrov, and M. D. Lukin, “Shaping quantum pulses of light via coherent atomic memory,” Phys. Rev. Lett. 93(23), 233602 (2004).
[CrossRef] [PubMed]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Opt. Commun. (1)

H. Kang, Y. Park, I. Sohn, and M. Jeong, “All-optical switching with a biexcitonic double lambda system,” Opt. Commun. in press.

Opt. Lett. (3)

Phys. Rev. A (3)

E. A. Korsunsky, N. Leinfellner, A. Huss, S. Baluschev, and L. Windholz, “Phase-dependent electromagnetically induced transparency,” Phys. Rev. A 59(3), 2302–2305 (1999).
[CrossRef]

L. Deng and M. G. Payne, “Achieving induced transparency with one- and three-photon destructive interference in a two-mode, three-level, double-Λ system,” Phys. Rev. A 71(1), 011803 (2005) (R).
[CrossRef]

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73(1), 011802 (2006) (R).
[CrossRef]

Phys. Rev. Lett. (7)

M. D. Eisaman, L. Childress, A. André, F. Massou, A. S. Zibrov, and M. D. Lukin, “Shaping quantum pulses of light via coherent atomic memory,” Phys. Rev. Lett. 93(23), 233602 (2004).
[CrossRef] [PubMed]

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90(19), 197902 (2003).
[CrossRef] [PubMed]

Z.-B. Wang, K.-P. Marzlin, and B. C. Sanders, “Large cross-phase modulation between slow copropagating weak pulses in 87Rb,” Phys. Rev. Lett. 97(6), 063901 (2006).
[CrossRef] [PubMed]

A. F. Huss, R. Lammegger, C. Neureiter, E. A. Korsunsky, and L. Windholz, “Phase correlation of laser waves with arbitrary frequency spacing,” Phys. Rev. Lett. 93(22), 223601 (2004).
[CrossRef] [PubMed]

S. E. Harris and Y. Yamamoto, “Photon Switching by Quantum Interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[CrossRef]

H. Kang and Y. Zhu, “Observation of Large Kerr Nonlinearity at Low Light Intensities,” Phys. Rev. Lett. 91(9), 093601 (2003).
[CrossRef] [PubMed]

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
[CrossRef] [PubMed]

Phys. Today (2)

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36 (1997).
[CrossRef]

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36 (1997).
[CrossRef]

Rev. Mod. Phys. (2)

J. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in Coherent Media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[CrossRef]

M. D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75(2), 457–472 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Double lambda four-level system implemented in Zeeman sublevel of Rb85 D1 transition.

Fig. 2
Fig. 2

Experimental setup. Photo diode (PD) and polarization maintenance optical fibre (PMOF).

Fig. 3
Fig. 3

The blue line is the transmission of the probe fields when destructive interference ( ϕ P 1 ϕ P 2 = 0 ) is occurred in a double-Λ system, the red line is that of the probe fields when ϕ P 1 ϕ P 2 = π / 2 and the black line is when constructive interference is occurred ( ϕ P 1 ϕ P 2 = π ).

Fig. 4
Fig. 4

(a) The phase shift of probe 1 driven by PZT1 in time sequence. (b) The phase shift of probe 2 driven by PZT2. (c) The relative phase difference between the probe fields (d) The transmission signal of the probe fields while the relative phase of the coupling fields was fixed to π. The transmission value of 100% is accord to the maximal value of the blue curve of Fig. 3. (e) The transmission signal of the probe fields while the relative phase of the coupling fields was fixed to 0.

Fig. 5
Fig. 5

The schematics of encrypt optical information transportation with incoherent light phase-controlled switching.

Fig. 6
Fig. 6

The schematics of the encrypt information transformation between earth stations via satellite.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

| F = 3 ,     m F = + 3 | F = 2 ,     m F = + 2 | F = 3 ,     m F = + 1 | F = 3 ,     m F = + 2 | F = 3 ,     m F = + 3 .

Metrics