Abstract

A GaAs-based surface-normal optical modulator using the free-carrier effect is demonstrated for the first time to our knowledge. The device exhibits ~43% modulation depth compared to 24% for a previously demonstrated Si-based device with twice the interaction length. Simulations predict ~1.8 times the speeds for GaAs-based devices compared to Si. Operation in conjunction with a supercontinuum source is used to characterize the wavelength response of the modulator. Potential for colorless operation makes the modulator a candidate for wavelength-division multiplexed networks with broadband light sources.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Solgaard, A. A. Godil, B. R. Hemenway, and D. M. Bloom, “All-silicon integrated optical modulator,” IEEE J. Sel. Areas Comm. 9(5), 704–710 (1991).
    [CrossRef]
  2. G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40(7), 1348–1356 (2001).
    [CrossRef]
  3. B. Noharet, Q. Wang, S. Junique, D. Ågren, and S. Almqvist, ““Multiple quantum well spatial light modulators for optical signal processing,” Integrated Optical Devices, Nanostructures, and Displays,” Proc. SPIE 5618, 146–155 (2004).
    [CrossRef]
  4. H. Liu, C. C. Lin, and J. S. Harris, “High-speed, dual-function vertical cavity multiple quantum well modulators and photodetectors for optical interconnects,” Opt. Eng. 40(7), 1186–1191 (2001).
    [CrossRef]
  5. Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells,” Opt. Lett. 22(10), 718–720 (1997).
    [CrossRef] [PubMed]
  6. B. C. Collings, M. L. Mitchell, L. Boivin, and W. H. Knox, “A 1021 channel WDM system,” IEEE Photon. Technol. Lett. 12(7), 906–908 (2000).
    [CrossRef]
  7. A. Arnulf, J. Bricard, E. Curé, and C. Véret, “Transmission by haze and fog in the spectral region 0.35 to 10 microns,” J. Opt. Soc. Am. 47(6), 491–497 (1957), http://www.opticsinfobase.org/abstract.cfm?URI=josa-47-6-491 .
    [CrossRef]
  8. T. H. Stievater, D. Park, M. W. Pruessner, W. S. Rabinovich, S. Kanakaraju, and C. J. K. Richardson, “A microelectromechanically tunable asymmetric Fabry-Perot quantum well modulator at 1.55 microm,” Opt. Express 16(21), 16766–16773 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16766 .
    [CrossRef] [PubMed]
  9. H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “Tunable surface-normal modulators operating near 1550 nm with a high-extinction ratio at high temperatures,” IEEE Photon. Technol. Lett. 18(1), 214–216 (2006).
    [CrossRef]
  10. B. R. Hemenway, “Integrated silicon light modulator for fiber-optic interconnects at 1.3 micron wavelength,” Stanford University dissertation, Ginzton Lab. Report #4703, May 1990.
  11. R. E. Williams, Gallium arsenide processing techniques, (Artech House, Inc., 1984).
  12. C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
    [CrossRef]
  13. W. G. Spitzer and J. M. Whelan, “Infrared absorption and electron effective mass in n-type gallium arsenide,” Phys. Rev. 114(1), 59–63 (1959).
    [CrossRef]
  14. S. L. Chuang, Physics of optoelectronic devices, (Wiley-Interscience Publication, 1995).

2008 (1)

2007 (1)

C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
[CrossRef]

2006 (1)

H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “Tunable surface-normal modulators operating near 1550 nm with a high-extinction ratio at high temperatures,” IEEE Photon. Technol. Lett. 18(1), 214–216 (2006).
[CrossRef]

2004 (1)

B. Noharet, Q. Wang, S. Junique, D. Ågren, and S. Almqvist, ““Multiple quantum well spatial light modulators for optical signal processing,” Integrated Optical Devices, Nanostructures, and Displays,” Proc. SPIE 5618, 146–155 (2004).
[CrossRef]

2001 (2)

H. Liu, C. C. Lin, and J. S. Harris, “High-speed, dual-function vertical cavity multiple quantum well modulators and photodetectors for optical interconnects,” Opt. Eng. 40(7), 1186–1191 (2001).
[CrossRef]

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40(7), 1348–1356 (2001).
[CrossRef]

2000 (1)

B. C. Collings, M. L. Mitchell, L. Boivin, and W. H. Knox, “A 1021 channel WDM system,” IEEE Photon. Technol. Lett. 12(7), 906–908 (2000).
[CrossRef]

1997 (1)

1991 (1)

O. Solgaard, A. A. Godil, B. R. Hemenway, and D. M. Bloom, “All-silicon integrated optical modulator,” IEEE J. Sel. Areas Comm. 9(5), 704–710 (1991).
[CrossRef]

1959 (1)

W. G. Spitzer and J. M. Whelan, “Infrared absorption and electron effective mass in n-type gallium arsenide,” Phys. Rev. 114(1), 59–63 (1959).
[CrossRef]

1957 (1)

Ågren, D.

B. Noharet, Q. Wang, S. Junique, D. Ågren, and S. Almqvist, ““Multiple quantum well spatial light modulators for optical signal processing,” Integrated Optical Devices, Nanostructures, and Displays,” Proc. SPIE 5618, 146–155 (2004).
[CrossRef]

Almqvist, S.

B. Noharet, Q. Wang, S. Junique, D. Ågren, and S. Almqvist, ““Multiple quantum well spatial light modulators for optical signal processing,” Integrated Optical Devices, Nanostructures, and Displays,” Proc. SPIE 5618, 146–155 (2004).
[CrossRef]

An, H.

H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “Tunable surface-normal modulators operating near 1550 nm with a high-extinction ratio at high temperatures,” IEEE Photon. Technol. Lett. 18(1), 214–216 (2006).
[CrossRef]

Arnulf, A.

Barbehenn, R.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40(7), 1348–1356 (2001).
[CrossRef]

Bloom, D. M.

O. Solgaard, A. A. Godil, B. R. Hemenway, and D. M. Bloom, “All-silicon integrated optical modulator,” IEEE J. Sel. Areas Comm. 9(5), 704–710 (1991).
[CrossRef]

Boivin, L.

B. C. Collings, M. L. Mitchell, L. Boivin, and W. H. Knox, “A 1021 channel WDM system,” IEEE Photon. Technol. Lett. 12(7), 906–908 (2000).
[CrossRef]

Bovais, C. S.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40(7), 1348–1356 (2001).
[CrossRef]

Bricard, J.

Brubaker, R. M.

Burris, R.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40(7), 1348–1356 (2001).
[CrossRef]

Capewell, D.

H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “Tunable surface-normal modulators operating near 1550 nm with a high-extinction ratio at high temperatures,” IEEE Photon. Technol. Lett. 18(1), 214–216 (2006).
[CrossRef]

Chan, W. K.

H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “Tunable surface-normal modulators operating near 1550 nm with a high-extinction ratio at high temperatures,” IEEE Photon. Technol. Lett. 18(1), 214–216 (2006).
[CrossRef]

Cheng, M.-Y.

C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
[CrossRef]

Cochrell, K.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40(7), 1348–1356 (2001).
[CrossRef]

Collings, B. C.

B. C. Collings, M. L. Mitchell, L. Boivin, and W. H. Knox, “A 1021 channel WDM system,” IEEE Photon. Technol. Lett. 12(7), 906–908 (2000).
[CrossRef]

Curé, E.

Ding, Y.

Ferraro, M.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40(7), 1348–1356 (2001).
[CrossRef]

Freeman, M. J.

C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
[CrossRef]

Galvanauskas, A.

C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
[CrossRef]

Gilbreath, G. C.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40(7), 1348–1356 (2001).
[CrossRef]

Godil, A. A.

O. Solgaard, A. A. Godil, B. R. Hemenway, and D. M. Bloom, “All-silicon integrated optical modulator,” IEEE J. Sel. Areas Comm. 9(5), 704–710 (1991).
[CrossRef]

Goins, K. C.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40(7), 1348–1356 (2001).
[CrossRef]

Harris, J. S.

H. Liu, C. C. Lin, and J. S. Harris, “High-speed, dual-function vertical cavity multiple quantum well modulators and photodetectors for optical interconnects,” Opt. Eng. 40(7), 1186–1191 (2001).
[CrossRef]

Hemenway, B. R.

O. Solgaard, A. A. Godil, B. R. Hemenway, and D. M. Bloom, “All-silicon integrated optical modulator,” IEEE J. Sel. Areas Comm. 9(5), 704–710 (1991).
[CrossRef]

Ikossi-Anastasiou, K.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40(7), 1348–1356 (2001).
[CrossRef]

Islam, M. N.

C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
[CrossRef]

Junique, S.

B. Noharet, Q. Wang, S. Junique, D. Ågren, and S. Almqvist, ““Multiple quantum well spatial light modulators for optical signal processing,” Integrated Optical Devices, Nanostructures, and Displays,” Proc. SPIE 5618, 146–155 (2004).
[CrossRef]

Kanakaraju, S.

Katzer, D. S.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40(7), 1348–1356 (2001).
[CrossRef]

Knox, W. H.

B. C. Collings, M. L. Mitchell, L. Boivin, and W. H. Knox, “A 1021 channel WDM system,” IEEE Photon. Technol. Lett. 12(7), 906–908 (2000).
[CrossRef]

Kulkarni, O. P.

C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
[CrossRef]

Kumar, M.

C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
[CrossRef]

Lin, C. C.

H. Liu, C. C. Lin, and J. S. Harris, “High-speed, dual-function vertical cavity multiple quantum well modulators and photodetectors for optical interconnects,” Opt. Eng. 40(7), 1186–1191 (2001).
[CrossRef]

Liu, H.

H. Liu, C. C. Lin, and J. S. Harris, “High-speed, dual-function vertical cavity multiple quantum well modulators and photodetectors for optical interconnects,” Opt. Eng. 40(7), 1186–1191 (2001).
[CrossRef]

Mahon, R.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40(7), 1348–1356 (2001).
[CrossRef]

Meehan, T. J.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40(7), 1348–1356 (2001).
[CrossRef]

Melloch, M. R.

Mitchell, M. L.

B. C. Collings, M. L. Mitchell, L. Boivin, and W. H. Knox, “A 1021 channel WDM system,” IEEE Photon. Technol. Lett. 12(7), 906–908 (2000).
[CrossRef]

Mohseni, H.

H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “Tunable surface-normal modulators operating near 1550 nm with a high-extinction ratio at high temperatures,” IEEE Photon. Technol. Lett. 18(1), 214–216 (2006).
[CrossRef]

Montes, M. J.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40(7), 1348–1356 (2001).
[CrossRef]

Noharet, B.

B. Noharet, Q. Wang, S. Junique, D. Ågren, and S. Almqvist, ““Multiple quantum well spatial light modulators for optical signal processing,” Integrated Optical Devices, Nanostructures, and Displays,” Proc. SPIE 5618, 146–155 (2004).
[CrossRef]

Nolan, D. A.

C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
[CrossRef]

Nolte, D. D.

Park, D.

Pruessner, M. W.

Rabinovich, W. S.

T. H. Stievater, D. Park, M. W. Pruessner, W. S. Rabinovich, S. Kanakaraju, and C. J. K. Richardson, “A microelectromechanically tunable asymmetric Fabry-Perot quantum well modulator at 1.55 microm,” Opt. Express 16(21), 16766–16773 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16766 .
[CrossRef] [PubMed]

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40(7), 1348–1356 (2001).
[CrossRef]

Richardson, C. J. K.

Sokolsky, I.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40(7), 1348–1356 (2001).
[CrossRef]

Solgaard, O.

O. Solgaard, A. A. Godil, B. R. Hemenway, and D. M. Bloom, “All-silicon integrated optical modulator,” IEEE J. Sel. Areas Comm. 9(5), 704–710 (1991).
[CrossRef]

Spitzer, W. G.

W. G. Spitzer and J. M. Whelan, “Infrared absorption and electron effective mass in n-type gallium arsenide,” Phys. Rev. 114(1), 59–63 (1959).
[CrossRef]

Stievater, T. H.

Terry, F. L.

C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
[CrossRef]

Ulmer, A.

H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “Tunable surface-normal modulators operating near 1550 nm with a high-extinction ratio at high temperatures,” IEEE Photon. Technol. Lett. 18(1), 214–216 (2006).
[CrossRef]

Vasquez, J. A.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40(7), 1348–1356 (2001).
[CrossRef]

Véret, C.

Vilcheck, M. J.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40(7), 1348–1356 (2001).
[CrossRef]

Wang, Q.

B. Noharet, Q. Wang, S. Junique, D. Ågren, and S. Almqvist, ““Multiple quantum well spatial light modulators for optical signal processing,” Integrated Optical Devices, Nanostructures, and Displays,” Proc. SPIE 5618, 146–155 (2004).
[CrossRef]

Weiner, A. M.

Whelan, J. M.

W. G. Spitzer and J. M. Whelan, “Infrared absorption and electron effective mass in n-type gallium arsenide,” Phys. Rev. 114(1), 59–63 (1959).
[CrossRef]

Wood, W. A.

C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
[CrossRef]

Xia, C.

C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

O. Solgaard, A. A. Godil, B. R. Hemenway, and D. M. Bloom, “All-silicon integrated optical modulator,” IEEE J. Sel. Areas Comm. 9(5), 704–710 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

B. C. Collings, M. L. Mitchell, L. Boivin, and W. H. Knox, “A 1021 channel WDM system,” IEEE Photon. Technol. Lett. 12(7), 906–908 (2000).
[CrossRef]

H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “Tunable surface-normal modulators operating near 1550 nm with a high-extinction ratio at high temperatures,” IEEE Photon. Technol. Lett. 18(1), 214–216 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Eng. (2)

H. Liu, C. C. Lin, and J. S. Harris, “High-speed, dual-function vertical cavity multiple quantum well modulators and photodetectors for optical interconnects,” Opt. Eng. 40(7), 1186–1191 (2001).
[CrossRef]

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40(7), 1348–1356 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. (1)

W. G. Spitzer and J. M. Whelan, “Infrared absorption and electron effective mass in n-type gallium arsenide,” Phys. Rev. 114(1), 59–63 (1959).
[CrossRef]

Proc. SPIE (1)

B. Noharet, Q. Wang, S. Junique, D. Ågren, and S. Almqvist, ““Multiple quantum well spatial light modulators for optical signal processing,” Integrated Optical Devices, Nanostructures, and Displays,” Proc. SPIE 5618, 146–155 (2004).
[CrossRef]

Other (3)

B. R. Hemenway, “Integrated silicon light modulator for fiber-optic interconnects at 1.3 micron wavelength,” Stanford University dissertation, Ginzton Lab. Report #4703, May 1990.

R. E. Williams, Gallium arsenide processing techniques, (Artech House, Inc., 1984).

S. L. Chuang, Physics of optoelectronic devices, (Wiley-Interscience Publication, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Two-diode split beam device geometry.

Fig. 2
Fig. 2

Phase to amplitude conversion coupling.

Fig. 3
Fig. 3

Schematic of device fabrication steps.

Fig. 4
Fig. 4

(a) Fabricated p-contacts and vias. The p-contacts are separated by a 2μm trench. (b) Front side device window with ~56 nm phase bias etch on one half of the window.

Fig. 5
Fig. 5

Schematic of the SC source used for wavelength response measurement.

Fig. 6
Fig. 6

Experimental set-up.

Fig. 7
Fig. 7

Drive circuit schematic.

Fig. 8
Fig. 8

Modulation depth measured with a 1530 nm continuous wave laser.

Fig. 9
Fig. 9

Modulation depth before and after ~2 m SMF.

Fig. 10
Fig. 10

Wavelength response measured using SC source.

Fig. 11
Fig. 11

Frequency response of the modulator.

Fig. 12
Fig. 12

Power coupled in diode 2 relative to power delivered to diode 1.

Fig. 13
Fig. 13

(a) Methodology of simulations (b) Predicted frequency response comparison for identical modulators in GaAs and Si.

Tables (1)

Tables Icon

Table 1 Thickness of Epitaxially Grown Layers and Target Doping Concentrations

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ φ = q 2 λ 4 π c 2 ε 0 n ( Δ N e m e * + Δ N h m h * )

Metrics