Abstract

We perform two-photon excitation confocal experiments on coupled gold nanoantennas and observe time-integrated luminescence spectra that match plasmonic mode emission in the far-field. We show that the transversal particle plasmon mode can be excited, using excitation light that is cross-polarized with respect to the gold luminescence signal and therefore oriented along the long axis of the dipole gold antenna. We provide evidence for losses in polarization information from the excitation channel to the luminescence response due to the nature of the energy and momentum transfer. Finally, we map out the two-photon induced luminescence intensity profile for a fixed excitation wavelength λ and varying antenna arm length L.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Pohl, "Near field optics seen as an antenna problem," In Near-Field Optics: Principles and Applications, M. Ohtsu and X. Zhu, editors, World Scientific, Singapore pp. 9-21 (2000).
  2. K. Crozier, A. Sundaramurthy, G. Kino, and C. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
    [CrossRef]
  3. J. Farahani, D. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
    [CrossRef] [PubMed]
  4. S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
    [CrossRef] [PubMed]
  5. L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).
    [CrossRef] [PubMed]
  6. P. Ghenuche, S. Cherukulappurath, T. Taminiau, N. van Hulst, and R. Quidant, "Spectroscopic mode mapping of resonant plasmon nanoantennas," Phys. Rev. Lett. 101, 116805 (2008).
    [CrossRef] [PubMed]
  7. A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, "Field enhancement and gap dependent resonance in a system of two opposing tip-to-tip au nanotriangles," Phys. Rev. B 72, 165409 (2005).
    [CrossRef]
  8. P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
    [CrossRef] [PubMed]
  9. O. Muskens, V. Giannini, J. S’anchez, and J. Gómez-Rivas, "Optical scattering resonances of single and coupled dimer plasmonic nanoantennas," Opt. Express 15, 17736-17746 (2007).
    [CrossRef] [PubMed]
  10. M. Wissert, A. Schell, K. Ilin, M. Siegel, and H.-J. Eisler, "Nanoengineering and characterization of gold dipole antennas with enhanced integrated scattering properties," Nanotechnology 20, 425203 (2009).
    [CrossRef] [PubMed]
  11. P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, "Resonant optical antennas," Science 308, 1607-1608 (2005).
    [CrossRef] [PubMed]
  12. J. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, "Mode imaging and selection in strongly coupled nanoantennas," Nano Lett. 10, 2106-2110 (2010).
    [CrossRef]
  13. M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, "Phase-resolved mapping of the nearfield vector and polarization state in nanoscale antenna gaps," Nano Lett. 10, 3524-3528 (2010).
    [CrossRef] [PubMed]
  14. N. Engheta, "Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials," Science 317, 1698-1702 (2007).
    [CrossRef] [PubMed]
  15. A. Mooradian, "Photoluminescence of metals," Phys. Rev. Lett. 22, 185-187 (1969).
    [CrossRef]
  16. G. T. Boyd, Z. Yu, and Y. Shen, "Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923-7936 (1986).
    [CrossRef]
  17. M. Mohamed, V. Volkov, S. Link, and M. El-Sayed, "The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal," Chem. Phys. Lett. 317, 517-523 (2000).
    [CrossRef]
  18. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
    [CrossRef]
  19. E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
    [CrossRef]
  20. M. Wissert, K. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, "Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation," Nano Lett. 10, 4161-4165 (2010).
    [CrossRef] [PubMed]
  21. Manufacturer data provided by Zeiss.
  22. Lumerical FDTD Solution, http://www.lumerical.com/.
  23. MIT, Photonic Bandgap Fibers & Devices Group, "Indium tin oxide (ITO)," http://mitpbg. mit.edu/Pages/ITO.html.
  24. P. Johnson, and R. Christy, "Optical constants of noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  25. K. Imura, T. Nagahara, and H. Okamoto, "Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes," J. Phys. Chem. B 109, 13214-13220 (2005).
    [CrossRef]
  26. M. Scolari, A. Mews, N. Fu, A. Myaltsin, T. Assmus, K. Balasubramanian, M. Burghard, and K. Kern, "Surface enhanced Raman scattering of carbon nanotubes decorated by individual fluorescent gold particles," J. Phys. Chem. C 112, 391-396 (2008).
    [CrossRef]
  27. M. Wissert, K. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, "Highly localized non-linear optical white light response at nanorod ends from non-resonant excitation," Nanoscale 2, 1018-1020 (2010).
    [CrossRef] [PubMed]
  28. D.-S. Wang, F.-Y. Hsu, and C.-W. Lin, "Surface plasmon effects on two photon luminescence of gold nanorods," Opt. Express 17, 11350-11359 (2009).
    [CrossRef] [PubMed]
  29. L. Novotny, and B. Hecht, Principles of Nano-Optics, (Cambridge University Press, 2006).

2010

J. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, "Mode imaging and selection in strongly coupled nanoantennas," Nano Lett. 10, 2106-2110 (2010).
[CrossRef]

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, "Phase-resolved mapping of the nearfield vector and polarization state in nanoscale antenna gaps," Nano Lett. 10, 3524-3528 (2010).
[CrossRef] [PubMed]

M. Wissert, K. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, "Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation," Nano Lett. 10, 4161-4165 (2010).
[CrossRef] [PubMed]

M. Wissert, K. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, "Highly localized non-linear optical white light response at nanorod ends from non-resonant excitation," Nanoscale 2, 1018-1020 (2010).
[CrossRef] [PubMed]

2009

D.-S. Wang, F.-Y. Hsu, and C.-W. Lin, "Surface plasmon effects on two photon luminescence of gold nanorods," Opt. Express 17, 11350-11359 (2009).
[CrossRef] [PubMed]

M. Wissert, A. Schell, K. Ilin, M. Siegel, and H.-J. Eisler, "Nanoengineering and characterization of gold dipole antennas with enhanced integrated scattering properties," Nanotechnology 20, 425203 (2009).
[CrossRef] [PubMed]

2008

P. Ghenuche, S. Cherukulappurath, T. Taminiau, N. van Hulst, and R. Quidant, "Spectroscopic mode mapping of resonant plasmon nanoantennas," Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef] [PubMed]

M. Scolari, A. Mews, N. Fu, A. Myaltsin, T. Assmus, K. Balasubramanian, M. Burghard, and K. Kern, "Surface enhanced Raman scattering of carbon nanotubes decorated by individual fluorescent gold particles," J. Phys. Chem. C 112, 391-396 (2008).
[CrossRef]

2007

L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

N. Engheta, "Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials," Science 317, 1698-1702 (2007).
[CrossRef] [PubMed]

O. Muskens, V. Giannini, J. S’anchez, and J. Gómez-Rivas, "Optical scattering resonances of single and coupled dimer plasmonic nanoantennas," Opt. Express 15, 17736-17746 (2007).
[CrossRef] [PubMed]

2006

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

2005

J. Farahani, D. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, "Field enhancement and gap dependent resonance in a system of two opposing tip-to-tip au nanotriangles," Phys. Rev. B 72, 165409 (2005).
[CrossRef]

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, "Resonant optical antennas," Science 308, 1607-1608 (2005).
[CrossRef] [PubMed]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

K. Imura, T. Nagahara, and H. Okamoto, "Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes," J. Phys. Chem. B 109, 13214-13220 (2005).
[CrossRef]

2004

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

2003

K. Crozier, A. Sundaramurthy, G. Kino, and C. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

2000

M. Mohamed, V. Volkov, S. Link, and M. El-Sayed, "The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal," Chem. Phys. Lett. 317, 517-523 (2000).
[CrossRef]

1986

G. T. Boyd, Z. Yu, and Y. Shen, "Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923-7936 (1986).
[CrossRef]

1972

P. Johnson, and R. Christy, "Optical constants of noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

1969

A. Mooradian, "Photoluminescence of metals," Phys. Rev. Lett. 22, 185-187 (1969).
[CrossRef]

Aizpurua, J.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, "Phase-resolved mapping of the nearfield vector and polarization state in nanoscale antenna gaps," Nano Lett. 10, 3524-3528 (2010).
[CrossRef] [PubMed]

Alkorta, J.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, "Phase-resolved mapping of the nearfield vector and polarization state in nanoscale antenna gaps," Nano Lett. 10, 3524-3528 (2010).
[CrossRef] [PubMed]

Assmus, T.

M. Scolari, A. Mews, N. Fu, A. Myaltsin, T. Assmus, K. Balasubramanian, M. Burghard, and K. Kern, "Surface enhanced Raman scattering of carbon nanotubes decorated by individual fluorescent gold particles," J. Phys. Chem. C 112, 391-396 (2008).
[CrossRef]

Bachelot, R.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Balasubramanian, K.

M. Scolari, A. Mews, N. Fu, A. Myaltsin, T. Assmus, K. Balasubramanian, M. Burghard, and K. Kern, "Surface enhanced Raman scattering of carbon nanotubes decorated by individual fluorescent gold particles," J. Phys. Chem. C 112, 391-396 (2008).
[CrossRef]

Biagioni, P.

J. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, "Mode imaging and selection in strongly coupled nanoantennas," Nano Lett. 10, 2106-2110 (2010).
[CrossRef]

Bouhelier, A.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Boyd, G. T.

G. T. Boyd, Z. Yu, and Y. Shen, "Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923-7936 (1986).
[CrossRef]

Burghard, M.

M. Scolari, A. Mews, N. Fu, A. Myaltsin, T. Assmus, K. Balasubramanian, M. Burghard, and K. Kern, "Surface enhanced Raman scattering of carbon nanotubes decorated by individual fluorescent gold particles," J. Phys. Chem. C 112, 391-396 (2008).
[CrossRef]

Caruso, F.

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

Cherukulappurath, S.

P. Ghenuche, S. Cherukulappurath, T. Taminiau, N. van Hulst, and R. Quidant, "Spectroscopic mode mapping of resonant plasmon nanoantennas," Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef] [PubMed]

Christy, R.

P. Johnson, and R. Christy, "Optical constants of noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Crozier, K.

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, "Field enhancement and gap dependent resonance in a system of two opposing tip-to-tip au nanotriangles," Phys. Rev. B 72, 165409 (2005).
[CrossRef]

K. Crozier, A. Sundaramurthy, G. Kino, and C. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Dulkeith, E.

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

Eisler, H.-J.

M. Wissert, K. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, "Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation," Nano Lett. 10, 4161-4165 (2010).
[CrossRef] [PubMed]

M. Wissert, K. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, "Highly localized non-linear optical white light response at nanorod ends from non-resonant excitation," Nanoscale 2, 1018-1020 (2010).
[CrossRef] [PubMed]

M. Wissert, A. Schell, K. Ilin, M. Siegel, and H.-J. Eisler, "Nanoengineering and characterization of gold dipole antennas with enhanced integrated scattering properties," Nanotechnology 20, 425203 (2009).
[CrossRef] [PubMed]

J. Farahani, D. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, "Resonant optical antennas," Science 308, 1607-1608 (2005).
[CrossRef] [PubMed]

El-Sayed, M.

M. Mohamed, V. Volkov, S. Link, and M. El-Sayed, "The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal," Chem. Phys. Lett. 317, 517-523 (2000).
[CrossRef]

Engheta, N.

N. Engheta, "Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials," Science 317, 1698-1702 (2007).
[CrossRef] [PubMed]

Farahani, J.

J. Farahani, D. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Feldmann, J.

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

Forchel, A.

J. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, "Mode imaging and selection in strongly coupled nanoantennas," Nano Lett. 10, 2106-2110 (2010).
[CrossRef]

Fromm, D.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, "Field enhancement and gap dependent resonance in a system of two opposing tip-to-tip au nanotriangles," Phys. Rev. B 72, 165409 (2005).
[CrossRef]

Fu, N.

M. Scolari, A. Mews, N. Fu, A. Myaltsin, T. Assmus, K. Balasubramanian, M. Burghard, and K. Kern, "Surface enhanced Raman scattering of carbon nanotubes decorated by individual fluorescent gold particles," J. Phys. Chem. C 112, 391-396 (2008).
[CrossRef]

Garcia-Etxarri, A.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, "Phase-resolved mapping of the nearfield vector and polarization state in nanoscale antenna gaps," Nano Lett. 10, 3524-3528 (2010).
[CrossRef] [PubMed]

Geisler, P.

J. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, "Mode imaging and selection in strongly coupled nanoantennas," Nano Lett. 10, 2106-2110 (2010).
[CrossRef]

Ghenuche, P.

P. Ghenuche, S. Cherukulappurath, T. Taminiau, N. van Hulst, and R. Quidant, "Spectroscopic mode mapping of resonant plasmon nanoantennas," Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef] [PubMed]

Giannini, V.

Gittins, D.

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

Gómez-Rivas, J.

Hakanson, U.

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Hecht, B.

J. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, "Mode imaging and selection in strongly coupled nanoantennas," Nano Lett. 10, 2106-2110 (2010).
[CrossRef]

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, "Resonant optical antennas," Science 308, 1607-1608 (2005).
[CrossRef] [PubMed]

J. Farahani, D. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Hillenbrand, R.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, "Phase-resolved mapping of the nearfield vector and polarization state in nanoscale antenna gaps," Nano Lett. 10, 3524-3528 (2010).
[CrossRef] [PubMed]

Hsu, F.-Y.

Huang, J.

J. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, "Mode imaging and selection in strongly coupled nanoantennas," Nano Lett. 10, 2106-2110 (2010).
[CrossRef]

Ilin, K.

M. Wissert, K. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, "Highly localized non-linear optical white light response at nanorod ends from non-resonant excitation," Nanoscale 2, 1018-1020 (2010).
[CrossRef] [PubMed]

M. Wissert, K. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, "Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation," Nano Lett. 10, 4161-4165 (2010).
[CrossRef] [PubMed]

M. Wissert, A. Schell, K. Ilin, M. Siegel, and H.-J. Eisler, "Nanoengineering and characterization of gold dipole antennas with enhanced integrated scattering properties," Nanotechnology 20, 425203 (2009).
[CrossRef] [PubMed]

Imura, K.

K. Imura, T. Nagahara, and H. Okamoto, "Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes," J. Phys. Chem. B 109, 13214-13220 (2005).
[CrossRef]

Johnson, P.

P. Johnson, and R. Christy, "Optical constants of noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kamp, M.

J. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, "Mode imaging and selection in strongly coupled nanoantennas," Nano Lett. 10, 2106-2110 (2010).
[CrossRef]

Kern, J.

J. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, "Mode imaging and selection in strongly coupled nanoantennas," Nano Lett. 10, 2106-2110 (2010).
[CrossRef]

Kern, K.

M. Scolari, A. Mews, N. Fu, A. Myaltsin, T. Assmus, K. Balasubramanian, M. Burghard, and K. Kern, "Surface enhanced Raman scattering of carbon nanotubes decorated by individual fluorescent gold particles," J. Phys. Chem. C 112, 391-396 (2008).
[CrossRef]

Kino, G.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, "Field enhancement and gap dependent resonance in a system of two opposing tip-to-tip au nanotriangles," Phys. Rev. B 72, 165409 (2005).
[CrossRef]

K. Crozier, A. Sundaramurthy, G. Kino, and C. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Klar, T.

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

Kostcheev, S.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Kühn, S.

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Lemmer, U.

M. Wissert, K. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, "Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation," Nano Lett. 10, 4161-4165 (2010).
[CrossRef] [PubMed]

M. Wissert, K. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, "Highly localized non-linear optical white light response at nanorod ends from non-resonant excitation," Nanoscale 2, 1018-1020 (2010).
[CrossRef] [PubMed]

Lerondel, G.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Lin, C.-W.

Link, S.

M. Mohamed, V. Volkov, S. Link, and M. El-Sayed, "The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal," Chem. Phys. Lett. 317, 517-523 (2000).
[CrossRef]

Martin, O.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, "Resonant optical antennas," Science 308, 1607-1608 (2005).
[CrossRef] [PubMed]

Mayya, K.

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

Mews, A.

M. Scolari, A. Mews, N. Fu, A. Myaltsin, T. Assmus, K. Balasubramanian, M. Burghard, and K. Kern, "Surface enhanced Raman scattering of carbon nanotubes decorated by individual fluorescent gold particles," J. Phys. Chem. C 112, 391-396 (2008).
[CrossRef]

Moerner, W.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, "Field enhancement and gap dependent resonance in a system of two opposing tip-to-tip au nanotriangles," Phys. Rev. B 72, 165409 (2005).
[CrossRef]

Mohamed, M.

M. Mohamed, V. Volkov, S. Link, and M. El-Sayed, "The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal," Chem. Phys. Lett. 317, 517-523 (2000).
[CrossRef]

Mooradian, A.

A. Mooradian, "Photoluminescence of metals," Phys. Rev. Lett. 22, 185-187 (1969).
[CrossRef]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, "Resonant optical antennas," Science 308, 1607-1608 (2005).
[CrossRef] [PubMed]

Muskens, O.

Myaltsin, A.

M. Scolari, A. Mews, N. Fu, A. Myaltsin, T. Assmus, K. Balasubramanian, M. Burghard, and K. Kern, "Surface enhanced Raman scattering of carbon nanotubes decorated by individual fluorescent gold particles," J. Phys. Chem. C 112, 391-396 (2008).
[CrossRef]

Nagahara, T.

K. Imura, T. Nagahara, and H. Okamoto, "Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes," J. Phys. Chem. B 109, 13214-13220 (2005).
[CrossRef]

Niedereichholz, T.

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

Novotny, L.

L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

Okamoto, H.

K. Imura, T. Nagahara, and H. Okamoto, "Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes," J. Phys. Chem. B 109, 13214-13220 (2005).
[CrossRef]

Pohl, D.

J. Farahani, D. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, "Resonant optical antennas," Science 308, 1607-1608 (2005).
[CrossRef] [PubMed]

Quate, C.

K. Crozier, A. Sundaramurthy, G. Kino, and C. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Quidant, R.

P. Ghenuche, S. Cherukulappurath, T. Taminiau, N. van Hulst, and R. Quidant, "Spectroscopic mode mapping of resonant plasmon nanoantennas," Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef] [PubMed]

Rogobete, L.

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Royer, P.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

S’anchez, J.

Sandoghdar, V.

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Schell, A.

M. Wissert, A. Schell, K. Ilin, M. Siegel, and H.-J. Eisler, "Nanoengineering and characterization of gold dipole antennas with enhanced integrated scattering properties," Nanotechnology 20, 425203 (2009).
[CrossRef] [PubMed]

Schnell, M.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, "Phase-resolved mapping of the nearfield vector and polarization state in nanoscale antenna gaps," Nano Lett. 10, 3524-3528 (2010).
[CrossRef] [PubMed]

Schuck, P.

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, "Field enhancement and gap dependent resonance in a system of two opposing tip-to-tip au nanotriangles," Phys. Rev. B 72, 165409 (2005).
[CrossRef]

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Scolari, M.

M. Scolari, A. Mews, N. Fu, A. Myaltsin, T. Assmus, K. Balasubramanian, M. Burghard, and K. Kern, "Surface enhanced Raman scattering of carbon nanotubes decorated by individual fluorescent gold particles," J. Phys. Chem. C 112, 391-396 (2008).
[CrossRef]

Shen, Y.

G. T. Boyd, Z. Yu, and Y. Shen, "Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923-7936 (1986).
[CrossRef]

Siegel, M.

M. Wissert, K. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, "Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation," Nano Lett. 10, 4161-4165 (2010).
[CrossRef] [PubMed]

M. Wissert, K. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, "Highly localized non-linear optical white light response at nanorod ends from non-resonant excitation," Nanoscale 2, 1018-1020 (2010).
[CrossRef] [PubMed]

M. Wissert, A. Schell, K. Ilin, M. Siegel, and H.-J. Eisler, "Nanoengineering and characterization of gold dipole antennas with enhanced integrated scattering properties," Nanotechnology 20, 425203 (2009).
[CrossRef] [PubMed]

Sundaramurthy, A.

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, "Field enhancement and gap dependent resonance in a system of two opposing tip-to-tip au nanotriangles," Phys. Rev. B 72, 165409 (2005).
[CrossRef]

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

K. Crozier, A. Sundaramurthy, G. Kino, and C. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Taminiau, T.

P. Ghenuche, S. Cherukulappurath, T. Taminiau, N. van Hulst, and R. Quidant, "Spectroscopic mode mapping of resonant plasmon nanoantennas," Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef] [PubMed]

van Hulst, N.

P. Ghenuche, S. Cherukulappurath, T. Taminiau, N. van Hulst, and R. Quidant, "Spectroscopic mode mapping of resonant plasmon nanoantennas," Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef] [PubMed]

Volkov, V.

M. Mohamed, V. Volkov, S. Link, and M. El-Sayed, "The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal," Chem. Phys. Lett. 317, 517-523 (2000).
[CrossRef]

von Plessen, G.

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

Wang, D.-S.

Weinmann, P.

J. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, "Mode imaging and selection in strongly coupled nanoantennas," Nano Lett. 10, 2106-2110 (2010).
[CrossRef]

Wiederrecht, G.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Wissert, M.

M. Wissert, K. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, "Highly localized non-linear optical white light response at nanorod ends from non-resonant excitation," Nanoscale 2, 1018-1020 (2010).
[CrossRef] [PubMed]

M. Wissert, K. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, "Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation," Nano Lett. 10, 4161-4165 (2010).
[CrossRef] [PubMed]

M. Wissert, A. Schell, K. Ilin, M. Siegel, and H.-J. Eisler, "Nanoengineering and characterization of gold dipole antennas with enhanced integrated scattering properties," Nanotechnology 20, 425203 (2009).
[CrossRef] [PubMed]

Yu, Z.

G. T. Boyd, Z. Yu, and Y. Shen, "Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923-7936 (1986).
[CrossRef]

Chem. Phys. Lett.

M. Mohamed, V. Volkov, S. Link, and M. El-Sayed, "The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal," Chem. Phys. Lett. 317, 517-523 (2000).
[CrossRef]

J. Appl. Phys.

K. Crozier, A. Sundaramurthy, G. Kino, and C. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

J. Phys. Chem. B

K. Imura, T. Nagahara, and H. Okamoto, "Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes," J. Phys. Chem. B 109, 13214-13220 (2005).
[CrossRef]

J. Phys. Chem. C

M. Scolari, A. Mews, N. Fu, A. Myaltsin, T. Assmus, K. Balasubramanian, M. Burghard, and K. Kern, "Surface enhanced Raman scattering of carbon nanotubes decorated by individual fluorescent gold particles," J. Phys. Chem. C 112, 391-396 (2008).
[CrossRef]

Nano Lett.

M. Wissert, K. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, "Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation," Nano Lett. 10, 4161-4165 (2010).
[CrossRef] [PubMed]

J. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, "Mode imaging and selection in strongly coupled nanoantennas," Nano Lett. 10, 2106-2110 (2010).
[CrossRef]

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, "Phase-resolved mapping of the nearfield vector and polarization state in nanoscale antenna gaps," Nano Lett. 10, 3524-3528 (2010).
[CrossRef] [PubMed]

Nanoscale

M. Wissert, K. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, "Highly localized non-linear optical white light response at nanorod ends from non-resonant excitation," Nanoscale 2, 1018-1020 (2010).
[CrossRef] [PubMed]

Nanotechnology

M. Wissert, A. Schell, K. Ilin, M. Siegel, and H.-J. Eisler, "Nanoengineering and characterization of gold dipole antennas with enhanced integrated scattering properties," Nanotechnology 20, 425203 (2009).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

P. Johnson, and R. Christy, "Optical constants of noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, "Field enhancement and gap dependent resonance in a system of two opposing tip-to-tip au nanotriangles," Phys. Rev. B 72, 165409 (2005).
[CrossRef]

G. T. Boyd, Z. Yu, and Y. Shen, "Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923-7936 (1986).
[CrossRef]

Phys. Rev. Lett.

A. Mooradian, "Photoluminescence of metals," Phys. Rev. Lett. 22, 185-187 (1969).
[CrossRef]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

J. Farahani, D. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

P. Ghenuche, S. Cherukulappurath, T. Taminiau, N. van Hulst, and R. Quidant, "Spectroscopic mode mapping of resonant plasmon nanoantennas," Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef] [PubMed]

Science

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, "Resonant optical antennas," Science 308, 1607-1608 (2005).
[CrossRef] [PubMed]

N. Engheta, "Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials," Science 317, 1698-1702 (2007).
[CrossRef] [PubMed]

Other

D. Pohl, "Near field optics seen as an antenna problem," In Near-Field Optics: Principles and Applications, M. Ohtsu and X. Zhu, editors, World Scientific, Singapore pp. 9-21 (2000).

Manufacturer data provided by Zeiss.

Lumerical FDTD Solution, http://www.lumerical.com/.

MIT, Photonic Bandgap Fibers & Devices Group, "Indium tin oxide (ITO)," http://mitpbg. mit.edu/Pages/ITO.html.

L. Novotny, and B. Hecht, Principles of Nano-Optics, (Cambridge University Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Measurement setup for the antenna TPL plasmon response. The inset shows an SEM image of an antenna of nominal arm length 45 nm and gap width 20 nm, the scale bar length is 100 nm.

Fig. 2
Fig. 2

Normalized TPL spectra for the transversal polarization component of the light emitted for (a) two-arm antenna and (b) single-arm antenna. Excitation was along the longitudinal axis only.

Fig. 3
Fig. 3

Numerical simulations of scattering spectra for single-arm and two-arm antennas with different arm lengths. The incident light was polarized along the transversal axis.

Fig. 4
Fig. 4

The normalized integrated luminescence photon counts from the transversal plasmon response for different antenna arm lengths under investigation. (a) gives the result for two-arm antennas, (b) depicts the intensity from single-arm antennas. The dashed line Gaussian fit is a guide to the eye.

Metrics