Abstract

We report what is believed to be the first laser operation based on Ho3+-doped Y2O3. The Ho3+:Y2O3 ceramic was resonantly diode-pumped at ~1.93 µm to produce up to 2.5 W of continuous wave (CW) output power at ~2.12 µm. The laser had a slope efficiency of ~35% with respect to absorbed power and a beam propagation factor of M2 ~1.1. We have measured the absorption and stimulated emission cross sections of Ho3+:Y2O3 at 77 K and 300 K and present the calculated gain cross section spectrum at 77 K for different excited state inversion levels.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, “Investigation of Stone Retropulsion as a Function of Ho:YAG Laser Pulse Duration,” Proc. SPIE 6078, 607815, 607815-11 (2006).
    [CrossRef]
  2. T. Watanabe, K. Iwai, and Y. Matsuura, “Simultaneous irradiation of Er:YAG and Ho:YAG lasers for efficient ablation of hard tissues,” Proc. SPIE 7173, 71730R, 71730R-6 (2009).
    [CrossRef]
  3. T. M. Taczak and D. K. Killinger, “Development of a tunable, narrow-linewidth, cw 2.066-µm Ho:YLF laser for remote sensing of atmospheric CO2 and H2O,” Appl. Opt. 37(36), 8460–8476 (1998).
    [CrossRef]
  4. K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1(6), 285–290 (2004).
    [CrossRef]
  5. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid infrared laser using 1.9 micron pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17(5), 723–728 (2000).
    [CrossRef]
  6. H. W. Gandy, and R. J. Ginther, “Stimulated Emission from Holmium Activated Silicate Glass,” Proc IRE correspondence, 50(10), 2113–2114 (1962).
  7. L. F. Johnson, G. D. Boyd, and K. Nassau, “Optical Maser Characteristics of Ho+3 in CaWO4,” Proc IRE correspondence, 50(1) 87–88 (1962).
  8. L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent Oscillations from Tm3+, Ho3+, and Er3+ Ions in Yttrium Aluminum Garnet,” Appl. Phys. Lett. 7(5), 127–129 (1965).
    [CrossRef]
  9. G. J. Kintz, L. Esterowitz, and R. Allen, “CW Diode-Pumped Tm+3, Ho+3:YAG 2.1 µm Room Temperature Laser,” Electron. Lett. 23(12), 616–617 (1987).
    [CrossRef]
  10. N. Ter-Gabrielyan, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Ultralow quantum-defect eye-safe Er:Sc2O3 laser,” Opt. Lett. 33(13), 1524–1526 (2008).
    [CrossRef] [PubMed]
  11. J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
    [CrossRef]
  12. S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, E. K. Gorton, and J. A. C. Terry, “Intra-cavity side-pumped Ho:YAG laser,” Opt. Express 14(22), 10481–10487 (2006).
    [CrossRef] [PubMed]
  13. D. W. Hart, M. Jani, and N. P. Barnes, “Room-temperature lasing of end-pumped Ho:Lu(3)Al(5)O(12).,” Opt. Lett. 21(10), 728–730 (1996).
    [CrossRef] [PubMed]
  14. K. Scholle, P. Fuhrberg, “In-band pumping of high-power Ho:YAG lasers by laser diodes at 1.9µm,” OSA CLEO/QELS CTuAA1 (2008).
  15. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [CrossRef]
  16. L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int. 26(6), 589–592 (2000).
    [CrossRef]
  17. A. Ikesue and Y. L. Aung, “Ceramic Laser Materials,” Nat. Photonics 2(12), 721–727 (2008).
    [CrossRef]
  18. J. B. Gruber, R. P. Leavitt, C. A. Morrison, and N. C. Chang, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. IV. C3i sites,” J. Chem. Phys. 82(12), 5373–5378 (1985).
    [CrossRef]
  19. A. S. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross - Section Measurements for Crystals Doped with Er+3, Tm+3, and Ho+3,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
    [CrossRef]
  20. S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 645–657 (2005).
    [CrossRef]
  21. J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, “Resonant pumping and upconversion in 1.6 µm Er3+ lasers,” J. Opt. Soc. Am. B 24(9), 2454–2460 (2007).
    [CrossRef]

2009

T. Watanabe, K. Iwai, and Y. Matsuura, “Simultaneous irradiation of Er:YAG and Ho:YAG lasers for efficient ablation of hard tissues,” Proc. SPIE 7173, 71730R, 71730R-6 (2009).
[CrossRef]

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[CrossRef]

2008

2007

J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, “Resonant pumping and upconversion in 1.6 µm Er3+ lasers,” J. Opt. Soc. Am. B 24(9), 2454–2460 (2007).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

2006

H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, “Investigation of Stone Retropulsion as a Function of Ho:YAG Laser Pulse Duration,” Proc. SPIE 6078, 607815, 607815-11 (2006).
[CrossRef]

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, E. K. Gorton, and J. A. C. Terry, “Intra-cavity side-pumped Ho:YAG laser,” Opt. Express 14(22), 10481–10487 (2006).
[CrossRef] [PubMed]

2005

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 645–657 (2005).
[CrossRef]

2004

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1(6), 285–290 (2004).
[CrossRef]

2000

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int. 26(6), 589–592 (2000).
[CrossRef]

P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid infrared laser using 1.9 micron pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17(5), 723–728 (2000).
[CrossRef]

1998

1996

1992

A. S. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross - Section Measurements for Crystals Doped with Er+3, Tm+3, and Ho+3,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[CrossRef]

1987

G. J. Kintz, L. Esterowitz, and R. Allen, “CW Diode-Pumped Tm+3, Ho+3:YAG 2.1 µm Room Temperature Laser,” Electron. Lett. 23(12), 616–617 (1987).
[CrossRef]

1985

J. B. Gruber, R. P. Leavitt, C. A. Morrison, and N. C. Chang, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. IV. C3i sites,” J. Chem. Phys. 82(12), 5373–5378 (1985).
[CrossRef]

1965

L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent Oscillations from Tm3+, Ho3+, and Er3+ Ions in Yttrium Aluminum Garnet,” Appl. Phys. Lett. 7(5), 127–129 (1965).
[CrossRef]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Allen, R.

G. J. Kintz, L. Esterowitz, and R. Allen, “CW Diode-Pumped Tm+3, Ho+3:YAG 2.1 µm Room Temperature Laser,” Electron. Lett. 23(12), 616–617 (1987).
[CrossRef]

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramic Laser Materials,” Nat. Photonics 2(12), 721–727 (2008).
[CrossRef]

Barnes, N. P.

Betterton, J. G.

Budni, P. A.

Chang, N. C.

J. B. Gruber, R. P. Leavitt, C. A. Morrison, and N. C. Chang, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. IV. C3i sites,” J. Chem. Phys. 82(12), 5373–5378 (1985).
[CrossRef]

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Chase, L. L.

A. S. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross - Section Measurements for Crystals Doped with Er+3, Tm+3, and Ho+3,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[CrossRef]

Chicklis, E. P.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 645–657 (2005).
[CrossRef]

P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid infrared laser using 1.9 micron pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17(5), 723–728 (2000).
[CrossRef]

Clarkson, W. A.

Dubinskii, M.

Esterowitz, L.

G. J. Kintz, L. Esterowitz, and R. Allen, “CW Diode-Pumped Tm+3, Ho+3:YAG 2.1 µm Room Temperature Laser,” Electron. Lett. 23(12), 616–617 (1987).
[CrossRef]

Fan, T. Y.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Fornasiero, L.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int. 26(6), 589–592 (2000).
[CrossRef]

Francis, M. P.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 645–657 (2005).
[CrossRef]

Garbuzov, D.

Geusic, J. E.

L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent Oscillations from Tm3+, Ho3+, and Er3+ Ions in Yttrium Aluminum Garnet,” Appl. Phys. Lett. 7(5), 127–129 (1965).
[CrossRef]

Gorajek, L.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[CrossRef]

Gorton, E. K.

Gruber, J. B.

J. B. Gruber, R. P. Leavitt, C. A. Morrison, and N. C. Chang, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. IV. C3i sites,” J. Chem. Phys. 82(12), 5373–5378 (1985).
[CrossRef]

Hart, D. W.

Heumann, E.

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1(6), 285–290 (2004).
[CrossRef]

Huber, G.

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1(6), 285–290 (2004).
[CrossRef]

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int. 26(6), 589–592 (2000).
[CrossRef]

Ikesue, A.

Iwai, K.

T. Watanabe, K. Iwai, and Y. Matsuura, “Simultaneous irradiation of Er:YAG and Ho:YAG lasers for efficient ablation of hard tissues,” Proc. SPIE 7173, 71730R, 71730R-6 (2009).
[CrossRef]

Jabczynski, J. K.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[CrossRef]

Jani, M.

Jelínková, H.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[CrossRef]

Johnson, L. F.

L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent Oscillations from Tm3+, Ho3+, and Er3+ Ions in Yttrium Aluminum Garnet,” Appl. Phys. Lett. 7(5), 127–129 (1965).
[CrossRef]

Kang, H. W.

H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, “Investigation of Stone Retropulsion as a Function of Ho:YAG Laser Pulse Duration,” Proc. SPIE 6078, 607815, 607815-11 (2006).
[CrossRef]

Killinger, D. K.

Kintz, G. J.

G. J. Kintz, L. Esterowitz, and R. Allen, “CW Diode-Pumped Tm+3, Ho+3:YAG 2.1 µm Room Temperature Laser,” Electron. Lett. 23(12), 616–617 (1987).
[CrossRef]

Konves, J. R.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 645–657 (2005).
[CrossRef]

Koranda, P.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[CrossRef]

Krupke, W. F.

A. S. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross - Section Measurements for Crystals Doped with Er+3, Tm+3, and Ho+3,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[CrossRef]

Kudryashov, I.

Kway, W. L.

A. S. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross - Section Measurements for Crystals Doped with Er+3, Tm+3, and Ho+3,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[CrossRef]

Kwiatkowski, J.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[CrossRef]

Leavitt, R. P.

J. B. Gruber, R. P. Leavitt, C. A. Morrison, and N. C. Chang, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. IV. C3i sites,” J. Chem. Phys. 82(12), 5373–5378 (1985).
[CrossRef]

Lee, H.

H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, “Investigation of Stone Retropulsion as a Function of Ho:YAG Laser Pulse Duration,” Proc. SPIE 6078, 607815, 607815-11 (2006).
[CrossRef]

Lemons, M. L.

Mackenzie, J. I.

Matsuura, Y.

T. Watanabe, K. Iwai, and Y. Matsuura, “Simultaneous irradiation of Er:YAG and Ho:YAG lasers for efficient ablation of hard tissues,” Proc. SPIE 7173, 71730R, 71730R-6 (2009).
[CrossRef]

Merkle, L. D.

Miller, C. A.

Mix, E.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int. 26(6), 589–592 (2000).
[CrossRef]

Morrison, C. A.

J. B. Gruber, R. P. Leavitt, C. A. Morrison, and N. C. Chang, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. IV. C3i sites,” J. Chem. Phys. 82(12), 5373–5378 (1985).
[CrossRef]

Mosto, J. R.

Nemec, M.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[CrossRef]

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Payne, A. S.

A. S. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross - Section Measurements for Crystals Doped with Er+3, Tm+3, and Ho+3,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[CrossRef]

Petermann, K.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int. 26(6), 589–592 (2000).
[CrossRef]

Peters, V.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int. 26(6), 589–592 (2000).
[CrossRef]

Petersen, J.

H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, “Investigation of Stone Retropulsion as a Function of Ho:YAG Laser Pulse Duration,” Proc. SPIE 6078, 607815, 607815-11 (2006).
[CrossRef]

Pomeranz, L. A.

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Scholle, K.

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1(6), 285–290 (2004).
[CrossRef]

Setzler, S. D.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 645–657 (2005).
[CrossRef]

Shepherd, D. P.

Smith, L. K.

A. S. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross - Section Measurements for Crystals Doped with Er+3, Tm+3, and Ho+3,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[CrossRef]

So, S.

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Šulc, J.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[CrossRef]

Taczak, T. M.

Teichman, J. H.

H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, “Investigation of Stone Retropulsion as a Function of Ho:YAG Laser Pulse Duration,” Proc. SPIE 6078, 607815, 607815-11 (2006).
[CrossRef]

Ter-Gabrielyan, N.

Terry, J. A. C.

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Van Uitert, L. G.

L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent Oscillations from Tm3+, Ho3+, and Er3+ Ions in Yttrium Aluminum Garnet,” Appl. Phys. Lett. 7(5), 127–129 (1965).
[CrossRef]

Watanabe, T.

T. Watanabe, K. Iwai, and Y. Matsuura, “Simultaneous irradiation of Er:YAG and Ho:YAG lasers for efficient ablation of hard tissues,” Proc. SPIE 7173, 71730R, 71730R-6 (2009).
[CrossRef]

Welch, A. J.

H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, “Investigation of Stone Retropulsion as a Function of Ho:YAG Laser Pulse Duration,” Proc. SPIE 6078, 607815, 607815-11 (2006).
[CrossRef]

White, J. O.

Young, Y. E.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 645–657 (2005).
[CrossRef]

Zendzian, W.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent Oscillations from Tm3+, Ho3+, and Er3+ Ions in Yttrium Aluminum Garnet,” Appl. Phys. Lett. 7(5), 127–129 (1965).
[CrossRef]

Ceram. Int.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int. 26(6), 589–592 (2000).
[CrossRef]

Electron. Lett.

G. J. Kintz, L. Esterowitz, and R. Allen, “CW Diode-Pumped Tm+3, Ho+3:YAG 2.1 µm Room Temperature Laser,” Electron. Lett. 23(12), 616–617 (1987).
[CrossRef]

IEEE J. Quantum Electron.

A. S. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross - Section Measurements for Crystals Doped with Er+3, Tm+3, and Ho+3,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 645–657 (2005).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

J. Chem. Phys.

J. B. Gruber, R. P. Leavitt, C. A. Morrison, and N. C. Chang, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. IV. C3i sites,” J. Chem. Phys. 82(12), 5373–5378 (1985).
[CrossRef]

J. Opt. Soc. Am. B

Laser Phys. Lett.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[CrossRef]

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1(6), 285–290 (2004).
[CrossRef]

Nat. Photonics

A. Ikesue and Y. L. Aung, “Ceramic Laser Materials,” Nat. Photonics 2(12), 721–727 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, “Investigation of Stone Retropulsion as a Function of Ho:YAG Laser Pulse Duration,” Proc. SPIE 6078, 607815, 607815-11 (2006).
[CrossRef]

T. Watanabe, K. Iwai, and Y. Matsuura, “Simultaneous irradiation of Er:YAG and Ho:YAG lasers for efficient ablation of hard tissues,” Proc. SPIE 7173, 71730R, 71730R-6 (2009).
[CrossRef]

Other

H. W. Gandy, and R. J. Ginther, “Stimulated Emission from Holmium Activated Silicate Glass,” Proc IRE correspondence, 50(10), 2113–2114 (1962).

L. F. Johnson, G. D. Boyd, and K. Nassau, “Optical Maser Characteristics of Ho+3 in CaWO4,” Proc IRE correspondence, 50(1) 87–88 (1962).

K. Scholle, P. Fuhrberg, “In-band pumping of high-power Ho:YAG lasers by laser diodes at 1.9µm,” OSA CLEO/QELS CTuAA1 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

5I85I7 absorption cross section of Ho3+:Y2O3 at 77 K overlaid with diode laser (pump) spectral output. The laser diode spectral output is shown in arbitrary units as recorded at a pump current of 9A and coolant temperature 25 °C.

Fig. 2
Fig. 2

5I75I8 stimulated emission cross section of Ho3+:Y2O3 at 77 K.

Fig. 3
Fig. 3

Calculated gain cross section of Ho3+:Y2O3 at 77 K.

Fig. 4
Fig. 4

Absorption and stimulated emission cross sections of Ho3+:Y2O3 at 300 K.

Fig. 5
Fig. 5

Resonantly diode pumped laser performance of Ho3+:Y2O3 at 77K.

Fig. 6
Fig. 6

Beam quality (Mx 2 = My 2 ~1.1) measurement of the 2.12 µm laser under CW, 1.75 W operation. An example of the beam profile at focus has been included as an inset.

Fig. 7
Fig. 7

Ho3+:Y2O3 laser emission spectrum at 77K with evidence of cryostat window induced Fabry-Perot modes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ g = β σ S E ( 1 β ) σ A

Metrics