Abstract

We present the design, fabrication, and characterization of a grating for coupling between a single mode silica fiber and the TE mode in a silicon photonic waveguide on a silicon on insulator (SOI) substrate. The grating is etched completely through the silicon device layer, thus permitting the fabrication of through-etched surface coupled silicon nanophotonic circuits in a single lithography step. Furthermore, the grating is apodized to match the diffracted wave to the mode profile of the fiber. We experimentally demonstrate a coupling efficiency of 35% with a 1 dB bandwidth of 47 nm at 1536 nm on a standard SOI substrate. Furthermore, we show by simulation that with an optimized buried oxide thickness, a coupling efficiency of 72% and a 1 dB bandwidth of 38 nm at 1550 nm is achievable. This is, to our knowledge, the highest simulated coupling efficiency for single-etch TE-mode grating couplers. In particular, simulations show that apodizing a conventional periodic through-etched grating decreases the back-reflection into the waveguide from 21% to 0.1%.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
    [CrossRef]
  2. L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96, 051126 (2010).
    [CrossRef]
  3. S. K. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. Van Thourhout, and R. Baets, “Highly Efficient Grating Coupler between Optical Fiber and Silicon Photonic Circuit,” in “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference,” (Optical Society of America, 2009), OSA Technical Digest, CTuC6.
  4. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749–2751 (2004).
    [CrossRef] [PubMed]
  5. Y. Tang, Z. Wang, L. Wosinski, U. Westergren, and S. He, “Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits,” Opt. Lett. 35, 1290–1292 (2010).
    [CrossRef] [PubMed]
  6. R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D. X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35, 3243–3245 (2010).
    [CrossRef] [PubMed]
  7. F. van Laere, G. Roelkens, J. Schrauwen, D. Taillaert, P. Dumon, W. Bogaerts, D. van Thourhout, and R. Baets, “Compact grating couplers between optical fibers and Silicon-on-Insulator photonic wire waveguides with 69% coupling efficiency,” in Optical Fiber Communication Conference, (2006), pp. 1–3.
    [CrossRef]
  8. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14, 11622–11630 (2006).
    [CrossRef] [PubMed]
  9. S. Scheerlinck, J. Schrauwen, F. Van Laere, D. Taillaert, D. Van Thourhout, and R. Baets, “Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides,” Opt. Express 15, 9625–9630 (2007).
    [CrossRef] [PubMed]
  10. G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
    [CrossRef]
  11. X. Chen, C. Li, and H. K. Tsang, “Characterization of silicon-on-insulator waveguide chirped grating for coupling to a vertical optical fiber,” in “IEEE/LEOS International Conference on Optical MEMS and Nanophotonics,” (2008), pp. 56–57.
    [CrossRef]
  12. J. Bolten, J. Hofrichter, N. Moll, S. Schönenberger, F. Horst, B. J. Offrein, T. Wahlbrink, T. Mollenhauer, and H. Kurz, “CMOS compatible cost-efficient fabrication of SOI grating couplers,” Microelectron. Eng. 86, 1114–1116 (2009).
    [CrossRef]
  13. B. Schmid, A. Petrov, and M. Eich, “Optimized grating coupler with fully etched slots,” Opt. Express 17, 11066–11076 (2009).
    [PubMed]
  14. P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33, 327–341 (2001).
    [CrossRef]

2010 (3)

2009 (2)

J. Bolten, J. Hofrichter, N. Moll, S. Schönenberger, F. Horst, B. J. Offrein, T. Wahlbrink, T. Mollenhauer, and H. Kurz, “CMOS compatible cost-efficient fabrication of SOI grating couplers,” Microelectron. Eng. 86, 1114–1116 (2009).
[CrossRef]

B. Schmid, A. Petrov, and M. Eich, “Optimized grating coupler with fully etched slots,” Opt. Express 17, 11066–11076 (2009).
[PubMed]

2008 (1)

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[CrossRef]

2007 (1)

2006 (2)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14, 11622–11630 (2006).
[CrossRef] [PubMed]

2004 (1)

2001 (1)

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33, 327–341 (2001).
[CrossRef]

Ayre, M.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

Baets, R.

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[CrossRef]

S. Scheerlinck, J. Schrauwen, F. Van Laere, D. Taillaert, D. Van Thourhout, and R. Baets, “Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides,” Opt. Express 15, 9625–9630 (2007).
[CrossRef] [PubMed]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14, 11622–11630 (2006).
[CrossRef] [PubMed]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749–2751 (2004).
[CrossRef] [PubMed]

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33, 327–341 (2001).
[CrossRef]

Bedard, D.

Bienstman, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749–2751 (2004).
[CrossRef] [PubMed]

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33, 327–341 (2001).
[CrossRef]

Bogaerts, W.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

Bolten, J.

J. Bolten, J. Hofrichter, N. Moll, S. Schönenberger, F. Horst, B. J. Offrein, T. Wahlbrink, T. Mollenhauer, and H. Kurz, “CMOS compatible cost-efficient fabrication of SOI grating couplers,” Microelectron. Eng. 86, 1114–1116 (2009).
[CrossRef]

Brision, S.

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[CrossRef]

Cheben, P.

Densmore, A.

Eich, M.

Fédéli, J. M.

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[CrossRef]

Gautier, P.

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[CrossRef]

Halir, R.

He, S.

Hofrichter, J.

J. Bolten, J. Hofrichter, N. Moll, S. Schönenberger, F. Horst, B. J. Offrein, T. Wahlbrink, T. Mollenhauer, and H. Kurz, “CMOS compatible cost-efficient fabrication of SOI grating couplers,” Microelectron. Eng. 86, 1114–1116 (2009).
[CrossRef]

Horst, F.

J. Bolten, J. Hofrichter, N. Moll, S. Schönenberger, F. Horst, B. J. Offrein, T. Wahlbrink, T. Mollenhauer, and H. Kurz, “CMOS compatible cost-efficient fabrication of SOI grating couplers,” Microelectron. Eng. 86, 1114–1116 (2009).
[CrossRef]

Hvam, J. M.

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96, 051126 (2010).
[CrossRef]

Janz, S.

Kurz, H.

J. Bolten, J. Hofrichter, N. Moll, S. Schönenberger, F. Horst, B. J. Offrein, T. Wahlbrink, T. Mollenhauer, and H. Kurz, “CMOS compatible cost-efficient fabrication of SOI grating couplers,” Microelectron. Eng. 86, 1114–1116 (2009).
[CrossRef]

Lapointe, J.

Liu, L.

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96, 051126 (2010).
[CrossRef]

Lyan, P.

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[CrossRef]

Ma, R.

Molina-Fernández, I.

Moll, N.

J. Bolten, J. Hofrichter, N. Moll, S. Schönenberger, F. Horst, B. J. Offrein, T. Wahlbrink, T. Mollenhauer, and H. Kurz, “CMOS compatible cost-efficient fabrication of SOI grating couplers,” Microelectron. Eng. 86, 1114–1116 (2009).
[CrossRef]

Mollenhauer, T.

J. Bolten, J. Hofrichter, N. Moll, S. Schönenberger, F. Horst, B. J. Offrein, T. Wahlbrink, T. Mollenhauer, and H. Kurz, “CMOS compatible cost-efficient fabrication of SOI grating couplers,” Microelectron. Eng. 86, 1114–1116 (2009).
[CrossRef]

Offrein, B. J.

J. Bolten, J. Hofrichter, N. Moll, S. Schönenberger, F. Horst, B. J. Offrein, T. Wahlbrink, T. Mollenhauer, and H. Kurz, “CMOS compatible cost-efficient fabrication of SOI grating couplers,” Microelectron. Eng. 86, 1114–1116 (2009).
[CrossRef]

Petrov, A.

Pu, M.

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96, 051126 (2010).
[CrossRef]

Roelkens, G.

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[CrossRef]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14, 11622–11630 (2006).
[CrossRef] [PubMed]

Scheerlinck, S.

Schmid, B.

Schmid, J. H.

Schönenberger, S.

J. Bolten, J. Hofrichter, N. Moll, S. Schönenberger, F. Horst, B. J. Offrein, T. Wahlbrink, T. Mollenhauer, and H. Kurz, “CMOS compatible cost-efficient fabrication of SOI grating couplers,” Microelectron. Eng. 86, 1114–1116 (2009).
[CrossRef]

Schrauwen, J.

Taillaert, D.

Tang, Y.

Van Laere, F.

S. Scheerlinck, J. Schrauwen, F. Van Laere, D. Taillaert, D. Van Thourhout, and R. Baets, “Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides,” Opt. Express 15, 9625–9630 (2007).
[CrossRef] [PubMed]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

Van Thourhout, D.

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[CrossRef]

S. Scheerlinck, J. Schrauwen, F. Van Laere, D. Taillaert, D. Van Thourhout, and R. Baets, “Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides,” Opt. Express 15, 9625–9630 (2007).
[CrossRef] [PubMed]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14, 11622–11630 (2006).
[CrossRef] [PubMed]

Vermeulen, D.

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[CrossRef]

Wahlbrink, T.

J. Bolten, J. Hofrichter, N. Moll, S. Schönenberger, F. Horst, B. J. Offrein, T. Wahlbrink, T. Mollenhauer, and H. Kurz, “CMOS compatible cost-efficient fabrication of SOI grating couplers,” Microelectron. Eng. 86, 1114–1116 (2009).
[CrossRef]

Wang, Z.

Westergren, U.

Wosinski, L.

Xu, D. X.

Yvind, K.

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96, 051126 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96, 051126 (2010).
[CrossRef]

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

Microelectron. Eng. (1)

J. Bolten, J. Hofrichter, N. Moll, S. Schönenberger, F. Horst, B. J. Offrein, T. Wahlbrink, T. Mollenhauer, and H. Kurz, “CMOS compatible cost-efficient fabrication of SOI grating couplers,” Microelectron. Eng. 86, 1114–1116 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33, 327–341 (2001).
[CrossRef]

Other (3)

X. Chen, C. Li, and H. K. Tsang, “Characterization of silicon-on-insulator waveguide chirped grating for coupling to a vertical optical fiber,” in “IEEE/LEOS International Conference on Optical MEMS and Nanophotonics,” (2008), pp. 56–57.
[CrossRef]

F. van Laere, G. Roelkens, J. Schrauwen, D. Taillaert, P. Dumon, W. Bogaerts, D. van Thourhout, and R. Baets, “Compact grating couplers between optical fibers and Silicon-on-Insulator photonic wire waveguides with 69% coupling efficiency,” in Optical Fiber Communication Conference, (2006), pp. 1–3.
[CrossRef]

S. K. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. Van Thourhout, and R. Baets, “Highly Efficient Grating Coupler between Optical Fiber and Silicon Photonic Circuit,” in “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference,” (Optical Society of America, 2009), OSA Technical Digest, CTuC6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The layout of the back-to-back grating-to-fiber coupling test circuit. The ring resonator is used to verify that the transmitted light propagates through the single mode silicon waveguide between the two tapers. (b) An electron micrograph of the apodized through-etched SOI grating. The HSQ resist is left on top of the silicon. The A-A’ labels indicate the position of the cross section shown in Fig. 2(a).

Fig. 2
Fig. 2

(a) The calculated Ey field distribution in cross section A-A’ shown in Fig. 1(a) for the TE mode propagating from the single mode silicon waveguide on the left and coupling into a single mode fiber at a 10° angle to the surface normal. (b) A similar cross section for the optimal through-etched conventional periodic grating.

Fig. 3
Fig. 3

The upper and lower rows show the power fraction coupled into the fiber and reflected back into the waveguide, respectively, at every period and fill factor combination at 1550 nm. The left and right columns correspond to gratings with 2 and 2.2 μm BOX, respectively. The crosses indicate the two starting points selected for the apodization.

Fig. 4
Fig. 4

(a) The evolution of the power fractions coupled into the fiber (solid line) and reflected back into the silicon waveguide (dotted line) during the algorithmic apodization of the grating on a 2.2 μm BOX. (b) The calculated coupling efficiency from silicon waveguide to fiber as a function of the BOX thickness for the apodized grating designed for the optimal 2.2 μm BOX thickness.

Fig. 5
Fig. 5

(a) The loss of the back-to-back grating coupler structures with five different lengths of the single mode silicon waveguide section. The linear fit yields a waveguide loss of −8.2 dB/mm and a coupling efficiency of 35% per grating. (b) The solid curve is the measured loss spectrum of the fabricated test structure with apodized gratings on a standard 2 μm BOX. For comparison, the simulated loss spectra of the apodized designs on both 2 μm and 2.2 μm BOX are shown, as well as the simulated spectrum for the grating dimensions obtained in fabrication.

Tables (2)

Tables Icon

Table 1 A comparison of reported figures of merit for fiber to TE mode silicon waveguide grating couplers at 1550 nm

Tables Icon

Table 2 The dimensions of two apodized through-etched grating designs with 20 cells

Metrics