Abstract

An infrared femtosecond laser has been used to write computer-generated holograms directly on a silicon surface. The high resolution offered by short-pulse laser ablation is employed to write highly detailed holograms with resolution up to 111 kpixels/mm2. It is demonstrated how three-dimensional effects can be realized in computer-generated holograms. Three-dimensional effects are visualized as a relative motion between different parts of the holographic reconstruction, when the hologram is moved relative to the reconstructing laser beam. Potential security applications are briefly discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Lohmann and D. P. Paris, “Binary fraunhofer holograms, generated by computer,” Appl. Opt. 6(10), 1739–1748 (1967).
    [CrossRef] [PubMed]
  2. L. Ran and S. Qu, “Self-assembled volume vortex grating induced by femtosecond laser pulses in glass,” Curr. Appl. Phys. 9(6), 1210–1212 (2009).
    [CrossRef]
  3. Z. Guo, S. Qu, and S. Liu, “Generating optical vortex with computer-generated hologram fabricated inside glass by femtosecond laser pulses,” Opt. Commun. 273(1), 286–289 (2007).
    [CrossRef]
  4. Y. Li, Y. Dou, R. An, H. Yang, and Q. Gong, “Permanent computer-generated holograms embedded in silica glass by femtosecond laser pulses,” Opt. Express 13(7), 2433–2438 (2005).
    [CrossRef] [PubMed]
  5. Q.Z. Zhao, J. R. Qiu, X. W. Jiang, E. W. Dai, C. H. Zhou, and C. S. Zhu, “Direct writing computer-generated holograms on metal film by an infrared femtosecond laser,” Opt. Express 13(6), 2089–2092 (2005).
    [CrossRef] [PubMed]
  6. C. G. Trevino-Palacios, A. Olivares-Perez, and O. J. Zapata-Nava, “Security system with optical key access,” Proc. SPIE 6422, 642218–642224 (2007).
    [CrossRef]
  7. B. R. Brown and A. W. Lohmann, “Computer-generated Binary Holograms,” IBM J. Res. Develop. 13(2), 160–168 (1969).
    [CrossRef]
  8. J. P. Waters, “Three-Dimensional Fourier-Transform Method for Synthesizing Binary Holograms,” J. Opt. Soc. Am. 58(9), 1284–1288 (1968).
    [CrossRef]
  9. L. B. Lesem, P. M. Hirsch, and J. A. Jordan., “The Kinoform: A New Wavefront Reconstruction Device,” IBM J. Res. Develop. 13(2), 150–155 (1969).
    [CrossRef]
  10. T. Yamaguchi, G. Okabe, and H. Yoshikawa, “Real-time image plane full-color and full-parallax holographic video display system,” Opt. Eng. 46(12), 125801 (2007).
    [CrossRef]
  11. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
    [CrossRef] [PubMed]
  12. P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
    [CrossRef]
  13. K. Vestentoft, J. A. Olesen, B. H. Christensen, and P. Balling, “Nanostructuring of surfaces by ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 80(3), 493–496 (2005).
    [CrossRef]
  14. D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).
  15. J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9(11), 405–407 (1966).
    [CrossRef]
  16. M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
    [CrossRef]
  17. H. Yoshikawa, “Fast Computation of Fresnel Holograms Employing Difference,” Opt. Rev. 8(5), 331–335 (2001).
    [CrossRef]
  18. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
    [CrossRef] [PubMed]
  19. J. Byskov-Nielsen, J.-M. Savolainen, M. S. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys., A Mater. Sci. Process. 101(1), 97–101 (2010).
    [CrossRef]
  20. J. Bonse, K.-W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004).
    [CrossRef]

2010 (2)

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

J. Byskov-Nielsen, J.-M. Savolainen, M. S. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys., A Mater. Sci. Process. 101(1), 97–101 (2010).
[CrossRef]

2009 (1)

L. Ran and S. Qu, “Self-assembled volume vortex grating induced by femtosecond laser pulses in glass,” Curr. Appl. Phys. 9(6), 1210–1212 (2009).
[CrossRef]

2007 (3)

Z. Guo, S. Qu, and S. Liu, “Generating optical vortex with computer-generated hologram fabricated inside glass by femtosecond laser pulses,” Opt. Commun. 273(1), 286–289 (2007).
[CrossRef]

C. G. Trevino-Palacios, A. Olivares-Perez, and O. J. Zapata-Nava, “Security system with optical key access,” Proc. SPIE 6422, 642218–642224 (2007).
[CrossRef]

T. Yamaguchi, G. Okabe, and H. Yoshikawa, “Real-time image plane full-color and full-parallax holographic video display system,” Opt. Eng. 46(12), 125801 (2007).
[CrossRef]

2005 (3)

2004 (1)

J. Bonse, K.-W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004).
[CrossRef]

2001 (1)

H. Yoshikawa, “Fast Computation of Fresnel Holograms Employing Difference,” Opt. Rev. 8(5), 331–335 (2001).
[CrossRef]

1995 (1)

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[CrossRef]

1993 (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[CrossRef]

1982 (1)

1969 (2)

B. R. Brown and A. W. Lohmann, “Computer-generated Binary Holograms,” IBM J. Res. Develop. 13(2), 160–168 (1969).
[CrossRef]

L. B. Lesem, P. M. Hirsch, and J. A. Jordan., “The Kinoform: A New Wavefront Reconstruction Device,” IBM J. Res. Develop. 13(2), 150–155 (1969).
[CrossRef]

1968 (1)

1967 (1)

1966 (1)

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9(11), 405–407 (1966).
[CrossRef]

An, R.

Bablumian, A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Balling, P.

J. Byskov-Nielsen, J.-M. Savolainen, M. S. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys., A Mater. Sci. Process. 101(1), 97–101 (2010).
[CrossRef]

K. Vestentoft, J. A. Olesen, B. H. Christensen, and P. Balling, “Nanostructuring of surfaces by ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 80(3), 493–496 (2005).
[CrossRef]

Blanche, P.-A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Bonse, J.

J. Bonse, K.-W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004).
[CrossRef]

Brown, B. R.

B. R. Brown and A. W. Lohmann, “Computer-generated Binary Holograms,” IBM J. Res. Develop. 13(2), 160–168 (1969).
[CrossRef]

Brzezinka, K.-W.

J. Bonse, K.-W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004).
[CrossRef]

Byskov-Nielsen, J.

J. Byskov-Nielsen, J.-M. Savolainen, M. S. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys., A Mater. Sci. Process. 101(1), 97–101 (2010).
[CrossRef]

Christensen, B. H.

K. Vestentoft, J. A. Olesen, B. H. Christensen, and P. Balling, “Nanostructuring of surfaces by ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 80(3), 493–496 (2005).
[CrossRef]

Christensen, M. S.

J. Byskov-Nielsen, J.-M. Savolainen, M. S. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys., A Mater. Sci. Process. 101(1), 97–101 (2010).
[CrossRef]

Christenson, C.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Dai, E. W.

Dou, Y.

Du, D.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[CrossRef]

Dutta, S. K.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[CrossRef]

Flores, D.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Gong, Q.

Gu, T.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Guo, Z.

Z. Guo, S. Qu, and S. Liu, “Generating optical vortex with computer-generated hologram fabricated inside glass by femtosecond laser pulses,” Opt. Commun. 273(1), 286–289 (2007).
[CrossRef]

Hirsch, P. M.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan., “The Kinoform: A New Wavefront Reconstruction Device,” IBM J. Res. Develop. 13(2), 150–155 (1969).
[CrossRef]

Hsieh, W.-Y.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Jiang, X. W.

Jordan, J. A.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan., “The Kinoform: A New Wavefront Reconstruction Device,” IBM J. Res. Develop. 13(2), 150–155 (1969).
[CrossRef]

Kathaperumal, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Lesem, L. B.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan., “The Kinoform: A New Wavefront Reconstruction Device,” IBM J. Res. Develop. 13(2), 150–155 (1969).
[CrossRef]

Li, Y.

Lin, W.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Liu, J. M.

Liu, S.

Z. Guo, S. Qu, and S. Liu, “Generating optical vortex with computer-generated hologram fabricated inside glass by femtosecond laser pulses,” Opt. Commun. 273(1), 286–289 (2007).
[CrossRef]

Lohmann, A. W.

B. R. Brown and A. W. Lohmann, “Computer-generated Binary Holograms,” IBM J. Res. Develop. 13(2), 160–168 (1969).
[CrossRef]

A. W. Lohmann and D. P. Paris, “Binary fraunhofer holograms, generated by computer,” Appl. Opt. 6(10), 1739–1748 (1967).
[CrossRef] [PubMed]

Lucente, M.

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[CrossRef]

Meixner, A. J.

J. Bonse, K.-W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004).
[CrossRef]

Mourou, G.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[CrossRef]

Norwood, R. A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Okabe, G.

T. Yamaguchi, G. Okabe, and H. Yoshikawa, “Real-time image plane full-color and full-parallax holographic video display system,” Opt. Eng. 46(12), 125801 (2007).
[CrossRef]

Olesen, J. A.

K. Vestentoft, J. A. Olesen, B. H. Christensen, and P. Balling, “Nanostructuring of surfaces by ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 80(3), 493–496 (2005).
[CrossRef]

Olivares-Perez, A.

C. G. Trevino-Palacios, A. Olivares-Perez, and O. J. Zapata-Nava, “Security system with optical key access,” Proc. SPIE 6422, 642218–642224 (2007).
[CrossRef]

Paris, D. P.

Peyghambarian, N.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Pronko, P. P.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[CrossRef]

Qiu, J. R.

Qu, S.

L. Ran and S. Qu, “Self-assembled volume vortex grating induced by femtosecond laser pulses in glass,” Curr. Appl. Phys. 9(6), 1210–1212 (2009).
[CrossRef]

Z. Guo, S. Qu, and S. Liu, “Generating optical vortex with computer-generated hologram fabricated inside glass by femtosecond laser pulses,” Opt. Commun. 273(1), 286–289 (2007).
[CrossRef]

Rachwal, B.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Ran, L.

L. Ran and S. Qu, “Self-assembled volume vortex grating induced by femtosecond laser pulses in glass,” Curr. Appl. Phys. 9(6), 1210–1212 (2009).
[CrossRef]

Rudd, J. V.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[CrossRef]

Savolainen, J.-M.

J. Byskov-Nielsen, J.-M. Savolainen, M. S. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys., A Mater. Sci. Process. 101(1), 97–101 (2010).
[CrossRef]

Siddiqui, O.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Squier, J.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[CrossRef]

Thomas, J.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Trevino-Palacios, C. G.

C. G. Trevino-Palacios, A. Olivares-Perez, and O. J. Zapata-Nava, “Security system with optical key access,” Proc. SPIE 6422, 642218–642224 (2007).
[CrossRef]

Vestentoft, K.

K. Vestentoft, J. A. Olesen, B. H. Christensen, and P. Balling, “Nanostructuring of surfaces by ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 80(3), 493–496 (2005).
[CrossRef]

Voorakaranam, R.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Wang, P.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Waters, J. P.

J. P. Waters, “Three-Dimensional Fourier-Transform Method for Synthesizing Binary Holograms,” J. Opt. Soc. Am. 58(9), 1284–1288 (1968).
[CrossRef]

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9(11), 405–407 (1966).
[CrossRef]

Yamaguchi, T.

T. Yamaguchi, G. Okabe, and H. Yoshikawa, “Real-time image plane full-color and full-parallax holographic video display system,” Opt. Eng. 46(12), 125801 (2007).
[CrossRef]

Yamamoto, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Yang, H.

Yoshikawa, H.

T. Yamaguchi, G. Okabe, and H. Yoshikawa, “Real-time image plane full-color and full-parallax holographic video display system,” Opt. Eng. 46(12), 125801 (2007).
[CrossRef]

H. Yoshikawa, “Fast Computation of Fresnel Holograms Employing Difference,” Opt. Rev. 8(5), 331–335 (2001).
[CrossRef]

Zapata-Nava, O. J.

C. G. Trevino-Palacios, A. Olivares-Perez, and O. J. Zapata-Nava, “Security system with optical key access,” Proc. SPIE 6422, 642218–642224 (2007).
[CrossRef]

Zhao, Q.Z.

Zhou, C. H.

Zhu, C. S.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9(11), 405–407 (1966).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

J. Byskov-Nielsen, J.-M. Savolainen, M. S. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys., A Mater. Sci. Process. 101(1), 97–101 (2010).
[CrossRef]

K. Vestentoft, J. A. Olesen, B. H. Christensen, and P. Balling, “Nanostructuring of surfaces by ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 80(3), 493–496 (2005).
[CrossRef]

Appl. Surf. Sci. (1)

J. Bonse, K.-W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004).
[CrossRef]

Curr. Appl. Phys. (1)

L. Ran and S. Qu, “Self-assembled volume vortex grating induced by femtosecond laser pulses in glass,” Curr. Appl. Phys. 9(6), 1210–1212 (2009).
[CrossRef]

IBM J. Res. Develop. (2)

B. R. Brown and A. W. Lohmann, “Computer-generated Binary Holograms,” IBM J. Res. Develop. 13(2), 160–168 (1969).
[CrossRef]

L. B. Lesem, P. M. Hirsch, and J. A. Jordan., “The Kinoform: A New Wavefront Reconstruction Device,” IBM J. Res. Develop. 13(2), 150–155 (1969).
[CrossRef]

J. Electron. Imaging (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[CrossRef]

J. Opt. Soc. Am. (1)

Nature (1)

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Opt. Commun. (2)

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[CrossRef]

Z. Guo, S. Qu, and S. Liu, “Generating optical vortex with computer-generated hologram fabricated inside glass by femtosecond laser pulses,” Opt. Commun. 273(1), 286–289 (2007).
[CrossRef]

Opt. Eng. (1)

T. Yamaguchi, G. Okabe, and H. Yoshikawa, “Real-time image plane full-color and full-parallax holographic video display system,” Opt. Eng. 46(12), 125801 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Rev. (1)

H. Yoshikawa, “Fast Computation of Fresnel Holograms Employing Difference,” Opt. Rev. 8(5), 331–335 (2001).
[CrossRef]

Proc. SPIE (1)

C. G. Trevino-Palacios, A. Olivares-Perez, and O. J. Zapata-Nava, “Security system with optical key access,” Proc. SPIE 6422, 642218–642224 (2007).
[CrossRef]

Other (1)

D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).

Supplementary Material (1)

» Media 1: AVI (1794 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Perspective image of the 3-D object that is the basis of the CGH calculation. The object is shown from the front (a) and from the right-hand side, and in both cases a bit from above.

Fig. 2
Fig. 2

Visualization of 3-D effects in directly written CGHs. Top: Rectangular CGH bit pattern of the 3-D object shown in Fig. 1. Bottom: Images of the holographic reconstruction made with a He-Ne laser from the on-axis (right) and off-axis (left) ends of the CGH. The hologram used for the reconstruction was made with a pitch of 6 μm.

Fig. 3
Fig. 3

(Media 1) Video of holographic reconstruction of 3-D object when the CGH is translated from right to left and back smoothly, causing the letters to move relative to each other.

Fig. 4
Fig. 4

SEM images of the CGH pattern with a pitch of 3 µm written on silicon. (a) Large part of the hologram showing the bit pattern. (b) Zoom in on a few ablated spots.

Fig. 5
Fig. 5

(a) The seal of Aarhus University. (b) Image of the holographic reconstruction made from a hologram with a pitch of 3 µm using a frequency-doubled Nd:YAG laser at 532 nm for the reconstruction. The image is 20 cm in diameter. The bright area in the bottom right corner is scattered light from the reflection spot, most of which was blocked by a beam dump.

Metrics