Abstract

This paper presents the calculated and experimental interference colors of liquid crystal (LC) films due to the optical retardation of two orthogonal electromagnetic components at different surface anchoring conditions and applied voltages. We simulate the deformation of LC director using finite element method and convert the calculated colors into sRGB parameters. A gold micro-structure is fabricated and used to control the optical retardation. Polarizing micrographs were collected and compared with the calculated colors.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Delly, “The Michel-Lévy interference color chart-Microscopy’s Magical color key,” (2003) www.modernmicroscopy.com/main.asp?article=15 .
  2. H. Kubota, T. Ara, and H. Saito, “On the sensitive color of chromatic polarization,” J. Opt. Soc. Am. 41(8), 537–546 (1951).
    [CrossRef]
  3. H. Kubota and T. Ose, “Further study of polarization and interference colors,” J. Opt. Soc. Am. 45(2), 89–97 (1955).
    [CrossRef]
  4. V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
    [CrossRef] [PubMed]
  5. R. R. Shah and N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,” Science 293(5533), 1296–1299 (2001).
    [CrossRef] [PubMed]
  6. J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals,” Science 302(5653), 2094–2097 (2003).
    [CrossRef] [PubMed]
  7. M. McCamley, G. Crawford, M. Ravnik, S. Zumer, A. Artenstein, and S. Opal, “Optical Detection of Anchoring at Free and Fluid Surfaces Using a Nematic Liquid Crystal Sensor,” Appl. Phys. Lett. 91(14), 141916 (2007).
    [CrossRef]
  8. R. Shah and N. Abbott, “Orientational transitions of liquid crystals driven by binding of organoamines to carboxylic acids presented at surfaces with nanometer-scale topography,” Langmuir 19(2), 275–284 (2003).
    [CrossRef]
  9. J. Brake, A. Mezera, and N. Abbott, “Active control of the anchoring of 4’-pentyl-4-cyanobiphenyl (5CB) at an aqueous-liquid crystal interface by using a redox-active ferrocenyl surfactant,” Langmuir 19(21), 8629–8637 (2003).
    [CrossRef]
  10. T. Govindaraju, P. J. Bertics, R. T. Raines, and N. L. Abbott, “Using measurements of anchoring energies of liquid crystals on surfaces to quantify proteins captured by immobilized ligands,” J. Am. Chem. Soc. 129(36), 11223–11231 (2007).
    [CrossRef] [PubMed]
  11. A. D. Price and D. K. Schwartz, “DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface,” J. Am. Chem. Soc. 130(26), 8188–8194 (2008).
    [CrossRef] [PubMed]
  12. M. Stokes, M. Anderson, S. Chandrasekar, and R. Motta, “A standard default color space for the internet: sRGB,” (1996) http://www.color.org/sRGB.xalter .
  13. J. Henrie, S. Kellis, S. Schultz, and A. Hawkins, “Electronic color charts for dielectric films on silicon,” Opt. Express 12(7), 1464–1469 (2004).
    [CrossRef] [PubMed]
  14. I. Stewart, The static and dynamic continuum theory of liquid crystals (Taylor & Francis Group, New York 2004).
  15. Y. Zou, J. Namkung, Y. Lin, and R. Lindquist, “Optical monitoring of anchoring change in vertically aligned thin liquid crystal film for chemical and biological sensor,” Appl. Opt. 49(10), 1865–1869 (2010).
    [CrossRef] [PubMed]
  16. D. Berreman, “Numerical modeling of twisted nematic devices,” Philos. Trans. R. Soc. Lond. A 309(1507), 203–216 (1983).
    [CrossRef]

2010 (1)

2008 (1)

A. D. Price and D. K. Schwartz, “DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface,” J. Am. Chem. Soc. 130(26), 8188–8194 (2008).
[CrossRef] [PubMed]

2007 (2)

T. Govindaraju, P. J. Bertics, R. T. Raines, and N. L. Abbott, “Using measurements of anchoring energies of liquid crystals on surfaces to quantify proteins captured by immobilized ligands,” J. Am. Chem. Soc. 129(36), 11223–11231 (2007).
[CrossRef] [PubMed]

M. McCamley, G. Crawford, M. Ravnik, S. Zumer, A. Artenstein, and S. Opal, “Optical Detection of Anchoring at Free and Fluid Surfaces Using a Nematic Liquid Crystal Sensor,” Appl. Phys. Lett. 91(14), 141916 (2007).
[CrossRef]

2004 (1)

2003 (3)

R. Shah and N. Abbott, “Orientational transitions of liquid crystals driven by binding of organoamines to carboxylic acids presented at surfaces with nanometer-scale topography,” Langmuir 19(2), 275–284 (2003).
[CrossRef]

J. Brake, A. Mezera, and N. Abbott, “Active control of the anchoring of 4’-pentyl-4-cyanobiphenyl (5CB) at an aqueous-liquid crystal interface by using a redox-active ferrocenyl surfactant,” Langmuir 19(21), 8629–8637 (2003).
[CrossRef]

J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals,” Science 302(5653), 2094–2097 (2003).
[CrossRef] [PubMed]

2001 (1)

R. R. Shah and N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,” Science 293(5533), 1296–1299 (2001).
[CrossRef] [PubMed]

1998 (1)

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[CrossRef] [PubMed]

1983 (1)

D. Berreman, “Numerical modeling of twisted nematic devices,” Philos. Trans. R. Soc. Lond. A 309(1507), 203–216 (1983).
[CrossRef]

1955 (1)

1951 (1)

Abbott, N.

R. Shah and N. Abbott, “Orientational transitions of liquid crystals driven by binding of organoamines to carboxylic acids presented at surfaces with nanometer-scale topography,” Langmuir 19(2), 275–284 (2003).
[CrossRef]

J. Brake, A. Mezera, and N. Abbott, “Active control of the anchoring of 4’-pentyl-4-cyanobiphenyl (5CB) at an aqueous-liquid crystal interface by using a redox-active ferrocenyl surfactant,” Langmuir 19(21), 8629–8637 (2003).
[CrossRef]

Abbott, N. L.

T. Govindaraju, P. J. Bertics, R. T. Raines, and N. L. Abbott, “Using measurements of anchoring energies of liquid crystals on surfaces to quantify proteins captured by immobilized ligands,” J. Am. Chem. Soc. 129(36), 11223–11231 (2007).
[CrossRef] [PubMed]

J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals,” Science 302(5653), 2094–2097 (2003).
[CrossRef] [PubMed]

R. R. Shah and N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,” Science 293(5533), 1296–1299 (2001).
[CrossRef] [PubMed]

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[CrossRef] [PubMed]

Ara, T.

Artenstein, A.

M. McCamley, G. Crawford, M. Ravnik, S. Zumer, A. Artenstein, and S. Opal, “Optical Detection of Anchoring at Free and Fluid Surfaces Using a Nematic Liquid Crystal Sensor,” Appl. Phys. Lett. 91(14), 141916 (2007).
[CrossRef]

Berreman, D.

D. Berreman, “Numerical modeling of twisted nematic devices,” Philos. Trans. R. Soc. Lond. A 309(1507), 203–216 (1983).
[CrossRef]

Bertics, P. J.

T. Govindaraju, P. J. Bertics, R. T. Raines, and N. L. Abbott, “Using measurements of anchoring energies of liquid crystals on surfaces to quantify proteins captured by immobilized ligands,” J. Am. Chem. Soc. 129(36), 11223–11231 (2007).
[CrossRef] [PubMed]

Brake, J.

J. Brake, A. Mezera, and N. Abbott, “Active control of the anchoring of 4’-pentyl-4-cyanobiphenyl (5CB) at an aqueous-liquid crystal interface by using a redox-active ferrocenyl surfactant,” Langmuir 19(21), 8629–8637 (2003).
[CrossRef]

Brake, J. M.

J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals,” Science 302(5653), 2094–2097 (2003).
[CrossRef] [PubMed]

Crawford, G.

M. McCamley, G. Crawford, M. Ravnik, S. Zumer, A. Artenstein, and S. Opal, “Optical Detection of Anchoring at Free and Fluid Surfaces Using a Nematic Liquid Crystal Sensor,” Appl. Phys. Lett. 91(14), 141916 (2007).
[CrossRef]

Daschner, M. K.

J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals,” Science 302(5653), 2094–2097 (2003).
[CrossRef] [PubMed]

Dubrovsky, T. B.

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[CrossRef] [PubMed]

Govindaraju, T.

T. Govindaraju, P. J. Bertics, R. T. Raines, and N. L. Abbott, “Using measurements of anchoring energies of liquid crystals on surfaces to quantify proteins captured by immobilized ligands,” J. Am. Chem. Soc. 129(36), 11223–11231 (2007).
[CrossRef] [PubMed]

Gupta, V. K.

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[CrossRef] [PubMed]

Hawkins, A.

Henrie, J.

Kellis, S.

Kubota, H.

Lin, Y.

Lindquist, R.

Luk, Y. Y.

J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals,” Science 302(5653), 2094–2097 (2003).
[CrossRef] [PubMed]

McCamley, M.

M. McCamley, G. Crawford, M. Ravnik, S. Zumer, A. Artenstein, and S. Opal, “Optical Detection of Anchoring at Free and Fluid Surfaces Using a Nematic Liquid Crystal Sensor,” Appl. Phys. Lett. 91(14), 141916 (2007).
[CrossRef]

Mezera, A.

J. Brake, A. Mezera, and N. Abbott, “Active control of the anchoring of 4’-pentyl-4-cyanobiphenyl (5CB) at an aqueous-liquid crystal interface by using a redox-active ferrocenyl surfactant,” Langmuir 19(21), 8629–8637 (2003).
[CrossRef]

Namkung, J.

Opal, S.

M. McCamley, G. Crawford, M. Ravnik, S. Zumer, A. Artenstein, and S. Opal, “Optical Detection of Anchoring at Free and Fluid Surfaces Using a Nematic Liquid Crystal Sensor,” Appl. Phys. Lett. 91(14), 141916 (2007).
[CrossRef]

Ose, T.

Price, A. D.

A. D. Price and D. K. Schwartz, “DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface,” J. Am. Chem. Soc. 130(26), 8188–8194 (2008).
[CrossRef] [PubMed]

Raines, R. T.

T. Govindaraju, P. J. Bertics, R. T. Raines, and N. L. Abbott, “Using measurements of anchoring energies of liquid crystals on surfaces to quantify proteins captured by immobilized ligands,” J. Am. Chem. Soc. 129(36), 11223–11231 (2007).
[CrossRef] [PubMed]

Ravnik, M.

M. McCamley, G. Crawford, M. Ravnik, S. Zumer, A. Artenstein, and S. Opal, “Optical Detection of Anchoring at Free and Fluid Surfaces Using a Nematic Liquid Crystal Sensor,” Appl. Phys. Lett. 91(14), 141916 (2007).
[CrossRef]

Saito, H.

Schultz, S.

Schwartz, D. K.

A. D. Price and D. K. Schwartz, “DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface,” J. Am. Chem. Soc. 130(26), 8188–8194 (2008).
[CrossRef] [PubMed]

Shah, R.

R. Shah and N. Abbott, “Orientational transitions of liquid crystals driven by binding of organoamines to carboxylic acids presented at surfaces with nanometer-scale topography,” Langmuir 19(2), 275–284 (2003).
[CrossRef]

Shah, R. R.

R. R. Shah and N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,” Science 293(5533), 1296–1299 (2001).
[CrossRef] [PubMed]

Skaife, J. J.

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[CrossRef] [PubMed]

Zou, Y.

Zumer, S.

M. McCamley, G. Crawford, M. Ravnik, S. Zumer, A. Artenstein, and S. Opal, “Optical Detection of Anchoring at Free and Fluid Surfaces Using a Nematic Liquid Crystal Sensor,” Appl. Phys. Lett. 91(14), 141916 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. McCamley, G. Crawford, M. Ravnik, S. Zumer, A. Artenstein, and S. Opal, “Optical Detection of Anchoring at Free and Fluid Surfaces Using a Nematic Liquid Crystal Sensor,” Appl. Phys. Lett. 91(14), 141916 (2007).
[CrossRef]

J. Am. Chem. Soc. (2)

T. Govindaraju, P. J. Bertics, R. T. Raines, and N. L. Abbott, “Using measurements of anchoring energies of liquid crystals on surfaces to quantify proteins captured by immobilized ligands,” J. Am. Chem. Soc. 129(36), 11223–11231 (2007).
[CrossRef] [PubMed]

A. D. Price and D. K. Schwartz, “DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface,” J. Am. Chem. Soc. 130(26), 8188–8194 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (2)

Langmuir (2)

R. Shah and N. Abbott, “Orientational transitions of liquid crystals driven by binding of organoamines to carboxylic acids presented at surfaces with nanometer-scale topography,” Langmuir 19(2), 275–284 (2003).
[CrossRef]

J. Brake, A. Mezera, and N. Abbott, “Active control of the anchoring of 4’-pentyl-4-cyanobiphenyl (5CB) at an aqueous-liquid crystal interface by using a redox-active ferrocenyl surfactant,” Langmuir 19(21), 8629–8637 (2003).
[CrossRef]

Opt. Express (1)

Philos. Trans. R. Soc. Lond. A (1)

D. Berreman, “Numerical modeling of twisted nematic devices,” Philos. Trans. R. Soc. Lond. A 309(1507), 203–216 (1983).
[CrossRef]

Science (3)

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[CrossRef] [PubMed]

R. R. Shah and N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,” Science 293(5533), 1296–1299 (2001).
[CrossRef] [PubMed]

J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals,” Science 302(5653), 2094–2097 (2003).
[CrossRef] [PubMed]

Other (3)

M. Stokes, M. Anderson, S. Chandrasekar, and R. Motta, “A standard default color space for the internet: sRGB,” (1996) http://www.color.org/sRGB.xalter .

J. Delly, “The Michel-Lévy interference color chart-Microscopy’s Magical color key,” (2003) www.modernmicroscopy.com/main.asp?article=15 .

I. Stewart, The static and dynamic continuum theory of liquid crystals (Taylor & Francis Group, New York 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a)Schematic illustration (not scaled) of the polarization directions and the LC directors. (b)Vertical aligned LC directors deform in transverse electric field with a weak bottom anchoring. A top substrate (not shown) can be added.

Fig. 2
Fig. 2

(a)Schematic illustration (not scaled) of the LC director distribution a ~7.5 μm thick and ~20 μm wide LC film at different applied voltages. (b) Schematic illustration (not scaled) of the LC director distribution a ~3 μm thick and ~20 μm wide LC film at different bottom surface anchoring energies. (the director distribution in the middle between the electrodes is assumed to be uniform in (X) and (Y) directions)

Fig. 3
Fig. 3

CIE chromaticity diagram of the colors of a ~7.5 μm thick and ~20 μm wide LC film with the apparent colors at different applied voltages under different bottom surface anchoring conditions.

Fig. 4
Fig. 4

(a) Optical retardations depend on the applied voltage in a ~7.5 μm thick and ~20 μm wide LC film with the apparent colors at different bottom surface anchoring conditions. (b) Scanning electron microscope pictures of the gold interdigitated structure.

Fig. 5
Fig. 5

The polarization micrographs (10 × 5 μm middle area between electrodes) of a ~7.5 μm thick and ~20 μm wide LC film at different the applied voltages. Three orders of interference colors appear.

Fig. 6
Fig. 6

The polarization microscope images after the surface anchoring driven orientational transition induced by DMMP began at a 5 V bias voltage (below Fredericks voltage). The pictures show the process of the orientational transition from homeotropic to unidirectional tilted at the bottom glass substrate. White arrows show the directions of crossed polarizers.

Fig. 7
Fig. 7

Optical retardations depend on surface anchoring energy in different thick LC films with the apparent colors at a 5 V bias voltage.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I = sin 2 ( π Δ n e f f d / λ ) ,
X = P x ¯ I d λ , Y = P y ¯ I d λ , Z = P z ¯ I d λ ,
Δ n e f f = n n | | n 2 sin 2 ( θ ) + n | | 2 cos 2 ( θ ) n

Metrics