Abstract

We report a demodulator for DPSK signals at variable bit rates based on cascaded four-wave mixing (FWM). The demodulation utilizes two FWM processes in a photonic crystal fiber (PCF) with in-between dispersion in a chirped fiber Bragg grating (CFBG). The first FWM generates a wavelength-tunable idler carrying phase information of the signal. A tunable optical delay between the signal and the idler is then introduced by dispersion. The signal, the idler, and the pump are reflected by the CFBG with a reflectance of 99% back to the PCF to initiate the second FWM process. In the second FWM, the phase relationship between the signal and the one-bit-delayed idler determines an amplification or attenuation of the idler, converting phase modulation to intensity modulation. Error-free demodulations have been successfully demonstrated for both NRZ and RZ-DPSK signals at 5 and 10 Gb/s.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Gnauck, X. Liu, S. Chandrasekhar, and X. Wei, “Optical duobinary format from demodulation of DPSK using athermal delay interferometer,” IEEE Photon. Technol. Lett. 18(4), 637–639 (2006).
    [CrossRef]
  2. E. A. Swanson, J. C. Livas, and R. S. Bondurant, “High sensitivity optically preamplified direct detection DPSK receiver with active delay-line stabilization,” IEEE Photon. Technol. Lett. 6(2), 263–265 (1994).
    [CrossRef]
  3. K. Voigt, L. Zimmermann, G. Winzer, T. Mitze, J. Bruns, K. Petermann, B. Hüttl, and C. Schubert, “Performance of 40-Gb/s DPSK demodulator in SOI-technology,” IEEE Photon. Technol. Lett. 20(8), 614–616 (2008).
    [CrossRef]
  4. C. W. Chow and H. K. Tsang, “Polarization-independent DPSK demodulation using a birefringent fiber loop,” IEEE Photon. Technol. Lett. 17(6), 1313–1315 (2005).
    [CrossRef]
  5. T. Y. Kim, M. Hanawa, S. J. Kim, S. Hann, Y. H. Kim, W. T. Han, and C. S. Park, “Optical DPSK demodulator based on pi-phase-shifted fiber Bragg grating with an optically tunable phase shifter,” IEEE Photon. Technol. Lett. 18(17), 1834–1836 (2006).
    [CrossRef]
  6. L. Yi, Y. Jaouën, W. Hu, J. Zhou, Y. Su, and E. Pincemin, “Simultaneous demodulation and slow light of differential phase-shift keying signals using stimulated-Brillouin-scattering-based optical filtering in fiber,” Opt. Lett. 32(21), 3182–3184 (2007).
    [CrossRef] [PubMed]
  7. L. Xu, C. Li, C. Wong, and H. K. Tsang, “Optical differential-phase-shift-keying demodulation using a silicon microring resonator,” IEEE Photon. Technol. Lett. 21(5), 295–297 (2009).
    [CrossRef]
  8. Y. K. Lizé, L. Christen, X. Wu, J.-Y. Yang, S. Nuccio, T. Wu, A. E. Willner, and R. Kashyap, “Free spectral range optimization of return-to-zero differential phase shift keyed demodulation in the presence of chromatic dispersion,” Opt. Express 15(11), 6817–6822 (2007).
    [CrossRef] [PubMed]
  9. Y. K. Lizé, L. Christen, M. Nazarathy, Y. Atzmon, S. Nuccio, P. Saghari, R. Gomma, J.-Y. Yang, R. Kashyap, A. E. Willner, and L. Paraschis, “Tolerances and receiver sensitivity penalties of multibit delay differential-phase shift-keying demodulation,” IEEE Photon. Technol. Lett. 19(23), 1874–1876 (2007).
    [CrossRef]
  10. D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Simple all-optical FFT scheme enabling Tbit/s real-time signal processing,” Opt. Express 18(9), 9324–9340 (2010).
    [CrossRef] [PubMed]
  11. L. Christen, Y. Lizé, S. Nuccio, A. E. Willner, and L. Paraschis, “Variable rate, multi-format receiver design for 10 to 40 Gb/s DPSK and OOK formats,” Opt. Express 16(6), 3828–3833 (2008).
    [CrossRef] [PubMed]
  12. M. P. Fok and C. Shu, “Delay-asymmetric nonlinear loop mirror for DPSK demodulation,” Opt. Lett. 33(23), 2845–2847 (2008).
    [CrossRef] [PubMed]
  13. Y. Dai, C. Shu, and M. P. Fok, “Dual-pumped delay-asymmetric nonlinear loop mirror for DPSK demodulation at widely tunable bit rates,” in Proceedings of OptoElectronics and Communications Conference (IEEE 2009), paper FE6.
  14. Y. Okawachi, M. A. Foster, A. C. Turner, R. Salem, J. S. Levy, M. Lipson, and A. L. Gaeta, “Tunable delays via conversion-dispersion using on-chip four-wave-mixing,” in Proceedings of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2008 Technical Digest (Optical Society of America, Washington, DC, 2008),paper CMBB4.
  15. Y. Dai, and C. Shu, “Tunable DPSK demodulation using variable optical delay in a straight-line interferometric structure,” in Proceedings of European Conference and Exhibition on Optical Communication (IEEE 2010), paper P1. 13.
  16. K. Croussore and G. Li, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase sensitive amplification,” IEEE Photon. Technol. Lett. 19(11), 864–866 (2007).
    [CrossRef]
  17. P. J. Winzer and R. J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol. 24(12), 4711–4728 (2006).
    [CrossRef]
  18. A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol. 23(1), 115–130 (2005).
    [CrossRef]
  19. D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett. 33(24), 3013–3015 (2008).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

L. Xu, C. Li, C. Wong, and H. K. Tsang, “Optical differential-phase-shift-keying demodulation using a silicon microring resonator,” IEEE Photon. Technol. Lett. 21(5), 295–297 (2009).
[CrossRef]

2008 (4)

2007 (4)

K. Croussore and G. Li, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase sensitive amplification,” IEEE Photon. Technol. Lett. 19(11), 864–866 (2007).
[CrossRef]

Y. K. Lizé, L. Christen, X. Wu, J.-Y. Yang, S. Nuccio, T. Wu, A. E. Willner, and R. Kashyap, “Free spectral range optimization of return-to-zero differential phase shift keyed demodulation in the presence of chromatic dispersion,” Opt. Express 15(11), 6817–6822 (2007).
[CrossRef] [PubMed]

Y. K. Lizé, L. Christen, M. Nazarathy, Y. Atzmon, S. Nuccio, P. Saghari, R. Gomma, J.-Y. Yang, R. Kashyap, A. E. Willner, and L. Paraschis, “Tolerances and receiver sensitivity penalties of multibit delay differential-phase shift-keying demodulation,” IEEE Photon. Technol. Lett. 19(23), 1874–1876 (2007).
[CrossRef]

L. Yi, Y. Jaouën, W. Hu, J. Zhou, Y. Su, and E. Pincemin, “Simultaneous demodulation and slow light of differential phase-shift keying signals using stimulated-Brillouin-scattering-based optical filtering in fiber,” Opt. Lett. 32(21), 3182–3184 (2007).
[CrossRef] [PubMed]

2006 (3)

T. Y. Kim, M. Hanawa, S. J. Kim, S. Hann, Y. H. Kim, W. T. Han, and C. S. Park, “Optical DPSK demodulator based on pi-phase-shifted fiber Bragg grating with an optically tunable phase shifter,” IEEE Photon. Technol. Lett. 18(17), 1834–1836 (2006).
[CrossRef]

A. H. Gnauck, X. Liu, S. Chandrasekhar, and X. Wei, “Optical duobinary format from demodulation of DPSK using athermal delay interferometer,” IEEE Photon. Technol. Lett. 18(4), 637–639 (2006).
[CrossRef]

P. J. Winzer and R. J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol. 24(12), 4711–4728 (2006).
[CrossRef]

2005 (2)

A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol. 23(1), 115–130 (2005).
[CrossRef]

C. W. Chow and H. K. Tsang, “Polarization-independent DPSK demodulation using a birefringent fiber loop,” IEEE Photon. Technol. Lett. 17(6), 1313–1315 (2005).
[CrossRef]

1994 (1)

E. A. Swanson, J. C. Livas, and R. S. Bondurant, “High sensitivity optically preamplified direct detection DPSK receiver with active delay-line stabilization,” IEEE Photon. Technol. Lett. 6(2), 263–265 (1994).
[CrossRef]

Atzmon, Y.

Y. K. Lizé, L. Christen, M. Nazarathy, Y. Atzmon, S. Nuccio, P. Saghari, R. Gomma, J.-Y. Yang, R. Kashyap, A. E. Willner, and L. Paraschis, “Tolerances and receiver sensitivity penalties of multibit delay differential-phase shift-keying demodulation,” IEEE Photon. Technol. Lett. 19(23), 1874–1876 (2007).
[CrossRef]

Ben Ezra, S.

Bondurant, R. S.

E. A. Swanson, J. C. Livas, and R. S. Bondurant, “High sensitivity optically preamplified direct detection DPSK receiver with active delay-line stabilization,” IEEE Photon. Technol. Lett. 6(2), 263–265 (1994).
[CrossRef]

Bruns, J.

K. Voigt, L. Zimmermann, G. Winzer, T. Mitze, J. Bruns, K. Petermann, B. Hüttl, and C. Schubert, “Performance of 40-Gb/s DPSK demodulator in SOI-technology,” IEEE Photon. Technol. Lett. 20(8), 614–616 (2008).
[CrossRef]

Chandrasekhar, S.

A. H. Gnauck, X. Liu, S. Chandrasekhar, and X. Wei, “Optical duobinary format from demodulation of DPSK using athermal delay interferometer,” IEEE Photon. Technol. Lett. 18(4), 637–639 (2006).
[CrossRef]

Chow, C. W.

C. W. Chow and H. K. Tsang, “Polarization-independent DPSK demodulation using a birefringent fiber loop,” IEEE Photon. Technol. Lett. 17(6), 1313–1315 (2005).
[CrossRef]

Christen, L.

Croussore, K.

K. Croussore and G. Li, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase sensitive amplification,” IEEE Photon. Technol. Lett. 19(11), 864–866 (2007).
[CrossRef]

Essiambre, R. J.

Fainman, Y.

Fok, M. P.

Freude, W.

Gnauck, A. H.

A. H. Gnauck, X. Liu, S. Chandrasekhar, and X. Wei, “Optical duobinary format from demodulation of DPSK using athermal delay interferometer,” IEEE Photon. Technol. Lett. 18(4), 637–639 (2006).
[CrossRef]

A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol. 23(1), 115–130 (2005).
[CrossRef]

Gomma, R.

Y. K. Lizé, L. Christen, M. Nazarathy, Y. Atzmon, S. Nuccio, P. Saghari, R. Gomma, J.-Y. Yang, R. Kashyap, A. E. Willner, and L. Paraschis, “Tolerances and receiver sensitivity penalties of multibit delay differential-phase shift-keying demodulation,” IEEE Photon. Technol. Lett. 19(23), 1874–1876 (2007).
[CrossRef]

Han, W. T.

T. Y. Kim, M. Hanawa, S. J. Kim, S. Hann, Y. H. Kim, W. T. Han, and C. S. Park, “Optical DPSK demodulator based on pi-phase-shifted fiber Bragg grating with an optically tunable phase shifter,” IEEE Photon. Technol. Lett. 18(17), 1834–1836 (2006).
[CrossRef]

Hanawa, M.

T. Y. Kim, M. Hanawa, S. J. Kim, S. Hann, Y. H. Kim, W. T. Han, and C. S. Park, “Optical DPSK demodulator based on pi-phase-shifted fiber Bragg grating with an optically tunable phase shifter,” IEEE Photon. Technol. Lett. 18(17), 1834–1836 (2006).
[CrossRef]

Hann, S.

T. Y. Kim, M. Hanawa, S. J. Kim, S. Hann, Y. H. Kim, W. T. Han, and C. S. Park, “Optical DPSK demodulator based on pi-phase-shifted fiber Bragg grating with an optically tunable phase shifter,” IEEE Photon. Technol. Lett. 18(17), 1834–1836 (2006).
[CrossRef]

Hillerkuss, D.

Hu, W.

Hüttl, B.

K. Voigt, L. Zimmermann, G. Winzer, T. Mitze, J. Bruns, K. Petermann, B. Hüttl, and C. Schubert, “Performance of 40-Gb/s DPSK demodulator in SOI-technology,” IEEE Photon. Technol. Lett. 20(8), 614–616 (2008).
[CrossRef]

Ikeda, K.

Jaouën, Y.

Kashyap, R.

Y. K. Lizé, L. Christen, X. Wu, J.-Y. Yang, S. Nuccio, T. Wu, A. E. Willner, and R. Kashyap, “Free spectral range optimization of return-to-zero differential phase shift keyed demodulation in the presence of chromatic dispersion,” Opt. Express 15(11), 6817–6822 (2007).
[CrossRef] [PubMed]

Y. K. Lizé, L. Christen, M. Nazarathy, Y. Atzmon, S. Nuccio, P. Saghari, R. Gomma, J.-Y. Yang, R. Kashyap, A. E. Willner, and L. Paraschis, “Tolerances and receiver sensitivity penalties of multibit delay differential-phase shift-keying demodulation,” IEEE Photon. Technol. Lett. 19(23), 1874–1876 (2007).
[CrossRef]

Kim, S. J.

T. Y. Kim, M. Hanawa, S. J. Kim, S. Hann, Y. H. Kim, W. T. Han, and C. S. Park, “Optical DPSK demodulator based on pi-phase-shifted fiber Bragg grating with an optically tunable phase shifter,” IEEE Photon. Technol. Lett. 18(17), 1834–1836 (2006).
[CrossRef]

Kim, T. Y.

T. Y. Kim, M. Hanawa, S. J. Kim, S. Hann, Y. H. Kim, W. T. Han, and C. S. Park, “Optical DPSK demodulator based on pi-phase-shifted fiber Bragg grating with an optically tunable phase shifter,” IEEE Photon. Technol. Lett. 18(17), 1834–1836 (2006).
[CrossRef]

Kim, Y. H.

T. Y. Kim, M. Hanawa, S. J. Kim, S. Hann, Y. H. Kim, W. T. Han, and C. S. Park, “Optical DPSK demodulator based on pi-phase-shifted fiber Bragg grating with an optically tunable phase shifter,” IEEE Photon. Technol. Lett. 18(17), 1834–1836 (2006).
[CrossRef]

Leuthold, J.

Li, C.

L. Xu, C. Li, C. Wong, and H. K. Tsang, “Optical differential-phase-shift-keying demodulation using a silicon microring resonator,” IEEE Photon. Technol. Lett. 21(5), 295–297 (2009).
[CrossRef]

Li, G.

K. Croussore and G. Li, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase sensitive amplification,” IEEE Photon. Technol. Lett. 19(11), 864–866 (2007).
[CrossRef]

Li, J.

Liu, X.

A. H. Gnauck, X. Liu, S. Chandrasekhar, and X. Wei, “Optical duobinary format from demodulation of DPSK using athermal delay interferometer,” IEEE Photon. Technol. Lett. 18(4), 637–639 (2006).
[CrossRef]

Livas, J. C.

E. A. Swanson, J. C. Livas, and R. S. Bondurant, “High sensitivity optically preamplified direct detection DPSK receiver with active delay-line stabilization,” IEEE Photon. Technol. Lett. 6(2), 263–265 (1994).
[CrossRef]

Lizé, Y.

Lizé, Y. K.

Y. K. Lizé, L. Christen, X. Wu, J.-Y. Yang, S. Nuccio, T. Wu, A. E. Willner, and R. Kashyap, “Free spectral range optimization of return-to-zero differential phase shift keyed demodulation in the presence of chromatic dispersion,” Opt. Express 15(11), 6817–6822 (2007).
[CrossRef] [PubMed]

Y. K. Lizé, L. Christen, M. Nazarathy, Y. Atzmon, S. Nuccio, P. Saghari, R. Gomma, J.-Y. Yang, R. Kashyap, A. E. Willner, and L. Paraschis, “Tolerances and receiver sensitivity penalties of multibit delay differential-phase shift-keying demodulation,” IEEE Photon. Technol. Lett. 19(23), 1874–1876 (2007).
[CrossRef]

Marculescu, A.

Mitze, T.

K. Voigt, L. Zimmermann, G. Winzer, T. Mitze, J. Bruns, K. Petermann, B. Hüttl, and C. Schubert, “Performance of 40-Gb/s DPSK demodulator in SOI-technology,” IEEE Photon. Technol. Lett. 20(8), 614–616 (2008).
[CrossRef]

Narkiss, N.

Nazarathy, M.

Y. K. Lizé, L. Christen, M. Nazarathy, Y. Atzmon, S. Nuccio, P. Saghari, R. Gomma, J.-Y. Yang, R. Kashyap, A. E. Willner, and L. Paraschis, “Tolerances and receiver sensitivity penalties of multibit delay differential-phase shift-keying demodulation,” IEEE Photon. Technol. Lett. 19(23), 1874–1876 (2007).
[CrossRef]

Nuccio, S.

Paraschis, L.

L. Christen, Y. Lizé, S. Nuccio, A. E. Willner, and L. Paraschis, “Variable rate, multi-format receiver design for 10 to 40 Gb/s DPSK and OOK formats,” Opt. Express 16(6), 3828–3833 (2008).
[CrossRef] [PubMed]

Y. K. Lizé, L. Christen, M. Nazarathy, Y. Atzmon, S. Nuccio, P. Saghari, R. Gomma, J.-Y. Yang, R. Kashyap, A. E. Willner, and L. Paraschis, “Tolerances and receiver sensitivity penalties of multibit delay differential-phase shift-keying demodulation,” IEEE Photon. Technol. Lett. 19(23), 1874–1876 (2007).
[CrossRef]

Park, C. S.

T. Y. Kim, M. Hanawa, S. J. Kim, S. Hann, Y. H. Kim, W. T. Han, and C. S. Park, “Optical DPSK demodulator based on pi-phase-shifted fiber Bragg grating with an optically tunable phase shifter,” IEEE Photon. Technol. Lett. 18(17), 1834–1836 (2006).
[CrossRef]

Petermann, K.

K. Voigt, L. Zimmermann, G. Winzer, T. Mitze, J. Bruns, K. Petermann, B. Hüttl, and C. Schubert, “Performance of 40-Gb/s DPSK demodulator in SOI-technology,” IEEE Photon. Technol. Lett. 20(8), 614–616 (2008).
[CrossRef]

Pincemin, E.

Saghari, P.

Y. K. Lizé, L. Christen, M. Nazarathy, Y. Atzmon, S. Nuccio, P. Saghari, R. Gomma, J.-Y. Yang, R. Kashyap, A. E. Willner, and L. Paraschis, “Tolerances and receiver sensitivity penalties of multibit delay differential-phase shift-keying demodulation,” IEEE Photon. Technol. Lett. 19(23), 1874–1876 (2007).
[CrossRef]

Saperstein, R. E.

Schubert, C.

K. Voigt, L. Zimmermann, G. Winzer, T. Mitze, J. Bruns, K. Petermann, B. Hüttl, and C. Schubert, “Performance of 40-Gb/s DPSK demodulator in SOI-technology,” IEEE Photon. Technol. Lett. 20(8), 614–616 (2008).
[CrossRef]

Shu, C.

Sigurdsson, G.

Slutsky, B.

Su, Y.

Swanson, E. A.

E. A. Swanson, J. C. Livas, and R. S. Bondurant, “High sensitivity optically preamplified direct detection DPSK receiver with active delay-line stabilization,” IEEE Photon. Technol. Lett. 6(2), 263–265 (1994).
[CrossRef]

Tan, D. T. H.

Teschke, M.

Tsang, H. K.

L. Xu, C. Li, C. Wong, and H. K. Tsang, “Optical differential-phase-shift-keying demodulation using a silicon microring resonator,” IEEE Photon. Technol. Lett. 21(5), 295–297 (2009).
[CrossRef]

C. W. Chow and H. K. Tsang, “Polarization-independent DPSK demodulation using a birefringent fiber loop,” IEEE Photon. Technol. Lett. 17(6), 1313–1315 (2005).
[CrossRef]

Voigt, K.

K. Voigt, L. Zimmermann, G. Winzer, T. Mitze, J. Bruns, K. Petermann, B. Hüttl, and C. Schubert, “Performance of 40-Gb/s DPSK demodulator in SOI-technology,” IEEE Photon. Technol. Lett. 20(8), 614–616 (2008).
[CrossRef]

Wei, X.

A. H. Gnauck, X. Liu, S. Chandrasekhar, and X. Wei, “Optical duobinary format from demodulation of DPSK using athermal delay interferometer,” IEEE Photon. Technol. Lett. 18(4), 637–639 (2006).
[CrossRef]

Willner, A. E.

Winter, M.

Winzer, G.

K. Voigt, L. Zimmermann, G. Winzer, T. Mitze, J. Bruns, K. Petermann, B. Hüttl, and C. Schubert, “Performance of 40-Gb/s DPSK demodulator in SOI-technology,” IEEE Photon. Technol. Lett. 20(8), 614–616 (2008).
[CrossRef]

Winzer, P. J.

Wong, C.

L. Xu, C. Li, C. Wong, and H. K. Tsang, “Optical differential-phase-shift-keying demodulation using a silicon microring resonator,” IEEE Photon. Technol. Lett. 21(5), 295–297 (2009).
[CrossRef]

Worms, K.

Wu, T.

Wu, X.

Xu, L.

L. Xu, C. Li, C. Wong, and H. K. Tsang, “Optical differential-phase-shift-keying demodulation using a silicon microring resonator,” IEEE Photon. Technol. Lett. 21(5), 295–297 (2009).
[CrossRef]

Yang, J.-Y.

Y. K. Lizé, L. Christen, X. Wu, J.-Y. Yang, S. Nuccio, T. Wu, A. E. Willner, and R. Kashyap, “Free spectral range optimization of return-to-zero differential phase shift keyed demodulation in the presence of chromatic dispersion,” Opt. Express 15(11), 6817–6822 (2007).
[CrossRef] [PubMed]

Y. K. Lizé, L. Christen, M. Nazarathy, Y. Atzmon, S. Nuccio, P. Saghari, R. Gomma, J.-Y. Yang, R. Kashyap, A. E. Willner, and L. Paraschis, “Tolerances and receiver sensitivity penalties of multibit delay differential-phase shift-keying demodulation,” IEEE Photon. Technol. Lett. 19(23), 1874–1876 (2007).
[CrossRef]

Yi, L.

Zhou, J.

Zimmermann, L.

K. Voigt, L. Zimmermann, G. Winzer, T. Mitze, J. Bruns, K. Petermann, B. Hüttl, and C. Schubert, “Performance of 40-Gb/s DPSK demodulator in SOI-technology,” IEEE Photon. Technol. Lett. 20(8), 614–616 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (8)

A. H. Gnauck, X. Liu, S. Chandrasekhar, and X. Wei, “Optical duobinary format from demodulation of DPSK using athermal delay interferometer,” IEEE Photon. Technol. Lett. 18(4), 637–639 (2006).
[CrossRef]

E. A. Swanson, J. C. Livas, and R. S. Bondurant, “High sensitivity optically preamplified direct detection DPSK receiver with active delay-line stabilization,” IEEE Photon. Technol. Lett. 6(2), 263–265 (1994).
[CrossRef]

K. Voigt, L. Zimmermann, G. Winzer, T. Mitze, J. Bruns, K. Petermann, B. Hüttl, and C. Schubert, “Performance of 40-Gb/s DPSK demodulator in SOI-technology,” IEEE Photon. Technol. Lett. 20(8), 614–616 (2008).
[CrossRef]

C. W. Chow and H. K. Tsang, “Polarization-independent DPSK demodulation using a birefringent fiber loop,” IEEE Photon. Technol. Lett. 17(6), 1313–1315 (2005).
[CrossRef]

T. Y. Kim, M. Hanawa, S. J. Kim, S. Hann, Y. H. Kim, W. T. Han, and C. S. Park, “Optical DPSK demodulator based on pi-phase-shifted fiber Bragg grating with an optically tunable phase shifter,” IEEE Photon. Technol. Lett. 18(17), 1834–1836 (2006).
[CrossRef]

Y. K. Lizé, L. Christen, M. Nazarathy, Y. Atzmon, S. Nuccio, P. Saghari, R. Gomma, J.-Y. Yang, R. Kashyap, A. E. Willner, and L. Paraschis, “Tolerances and receiver sensitivity penalties of multibit delay differential-phase shift-keying demodulation,” IEEE Photon. Technol. Lett. 19(23), 1874–1876 (2007).
[CrossRef]

K. Croussore and G. Li, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase sensitive amplification,” IEEE Photon. Technol. Lett. 19(11), 864–866 (2007).
[CrossRef]

L. Xu, C. Li, C. Wong, and H. K. Tsang, “Optical differential-phase-shift-keying demodulation using a silicon microring resonator,” IEEE Photon. Technol. Lett. 21(5), 295–297 (2009).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (3)

Opt. Lett. (3)

Other (3)

Y. Dai, C. Shu, and M. P. Fok, “Dual-pumped delay-asymmetric nonlinear loop mirror for DPSK demodulation at widely tunable bit rates,” in Proceedings of OptoElectronics and Communications Conference (IEEE 2009), paper FE6.

Y. Okawachi, M. A. Foster, A. C. Turner, R. Salem, J. S. Levy, M. Lipson, and A. L. Gaeta, “Tunable delays via conversion-dispersion using on-chip four-wave-mixing,” in Proceedings of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2008 Technical Digest (Optical Society of America, Washington, DC, 2008),paper CMBB4.

Y. Dai, and C. Shu, “Tunable DPSK demodulation using variable optical delay in a straight-line interferometric structure,” in Proceedings of European Conference and Exhibition on Optical Communication (IEEE 2010), paper P1. 13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Principle of DPSK demodulation based on cascaded FWM. S: signal; P: pump; I: idler.

Fig. 2
Fig. 2

Setup of the bit-rate variable demodulator. TL: tunable laser; PM: phase modulator; MZM: Mach-Zehnder modulator; EDFA: erbium-doped fiber amplifier; PC: polarization controller; BPF: optical bandpass filter; PCF: photonic crystal fiber; CFBG: chirped fiber Bragg grating; BER: bit error rate.

Fig. 3
Fig. 3

Eye diagrams and optical spectra of the idlers centered at 1555 nm. (a) after the first FWM, (b) behind the CFBG, (c) after the second FWM with 0-phase shift, and (d) after the second FWM with π-phase shift. The measurement positions correspond to points A, B, and C in Fig. 2. Inset: incomplete depletion of idler 1.

Fig. 4
Fig. 4

FWM spectra in the demodulation of (a) 10 Gb/s and (b) 5 Gb/s signals.

Fig. 5
Fig. 5

Demodulated NRZ-DPSK signals. Bit-rate variable demodulator: (a) 10-Gb/s DB, (b) 10-Gb/s AMI, (c) 5-Gb/s DB, (d) 5-Gb/s AMI; Standard DI: (e) 10-Gb/s DB, (f) 10-Gb/s AMI; and (g) BER measurement of the demodulated signals.

Fig. 6
Fig. 6

Demodulated RZ-DPSK signals. Bit-rate variable demodulator: (a) 10-Gb/s DB, (b) 10-Gb/s AMI, (c) 5-Gb/s DB, (d) 5-Gb/s AMI; Standard DI: (e) 10-Gb/s DB, (f) 10-Gb/s AMI; and (g) BER measurement of the demodulated signals.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = 2 ϕ p ϕ s ( t ) ϕ I 1 ( t T ) = ϕ s ( t T ) ϕ s ( t )

Metrics