Abstract

We demonstrate broadband tuning of an optomechanical microcavity optical resonance by exploring the large optomechanical coupling of a double-wheel microcavity and its uniquely low mechanical stiffness. Using a pump laser with only 13 mW at telecom wavelengths we show tuning of the silicon nitride microcavity resonances over 32 nm. This corresponds to a tuning power efficiency of only 400 μW/nm. By choosing a relatively low optical Q resonance (≈18,000) we prevent the cavity from reaching the regime of regenerative optomechanical oscillations. The static mechanical displacement induced by optical gradient forces is estimated to be as large as 60 nm.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
    [CrossRef] [PubMed]
  2. K. Vahala, M. Herrmann, S. Knunz, V. Batteiger, G. Saathoff, T. W. Hansch, and T. Udem, “A phonon laser,” Nat. Phys. 5, 682–686 (2009).
    [CrossRef]
  3. A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
    [CrossRef]
  4. T. Hansch and A. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 1368–69 (1975).
    [CrossRef]
  5. B. G. Lee, A. Biberman, N. Sherwood-Droz, C. B. Poitras, M. Lipson, and K. Bergman, “High-speed 2x2 switch for multiwavelength silicon-photonic networks-on-chip,” J. Lightwave Technol. 27, 2900–2907 (2009).
    [CrossRef]
  6. J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478–483 (2009).
    [CrossRef]
  7. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17, 22271–22280 (2009).
    [CrossRef]
  8. N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47, 044601 (2008).
    [CrossRef]
  9. A. Biberman, N. Sherwood-Droz, B. G. Lee, M. Lipson, and K. Bergman, “Thermally active 4x4 non-blocking switch for networks-on-chip,” in the “21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (2008)”, pp. 370–371.
  10. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (noc),” Opt. Express 16, 15915–15922 (2008).
    [CrossRef] [PubMed]
  11. T. J. Wang, C. H. Chu, and C. Y. Lin, “Electro-optically tunable microring resonators on lithium niobate,” Opt. Lett. 32, 2777–2779 (2007).
    [CrossRef] [PubMed]
  12. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
    [CrossRef]
  13. A. Reja, W. H. Charles, G. Fuwan, I. S. Henry, K. Franz, J. R. Rajeev, and A. P. Milos, “Low power thermal tuning of second-order microring resonators,” in “CLEO/QELS,” (Optical Society of America, 2007), OSA Technical Digest Series (CD), p. CFQ5.
  14. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
    [CrossRef] [PubMed]
  15. I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Loncar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18, 8705–8712 (2010).
    [CrossRef] [PubMed]
  16. K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express 16, 14421–14428 (2008).
    [CrossRef] [PubMed]
  17. J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
    [CrossRef]
  18. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
    [CrossRef]
  19. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
    [CrossRef]
  20. F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength mems-vcsel with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212 –2214 (2004).
    [CrossRef]
  21. T. P. M. Alegre, R. Perahia, and O. Painter, “Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability,” Opt. Express 18, 7872–7885 (2010).
    [CrossRef] [PubMed]
  22. R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).
  23. D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4, 211–217 (2010).
    [CrossRef]
  24. M. Li, W. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
    [CrossRef] [PubMed]
  25. J. Ma and M. L. Povinelli, “Large tuning of birefringence in two strip silicon waveguides via optomechanical motion,” Opt. Express 17, 17818–17828 (2009).
    [CrossRef] [PubMed]
  26. P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1, 658–665 (2007).
    [CrossRef]
  27. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005).
    [CrossRef] [PubMed]
  28. Each ring contributes to half of the total change in the gap between them. the spring constant k is calculated through the static response of the rings to the optical force, a solid-stress finite element analysis was used.
  29. F. W. Delrio, M. P. De Boer, J. A. Knapp, E. D. Reedy, P. J. Clews, and M. L. Dunn, “The role of van der waals forces in adhesion of micromachined surfaces,” Nature Mater. 4, 629–634 (2005).
    [CrossRef]
  30. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
    [CrossRef] [PubMed]
  31. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
    [CrossRef] [PubMed]
  32. A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
    [CrossRef]
  33. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
    [CrossRef] [PubMed]
  34. G. Anetsberger, R. Rivi, A. Schliesser, O. Arcizet, and T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
    [CrossRef]
  35. M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 10 pages (1999).
  36. M. Bao and H. Yang, “Squeeze film air damping in mems,” Sens. Actuators, A 136, 3–27 (2007).
    [CrossRef]
  37. T. Kippenberg and K. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007).
    [CrossRef] [PubMed]
  38. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
    [CrossRef]
  39. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high q ring resonator,” Opt. Express 17, 11366–11370 (2009).
    [CrossRef] [PubMed]
  40. Comsol multiphysics 3.5a is a finite-element multiphysics simulation tool. Comsol AB.

2010 (4)

I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Loncar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18, 8705–8712 (2010).
[CrossRef] [PubMed]

T. P. M. Alegre, R. Perahia, and O. Painter, “Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability,” Opt. Express 18, 7872–7885 (2010).
[CrossRef] [PubMed]

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4, 211–217 (2010).
[CrossRef]

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

2009 (10)

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high q ring resonator,” Opt. Express 17, 11366–11370 (2009).
[CrossRef] [PubMed]

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[CrossRef]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

J. Ma and M. L. Povinelli, “Large tuning of birefringence in two strip silicon waveguides via optomechanical motion,” Opt. Express 17, 17818–17828 (2009).
[CrossRef] [PubMed]

S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
[CrossRef] [PubMed]

K. Vahala, M. Herrmann, S. Knunz, V. Batteiger, G. Saathoff, T. W. Hansch, and T. Udem, “A phonon laser,” Nat. Phys. 5, 682–686 (2009).
[CrossRef]

B. G. Lee, A. Biberman, N. Sherwood-Droz, C. B. Poitras, M. Lipson, and K. Bergman, “High-speed 2x2 switch for multiwavelength silicon-photonic networks-on-chip,” J. Lightwave Technol. 27, 2900–2907 (2009).
[CrossRef]

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478–483 (2009).
[CrossRef]

H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17, 22271–22280 (2009).
[CrossRef]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

2008 (7)

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47, 044601 (2008).
[CrossRef]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (noc),” Opt. Express 16, 15915–15922 (2008).
[CrossRef] [PubMed]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[CrossRef]

K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express 16, 14421–14428 (2008).
[CrossRef] [PubMed]

M. Li, W. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

G. Anetsberger, R. Rivi, A. Schliesser, O. Arcizet, and T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

2007 (7)

M. Bao and H. Yang, “Squeeze film air damping in mems,” Sens. Actuators, A 136, 3–27 (2007).
[CrossRef]

T. Kippenberg and K. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007).
[CrossRef] [PubMed]

P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1, 658–665 (2007).
[CrossRef]

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[CrossRef]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[CrossRef]

T. J. Wang, C. H. Chu, and C. Y. Lin, “Electro-optically tunable microring resonators on lithium niobate,” Opt. Lett. 32, 2777–2779 (2007).
[CrossRef] [PubMed]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[CrossRef]

2005 (3)

M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005).
[CrossRef] [PubMed]

F. W. Delrio, M. P. De Boer, J. A. Knapp, E. D. Reedy, P. J. Clews, and M. L. Dunn, “The role of van der waals forces in adhesion of micromachined surfaces,” Nature Mater. 4, 629–634 (2005).
[CrossRef]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

2004 (1)

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength mems-vcsel with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212 –2214 (2004).
[CrossRef]

2003 (1)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

1999 (1)

M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 10 pages (1999).

1975 (1)

T. Hansch and A. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 1368–69 (1975).
[CrossRef]

1911 (1)

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).

Alegre, T. P. M.

T. P. M. Alegre, R. Perahia, and O. Painter, “Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability,” Opt. Express 18, 7872–7885 (2010).
[CrossRef] [PubMed]

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).

Amann, M.-C.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength mems-vcsel with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212 –2214 (2004).
[CrossRef]

Anetsberger, G.

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[CrossRef]

G. Anetsberger, R. Rivi, A. Schliesser, O. Arcizet, and T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

Arcizet, O.

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[CrossRef]

G. Anetsberger, R. Rivi, A. Schliesser, O. Arcizet, and T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

Aspelmeyer, M.

S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
[CrossRef] [PubMed]

Baehr-Jones, T.

M. Li, W. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Bao, M.

M. Bao and H. Yang, “Squeeze film air damping in mems,” Sens. Actuators, A 136, 3–27 (2007).
[CrossRef]

Batteiger, V.

K. Vahala, M. Herrmann, S. Knunz, V. Batteiger, G. Saathoff, T. W. Hansch, and T. Udem, “A phonon laser,” Nat. Phys. 5, 682–686 (2009).
[CrossRef]

Bergman, K.

Biberman, A.

Boehm, G.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength mems-vcsel with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212 –2214 (2004).
[CrossRef]

Camacho, R.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

Capasso, F.

Carmon, T.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

Chang, D.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[CrossRef]

Charles, W. H.

A. Reja, W. H. Charles, G. Fuwan, I. S. Henry, K. Franz, J. R. Rajeev, and A. P. Milos, “Low power thermal tuning of second-order microring resonators,” in “CLEO/QELS,” (Optical Society of America, 2007), OSA Technical Digest Series (CD), p. CFQ5.

Chen, L.

Chu, C. H.

Clews, P. J.

F. W. Delrio, M. P. De Boer, J. A. Knapp, E. D. Reedy, P. J. Clews, and M. L. Dunn, “The role of van der waals forces in adhesion of micromachined surfaces,” Nature Mater. 4, 629–634 (2005).
[CrossRef]

Cohen, J. D.

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).

Daqun, L.

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47, 044601 (2008).
[CrossRef]

De Boer, M. P.

F. W. Delrio, M. P. De Boer, J. A. Knapp, E. D. Reedy, P. J. Clews, and M. L. Dunn, “The role of van der waals forces in adhesion of micromachined surfaces,” Nature Mater. 4, 629–634 (2005).
[CrossRef]

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[CrossRef]

Delrio, F. W.

F. W. Delrio, M. P. De Boer, J. A. Knapp, E. D. Reedy, P. J. Clews, and M. L. Dunn, “The role of van der waals forces in adhesion of micromachined surfaces,” Nature Mater. 4, 629–634 (2005).
[CrossRef]

Deotare, P. B.

Dunn, M. L.

F. W. Delrio, M. P. De Boer, J. A. Knapp, E. D. Reedy, P. J. Clews, and M. L. Dunn, “The role of van der waals forces in adhesion of micromachined surfaces,” Nature Mater. 4, 629–634 (2005).
[CrossRef]

Eichenfield, M.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[CrossRef]

Frank, I. W.

Franz, K.

A. Reja, W. H. Charles, G. Fuwan, I. S. Henry, K. Franz, J. R. Rajeev, and A. P. Milos, “Low power thermal tuning of second-order microring resonators,” in “CLEO/QELS,” (Optical Society of America, 2007), OSA Technical Digest Series (CD), p. CFQ5.

Fuwan, G.

A. Reja, W. H. Charles, G. Fuwan, I. S. Henry, K. Franz, J. R. Rajeev, and A. P. Milos, “Low power thermal tuning of second-order microring resonators,” in “CLEO/QELS,” (Optical Society of America, 2007), OSA Technical Digest Series (CD), p. CFQ5.

Gondarenko, A.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high q ring resonator,” Opt. Express 17, 11366–11370 (2009).
[CrossRef] [PubMed]

Groblacher, S.

S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
[CrossRef] [PubMed]

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[CrossRef]

Gunter, P.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[CrossRef]

Hadjar, Y.

M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 10 pages (1999).

Halbritter, H.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength mems-vcsel with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212 –2214 (2004).
[CrossRef]

Hammerer, K.

S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
[CrossRef] [PubMed]

Hane, K.

Hansch, T.

T. Hansch and A. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 1368–69 (1975).
[CrossRef]

Hansch, T. W.

K. Vahala, M. Herrmann, S. Knunz, V. Batteiger, G. Saathoff, T. W. Hansch, and T. Udem, “A phonon laser,” Nat. Phys. 5, 682–686 (2009).
[CrossRef]

Han-Yong, N.

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47, 044601 (2008).
[CrossRef]

Heidmann, A.

M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 10 pages (1999).

Henry, I. S.

A. Reja, W. H. Charles, G. Fuwan, I. S. Henry, K. Franz, J. R. Rajeev, and A. P. Milos, “Low power thermal tuning of second-order microring resonators,” in “CLEO/QELS,” (Optical Society of America, 2007), OSA Technical Digest Series (CD), p. CFQ5.

Herrmann, M.

K. Vahala, M. Herrmann, S. Knunz, V. Batteiger, G. Saathoff, T. W. Hansch, and T. Udem, “A phonon laser,” Nat. Phys. 5, 682–686 (2009).
[CrossRef]

Hochberg, M.

M. Li, W. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[CrossRef]

Ibanescu, M.

Ippen, E. P.

P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1, 658–665 (2007).
[CrossRef]

Jiang, X.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

Joannopoulos, J. D.

Johnson, S. G.

Jose, M.

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47, 044601 (2008).
[CrossRef]

Kachesh, P.

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47, 044601 (2008).
[CrossRef]

Kanamori, Y.

Kippenberg, T.

G. Anetsberger, R. Rivi, A. Schliesser, O. Arcizet, and T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

T. Kippenberg and K. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007).
[CrossRef] [PubMed]

Kippenberg, T. J.

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[CrossRef]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Knapp, J. A.

F. W. Delrio, M. P. De Boer, J. A. Knapp, E. D. Reedy, P. J. Clews, and M. L. Dunn, “The role of van der waals forces in adhesion of micromachined surfaces,” Nature Mater. 4, 629–634 (2005).
[CrossRef]

Knunz, S.

K. Vahala, M. Herrmann, S. Knunz, V. Batteiger, G. Saathoff, T. W. Hansch, and T. Udem, “A phonon laser,” Nat. Phys. 5, 682–686 (2009).
[CrossRef]

Kokubun, Y.

Lee, B. G.

Lee, M. C. M.

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[CrossRef]

Leuenberger, D.

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[CrossRef]

Levy, J. S.

Li, M.

M. Li, W. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Lin, C. Y.

Lin, Q.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478–483 (2009).
[CrossRef]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

Lipson, M.

Lira, H. L. R.

Loncar, M.

Ma, J.

Manipatruni, S.

Maute, M.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength mems-vcsel with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212 –2214 (2004).
[CrossRef]

McCutcheon, M. W.

Meenehan, S.

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).

Meissner, P.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength mems-vcsel with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212 –2214 (2004).
[CrossRef]

Michael, C. P.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[CrossRef]

Michael, R. W.

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47, 044601 (2008).
[CrossRef]

Milos, A. P.

A. Reja, W. H. Charles, G. Fuwan, I. S. Henry, K. Franz, J. R. Rajeev, and A. P. Milos, “Low power thermal tuning of second-order microring resonators,” in “CLEO/QELS,” (Optical Society of America, 2007), OSA Technical Digest Series (CD), p. CFQ5.

Painter, O.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

T. P. M. Alegre, R. Perahia, and O. Painter, “Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability,” Opt. Express 18, 7872–7885 (2010).
[CrossRef] [PubMed]

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478–483 (2009).
[CrossRef]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[CrossRef]

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Perahia, R.

T. P. M. Alegre, R. Perahia, and O. Painter, “Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability,” Opt. Express 18, 7872–7885 (2010).
[CrossRef] [PubMed]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[CrossRef]

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).

Pernice, W.

M. Li, W. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Pinard, M.

M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 10 pages (1999).

Poberaj, G.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[CrossRef]

Poitras, C. B.

Popovic, M. A.

P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1, 658–665 (2007).
[CrossRef]

Povinelli, M. L.

Rajeev, J. R.

A. Reja, W. H. Charles, G. Fuwan, I. S. Henry, K. Franz, J. R. Rajeev, and A. P. Milos, “Low power thermal tuning of second-order microring resonators,” in “CLEO/QELS,” (Optical Society of America, 2007), OSA Technical Digest Series (CD), p. CFQ5.

Rakich, P. T.

P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1, 658–665 (2007).
[CrossRef]

Reedy, E. D.

F. W. Delrio, M. P. De Boer, J. A. Knapp, E. D. Reedy, P. J. Clews, and M. L. Dunn, “The role of van der waals forces in adhesion of micromachined surfaces,” Nature Mater. 4, 629–634 (2005).
[CrossRef]

Reja, A.

A. Reja, W. H. Charles, G. Fuwan, I. S. Henry, K. Franz, J. R. Rajeev, and A. P. Milos, “Low power thermal tuning of second-order microring resonators,” in “CLEO/QELS,” (Optical Society of America, 2007), OSA Technical Digest Series (CD), p. CFQ5.

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[CrossRef]

Riemenschneider, F.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength mems-vcsel with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212 –2214 (2004).
[CrossRef]

Rivi, R.

G. Anetsberger, R. Rivi, A. Schliesser, O. Arcizet, and T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

Riviere, R.

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[CrossRef]

Rivière, R.

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

Roberto, R. P.

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47, 044601 (2008).
[CrossRef]

Roels, J.

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4, 211–217 (2010).
[CrossRef]

Rokhsari, H.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

Rosenberg, J.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478–483 (2009).
[CrossRef]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

Saathoff, G.

K. Vahala, M. Herrmann, S. Knunz, V. Batteiger, G. Saathoff, T. W. Hansch, and T. Udem, “A phonon laser,” Nat. Phys. 5, 682–686 (2009).
[CrossRef]

Schawlow, A.

T. Hansch and A. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 1368–69 (1975).
[CrossRef]

Schliesser, A.

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[CrossRef]

G. Anetsberger, R. Rivi, A. Schliesser, O. Arcizet, and T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

Sherwood-Droz, N.

Smythe, E. J.

Soljacic, M.

P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1, 658–665 (2007).
[CrossRef]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Takahashi, K.

Tang, H.

M. Li, W. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Udem, T.

K. Vahala, M. Herrmann, S. Knunz, V. Batteiger, G. Saathoff, T. W. Hansch, and T. Udem, “A phonon laser,” Nat. Phys. 5, 682–686 (2009).
[CrossRef]

Vahala, K.

K. Vahala, M. Herrmann, S. Knunz, V. Batteiger, G. Saathoff, T. W. Hansch, and T. Udem, “A phonon laser,” Nat. Phys. 5, 682–686 (2009).
[CrossRef]

T. Kippenberg and K. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007).
[CrossRef] [PubMed]

Vahala, K. J.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Van Thourhout, D.

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4, 211–217 (2010).
[CrossRef]

Vanner, M. R.

S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
[CrossRef] [PubMed]

Wang, H.

Wang, T. J.

Wiederhecker, G. S.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

Wu, M. C.

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[CrossRef]

Xiong, C.

M. Li, W. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Xuan, W.

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47, 044601 (2008).
[CrossRef]

Yang, H.

M. Bao and H. Yang, “Squeeze film air damping in mems,” Sens. Actuators, A 136, 3–27 (2007).
[CrossRef]

Yang, L.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

Yao, J.

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[CrossRef]

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).

Eur. Phys. J. (1)

M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 10 pages (1999).

IEEE J. Sel. Top. Quantum Electron. (1)

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength mems-vcsel with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212 –2214 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (8)

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478–483 (2009).
[CrossRef]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[CrossRef]

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

G. Anetsberger, R. Rivi, A. Schliesser, O. Arcizet, and T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4, 211–217 (2010).
[CrossRef]

P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1, 658–665 (2007).
[CrossRef]

Nat. Phys. (3)

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[CrossRef]

K. Vahala, M. Herrmann, S. Knunz, V. Batteiger, G. Saathoff, T. W. Hansch, and T. Udem, “A phonon laser,” Nat. Phys. 5, 682–686 (2009).
[CrossRef]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

Nature (3)

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
[CrossRef] [PubMed]

M. Li, W. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Nature Mater. (1)

F. W. Delrio, M. P. De Boer, J. A. Knapp, E. D. Reedy, P. J. Clews, and M. L. Dunn, “The role of van der waals forces in adhesion of micromachined surfaces,” Nature Mater. 4, 629–634 (2005).
[CrossRef]

Opt. Commun. (1)

T. Hansch and A. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 1368–69 (1975).
[CrossRef]

Opt. Eng. (1)

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47, 044601 (2008).
[CrossRef]

Opt. Express (8)

Opt. Lett. (2)

Phys. Rev. Lett. (3)

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Sens. Actuators, A (1)

M. Bao and H. Yang, “Squeeze film air damping in mems,” Sens. Actuators, A 136, 3–27 (2007).
[CrossRef]

Other (4)

Comsol multiphysics 3.5a is a finite-element multiphysics simulation tool. Comsol AB.

Each ring contributes to half of the total change in the gap between them. the spring constant k is calculated through the static response of the rings to the optical force, a solid-stress finite element analysis was used.

A. Biberman, N. Sherwood-Droz, B. G. Lee, M. Lipson, and K. Bergman, “Thermally active 4x4 non-blocking switch for networks-on-chip,” in the “21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (2008)”, pp. 370–371.

A. Reja, W. H. Charles, G. Fuwan, I. S. Henry, K. Franz, J. R. Rajeev, and A. P. Milos, “Low power thermal tuning of second-order microring resonators,” in “CLEO/QELS,” (Optical Society of America, 2007), OSA Technical Digest Series (CD), p. CFQ5.

Supplementary Material (1)

» Media 1: MOV (3845 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical force actuated optical microcavity. a. Schematic of the device with a sliced cross-section showing the TE1 symmetric optical mode profile. b. Optical resonant wavelength (blue curve, left axis) and optomechanical tuning efficiency (red curve, right axis) dependence with the air gap between the rings. The black-dashed line indicates a gap of 170 nm, close to the fabricated cavity. c,d. Scanning electron micrograph of two vertically stacked ring cavites.

Fig. 2
Fig. 2

Limit for static tunability of optomechanical cavities. (a) Two simulated mechanical floppy modes and their respective effective masses. (b) Effective mechanical linewidth normalized by the intrinsic mechanical linewidth (Γ′mm) as a function of the normalized pump laser frequency detuning (Δ/Γ). The blue-detuned pump laser induces gain, which above a certain threshold induces regenerative mechanical oscillations. The dashed-blue line indicates the optical resonance profile whereas the dashed-green line shows the oscillation threshold. (c) Maximum static tuning predicted by Eq. (2) before reaching oscillation threshold versus the loaded optical quality factor. The different lines corresponds to the threshold for the two different mechanical modes shown in part (a). The dashed vertical line indicates the loaded optical Q of the tested device.

Fig. 3
Fig. 3

Experimental setup and cold-transmission. (a) Top view optical micrograph of the device showing the tapered optical fiber used to support the device. This is due to change in the interference pattern as the air-gap between the rings changes. (b) Schematic of the experimental setup, PD1,2 denotes the two photodiodes used to record the pump and probe transmission. (c) Low power (100 nW) optical transmission of the cavity highlighting both the probe (1460–1500 nm) and pump (1575–1620 nm) wavelength region.

Fig. 4
Fig. 4

Optomechanical tuning of double-ring cavity. (a) ( Media 1) Measured probe laser transmission for a pump power of 13 mW. The different curves are recorded at distinct pump laser detuning from the cavity resonance, the bottom and top curves are recorder when the pump laser is out of resonance and fully resonant, respectively; the micrographs on the right show the cavity color recorded corresponding to the transmission curves indicated by the arrows. The embedded movie shows the ring color changing as the optical force builds up on the device. (b) Measured optical transmission of the pump laser at increasing power levels. (c) RF spectrum showing the optomechanical amplification of the mechanical resonance, even at maximum amplification (yellow curve) the measured mechanical quality factor is 30. (d) RF spectrum of the transmitted pump laser showing the optical spring effect on the mechanical resonance. The highlighted regions (e,g) show the anti-crossing between the mechanical resonant modes. The false color scale represents the RF power in dBm. (f,g) Simulated bright and dark mechanical modes corresponding to the anti-crossings observed on (e,g).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ω = 2 Q i g o m 2 ω 0 2 k P d ,
Δ ω t h ( m ) = m eff ( m ) Ω m 2 k Q m ( g o m g o m ( m ) ) 2 ( ω 0 Q ) 2 m eff ( m ) Ω m 2 k Q m ( ω 0 Q ) 2 .

Metrics