Abstract

Broad-gain operation of λ~8.7 μm quantum cascade lasers based on dual-upper-state to multiple-lower-state transition design is reported. The devices exhibit surprisingly wide (~500 cm−1) electroluminescence spectra which are very insensitive to voltage and temperature changes above room temperature. With recourse to the temperature-insensitivity of electroluminescence spectra, the lasers demonstrate an extremely-weak temperature-dependence of laser performances: T 0-value of 510 K, associated with a room temperature threshold current density of 2.6 kA/cm2. In addition, despite such wide gain spectra, room temperature, continuous wave operation of the laser with buried hetero structure is achieved.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
    [CrossRef] [PubMed]
  2. G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
    [CrossRef]
  3. C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002) (London).
    [CrossRef] [PubMed]
  4. A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous High-Performance Quantum-Cascade Laser Sources for Broad-Band Tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008).
    [CrossRef]
  5. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
    [CrossRef]
  6. M. Geiser, C. Pflügl, A. Belyanin, Q. J. Wang, N. Yu, T. Edamura, M. Yamanishi, H. Kan, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Gain competition in dual wavelength quantum cascade lasers,” Opt. Express 18(10), 9900–9908 (2010).
    [CrossRef] [PubMed]
  7. J. Faist, M. Beck, T. Aellen, and E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78(2), 147–149 (2001).
    [CrossRef]
  8. Y. Yao, W. O. Charles, T. Tsai, J. Chen, G. Wysocki, and C. F. Gmachl, “Broadband quantum cascade laser gain medium based on a “continuum-to-bound” active region design,” Appl. Phys. Lett. 96(21), 211106 (2010).
    [CrossRef]
  9. Y. Yao, X. Wang, J. Y. Fan, and C. F. Gmachl, “High performance “continuum-to-continuum” quantum cascade lasers with a broad gain bandwidth of over 400 cm[sup −1],” Appl. Phys. Lett. 97(8), 081115 (2010).
    [CrossRef]
  10. K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett. 96(24), 241107 (2010).
    [CrossRef]
  11. K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 91(14), 141121 (2007).
    [CrossRef]
  12. A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008).
    [CrossRef]
  13. K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “High-Performance $8.6~m$ Quantum Cascade Lasers With Single Phonon-Continuum Depopulation Structures,” IEEE J. Quantum Electron. 46(5), 683–688 (2010).
    [CrossRef]
  14. K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T[sub 0]-values (∼450 K) of long-wavelength (∼15 μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97(20), 201109 (2010).
    [CrossRef]
  15. M. Yamanishi, K. Fujita, T. Edamura, and H. Kan, “Indirect pump scheme for quantum cascade lasers: dynamics of electron-transport and very high T0-values,” Opt. Express 16(25), 20748–20758 (2008).
    [CrossRef] [PubMed]
  16. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
    [CrossRef]

2010 (6)

Y. Yao, W. O. Charles, T. Tsai, J. Chen, G. Wysocki, and C. F. Gmachl, “Broadband quantum cascade laser gain medium based on a “continuum-to-bound” active region design,” Appl. Phys. Lett. 96(21), 211106 (2010).
[CrossRef]

Y. Yao, X. Wang, J. Y. Fan, and C. F. Gmachl, “High performance “continuum-to-continuum” quantum cascade lasers with a broad gain bandwidth of over 400 cm[sup −1],” Appl. Phys. Lett. 97(8), 081115 (2010).
[CrossRef]

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett. 96(24), 241107 (2010).
[CrossRef]

M. Geiser, C. Pflügl, A. Belyanin, Q. J. Wang, N. Yu, T. Edamura, M. Yamanishi, H. Kan, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Gain competition in dual wavelength quantum cascade lasers,” Opt. Express 18(10), 9900–9908 (2010).
[CrossRef] [PubMed]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “High-Performance $8.6~m$ Quantum Cascade Lasers With Single Phonon-Continuum Depopulation Structures,” IEEE J. Quantum Electron. 46(5), 683–688 (2010).
[CrossRef]

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T[sub 0]-values (∼450 K) of long-wavelength (∼15 μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97(20), 201109 (2010).
[CrossRef]

2009 (1)

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

2008 (3)

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008).
[CrossRef]

M. Yamanishi, K. Fujita, T. Edamura, and H. Kan, “Indirect pump scheme for quantum cascade lasers: dynamics of electron-transport and very high T0-values,” Opt. Express 16(25), 20748–20758 (2008).
[CrossRef] [PubMed]

A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous High-Performance Quantum-Cascade Laser Sources for Broad-Band Tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008).
[CrossRef]

2007 (1)

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 91(14), 141121 (2007).
[CrossRef]

2002 (1)

C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002) (London).
[CrossRef] [PubMed]

2001 (2)

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[CrossRef]

J. Faist, M. Beck, T. Aellen, and E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78(2), 147–149 (2001).
[CrossRef]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

1982 (1)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[CrossRef]

Aellen, T.

J. Faist, M. Beck, T. Aellen, and E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78(2), 147–149 (2001).
[CrossRef]

Akikusa, N.

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “High-Performance $8.6~m$ Quantum Cascade Lasers With Single Phonon-Continuum Depopulation Structures,” IEEE J. Quantum Electron. 46(5), 683–688 (2010).
[CrossRef]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 91(14), 141121 (2007).
[CrossRef]

Arakawa, Y.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[CrossRef]

Baillargeon, J. N.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[CrossRef]

Beck, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

J. Faist, M. Beck, T. Aellen, and E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78(2), 147–149 (2001).
[CrossRef]

Belyanin, A.

M. Geiser, C. Pflügl, A. Belyanin, Q. J. Wang, N. Yu, T. Edamura, M. Yamanishi, H. Kan, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Gain competition in dual wavelength quantum cascade lasers,” Opt. Express 18(10), 9900–9908 (2010).
[CrossRef] [PubMed]

Bonetti, Y.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008).
[CrossRef]

Capasso, F.

M. Geiser, C. Pflügl, A. Belyanin, Q. J. Wang, N. Yu, T. Edamura, M. Yamanishi, H. Kan, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Gain competition in dual wavelength quantum cascade lasers,” Opt. Express 18(10), 9900–9908 (2010).
[CrossRef] [PubMed]

C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002) (London).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Charles, W. O.

Y. Yao, W. O. Charles, T. Tsai, J. Chen, G. Wysocki, and C. F. Gmachl, “Broadband quantum cascade laser gain medium based on a “continuum-to-bound” active region design,” Appl. Phys. Lett. 96(21), 211106 (2010).
[CrossRef]

Chen, J.

Y. Yao, W. O. Charles, T. Tsai, J. Chen, G. Wysocki, and C. F. Gmachl, “Broadband quantum cascade laser gain medium based on a “continuum-to-bound” active region design,” Appl. Phys. Lett. 96(21), 211106 (2010).
[CrossRef]

Cho, A. Y.

C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002) (London).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Colombelli, R.

C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002) (London).
[CrossRef] [PubMed]

Edamura, T.

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T[sub 0]-values (∼450 K) of long-wavelength (∼15 μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97(20), 201109 (2010).
[CrossRef]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “High-Performance $8.6~m$ Quantum Cascade Lasers With Single Phonon-Continuum Depopulation Structures,” IEEE J. Quantum Electron. 46(5), 683–688 (2010).
[CrossRef]

M. Geiser, C. Pflügl, A. Belyanin, Q. J. Wang, N. Yu, T. Edamura, M. Yamanishi, H. Kan, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Gain competition in dual wavelength quantum cascade lasers,” Opt. Express 18(10), 9900–9908 (2010).
[CrossRef] [PubMed]

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett. 96(24), 241107 (2010).
[CrossRef]

M. Yamanishi, K. Fujita, T. Edamura, and H. Kan, “Indirect pump scheme for quantum cascade lasers: dynamics of electron-transport and very high T0-values,” Opt. Express 16(25), 20748–20758 (2008).
[CrossRef] [PubMed]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 91(14), 141121 (2007).
[CrossRef]

Faist, J.

M. Geiser, C. Pflügl, A. Belyanin, Q. J. Wang, N. Yu, T. Edamura, M. Yamanishi, H. Kan, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Gain competition in dual wavelength quantum cascade lasers,” Opt. Express 18(10), 9900–9908 (2010).
[CrossRef] [PubMed]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008).
[CrossRef]

A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous High-Performance Quantum-Cascade Laser Sources for Broad-Band Tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008).
[CrossRef]

J. Faist, M. Beck, T. Aellen, and E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78(2), 147–149 (2001).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Fan, J. Y.

Y. Yao, X. Wang, J. Y. Fan, and C. F. Gmachl, “High performance “continuum-to-continuum” quantum cascade lasers with a broad gain bandwidth of over 400 cm[sup −1],” Appl. Phys. Lett. 97(8), 081115 (2010).
[CrossRef]

Fischer, M.

M. Geiser, C. Pflügl, A. Belyanin, Q. J. Wang, N. Yu, T. Edamura, M. Yamanishi, H. Kan, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Gain competition in dual wavelength quantum cascade lasers,” Opt. Express 18(10), 9900–9908 (2010).
[CrossRef] [PubMed]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

Fujita, K.

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T[sub 0]-values (∼450 K) of long-wavelength (∼15 μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97(20), 201109 (2010).
[CrossRef]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “High-Performance $8.6~m$ Quantum Cascade Lasers With Single Phonon-Continuum Depopulation Structures,” IEEE J. Quantum Electron. 46(5), 683–688 (2010).
[CrossRef]

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett. 96(24), 241107 (2010).
[CrossRef]

M. Yamanishi, K. Fujita, T. Edamura, and H. Kan, “Indirect pump scheme for quantum cascade lasers: dynamics of electron-transport and very high T0-values,” Opt. Express 16(25), 20748–20758 (2008).
[CrossRef] [PubMed]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 91(14), 141121 (2007).
[CrossRef]

Furuta, S.

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett. 96(24), 241107 (2010).
[CrossRef]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “High-Performance $8.6~m$ Quantum Cascade Lasers With Single Phonon-Continuum Depopulation Structures,” IEEE J. Quantum Electron. 46(5), 683–688 (2010).
[CrossRef]

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T[sub 0]-values (∼450 K) of long-wavelength (∼15 μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97(20), 201109 (2010).
[CrossRef]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 91(14), 141121 (2007).
[CrossRef]

Geiser, M.

M. Geiser, C. Pflügl, A. Belyanin, Q. J. Wang, N. Yu, T. Edamura, M. Yamanishi, H. Kan, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Gain competition in dual wavelength quantum cascade lasers,” Opt. Express 18(10), 9900–9908 (2010).
[CrossRef] [PubMed]

Gini, E.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008).
[CrossRef]

A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous High-Performance Quantum-Cascade Laser Sources for Broad-Band Tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008).
[CrossRef]

J. Faist, M. Beck, T. Aellen, and E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78(2), 147–149 (2001).
[CrossRef]

Giovannini, M.

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008).
[CrossRef]

Gmachl, C.

C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002) (London).
[CrossRef] [PubMed]

Gmachl, C. F.

Y. Yao, X. Wang, J. Y. Fan, and C. F. Gmachl, “High performance “continuum-to-continuum” quantum cascade lasers with a broad gain bandwidth of over 400 cm[sup −1],” Appl. Phys. Lett. 97(8), 081115 (2010).
[CrossRef]

Y. Yao, W. O. Charles, T. Tsai, J. Chen, G. Wysocki, and C. F. Gmachl, “Broadband quantum cascade laser gain medium based on a “continuum-to-bound” active region design,” Appl. Phys. Lett. 96(21), 211106 (2010).
[CrossRef]

Hoyler, N.

A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous High-Performance Quantum-Cascade Laser Sources for Broad-Band Tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008).
[CrossRef]

Hugi, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous High-Performance Quantum-Cascade Laser Sources for Broad-Band Tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008).
[CrossRef]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Hwang, W.-Y.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[CrossRef]

Ishaug, B.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[CrossRef]

Kan, H.

M. Geiser, C. Pflügl, A. Belyanin, Q. J. Wang, N. Yu, T. Edamura, M. Yamanishi, H. Kan, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Gain competition in dual wavelength quantum cascade lasers,” Opt. Express 18(10), 9900–9908 (2010).
[CrossRef] [PubMed]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “High-Performance $8.6~m$ Quantum Cascade Lasers With Single Phonon-Continuum Depopulation Structures,” IEEE J. Quantum Electron. 46(5), 683–688 (2010).
[CrossRef]

M. Yamanishi, K. Fujita, T. Edamura, and H. Kan, “Indirect pump scheme for quantum cascade lasers: dynamics of electron-transport and very high T0-values,” Opt. Express 16(25), 20748–20758 (2008).
[CrossRef] [PubMed]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 91(14), 141121 (2007).
[CrossRef]

Le, H. Q.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[CrossRef]

Lin, C.-H.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[CrossRef]

Luo, G. P.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[CrossRef]

Ochiai, T.

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “High-Performance $8.6~m$ Quantum Cascade Lasers With Single Phonon-Continuum Depopulation Structures,” IEEE J. Quantum Electron. 46(5), 683–688 (2010).
[CrossRef]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 91(14), 141121 (2007).
[CrossRef]

Pei, S. S.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[CrossRef]

Peng, C.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[CrossRef]

Pflügl, C.

M. Geiser, C. Pflügl, A. Belyanin, Q. J. Wang, N. Yu, T. Edamura, M. Yamanishi, H. Kan, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Gain competition in dual wavelength quantum cascade lasers,” Opt. Express 18(10), 9900–9908 (2010).
[CrossRef] [PubMed]

Sakaki, H.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[CrossRef]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002) (London).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Sugiyama, A.

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T[sub 0]-values (∼450 K) of long-wavelength (∼15 μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97(20), 201109 (2010).
[CrossRef]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “High-Performance $8.6~m$ Quantum Cascade Lasers With Single Phonon-Continuum Depopulation Structures,” IEEE J. Quantum Electron. 46(5), 683–688 (2010).
[CrossRef]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 91(14), 141121 (2007).
[CrossRef]

Terazzi, R.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

Tsai, T.

Y. Yao, W. O. Charles, T. Tsai, J. Chen, G. Wysocki, and C. F. Gmachl, “Broadband quantum cascade laser gain medium based on a “continuum-to-bound” active region design,” Appl. Phys. Lett. 96(21), 211106 (2010).
[CrossRef]

Um, J.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[CrossRef]

Wang, Q. J.

M. Geiser, C. Pflügl, A. Belyanin, Q. J. Wang, N. Yu, T. Edamura, M. Yamanishi, H. Kan, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Gain competition in dual wavelength quantum cascade lasers,” Opt. Express 18(10), 9900–9908 (2010).
[CrossRef] [PubMed]

Wang, X.

Y. Yao, X. Wang, J. Y. Fan, and C. F. Gmachl, “High performance “continuum-to-continuum” quantum cascade lasers with a broad gain bandwidth of over 400 cm[sup −1],” Appl. Phys. Lett. 97(8), 081115 (2010).
[CrossRef]

Wittmann, A.

M. Geiser, C. Pflügl, A. Belyanin, Q. J. Wang, N. Yu, T. Edamura, M. Yamanishi, H. Kan, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Gain competition in dual wavelength quantum cascade lasers,” Opt. Express 18(10), 9900–9908 (2010).
[CrossRef] [PubMed]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008).
[CrossRef]

A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous High-Performance Quantum-Cascade Laser Sources for Broad-Band Tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008).
[CrossRef]

Wysocki, G.

Y. Yao, W. O. Charles, T. Tsai, J. Chen, G. Wysocki, and C. F. Gmachl, “Broadband quantum cascade laser gain medium based on a “continuum-to-bound” active region design,” Appl. Phys. Lett. 96(21), 211106 (2010).
[CrossRef]

Yamanishi, M.

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T[sub 0]-values (∼450 K) of long-wavelength (∼15 μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97(20), 201109 (2010).
[CrossRef]

M. Geiser, C. Pflügl, A. Belyanin, Q. J. Wang, N. Yu, T. Edamura, M. Yamanishi, H. Kan, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Gain competition in dual wavelength quantum cascade lasers,” Opt. Express 18(10), 9900–9908 (2010).
[CrossRef] [PubMed]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “High-Performance $8.6~m$ Quantum Cascade Lasers With Single Phonon-Continuum Depopulation Structures,” IEEE J. Quantum Electron. 46(5), 683–688 (2010).
[CrossRef]

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett. 96(24), 241107 (2010).
[CrossRef]

M. Yamanishi, K. Fujita, T. Edamura, and H. Kan, “Indirect pump scheme for quantum cascade lasers: dynamics of electron-transport and very high T0-values,” Opt. Express 16(25), 20748–20758 (2008).
[CrossRef] [PubMed]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 91(14), 141121 (2007).
[CrossRef]

Yao, Y.

Y. Yao, W. O. Charles, T. Tsai, J. Chen, G. Wysocki, and C. F. Gmachl, “Broadband quantum cascade laser gain medium based on a “continuum-to-bound” active region design,” Appl. Phys. Lett. 96(21), 211106 (2010).
[CrossRef]

Y. Yao, X. Wang, J. Y. Fan, and C. F. Gmachl, “High performance “continuum-to-continuum” quantum cascade lasers with a broad gain bandwidth of over 400 cm[sup −1],” Appl. Phys. Lett. 97(8), 081115 (2010).
[CrossRef]

Yu, N.

M. Geiser, C. Pflügl, A. Belyanin, Q. J. Wang, N. Yu, T. Edamura, M. Yamanishi, H. Kan, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Gain competition in dual wavelength quantum cascade lasers,” Opt. Express 18(10), 9900–9908 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (10)

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[CrossRef]

J. Faist, M. Beck, T. Aellen, and E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78(2), 147–149 (2001).
[CrossRef]

Y. Yao, W. O. Charles, T. Tsai, J. Chen, G. Wysocki, and C. F. Gmachl, “Broadband quantum cascade laser gain medium based on a “continuum-to-bound” active region design,” Appl. Phys. Lett. 96(21), 211106 (2010).
[CrossRef]

Y. Yao, X. Wang, J. Y. Fan, and C. F. Gmachl, “High performance “continuum-to-continuum” quantum cascade lasers with a broad gain bandwidth of over 400 cm[sup −1],” Appl. Phys. Lett. 97(8), 081115 (2010).
[CrossRef]

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett. 96(24), 241107 (2010).
[CrossRef]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 91(14), 141121 (2007).
[CrossRef]

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T[sub 0]-values (∼450 K) of long-wavelength (∼15 μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97(20), 201109 (2010).
[CrossRef]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “High-Performance $8.6~m$ Quantum Cascade Lasers With Single Phonon-Continuum Depopulation Structures,” IEEE J. Quantum Electron. 46(5), 683–688 (2010).
[CrossRef]

A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous High-Performance Quantum-Cascade Laser Sources for Broad-Band Tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008).
[CrossRef]

Nature (1)

C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002) (London).
[CrossRef] [PubMed]

Opt. Express (2)

M. Yamanishi, K. Fujita, T. Edamura, and H. Kan, “Indirect pump scheme for quantum cascade lasers: dynamics of electron-transport and very high T0-values,” Opt. Express 16(25), 20748–20758 (2008).
[CrossRef] [PubMed]

M. Geiser, C. Pflügl, A. Belyanin, Q. J. Wang, N. Yu, T. Edamura, M. Yamanishi, H. Kan, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Gain competition in dual wavelength quantum cascade lasers,” Opt. Express 18(10), 9900–9908 (2010).
[CrossRef] [PubMed]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic conduction band diagram and moduli squared of the relevant wavefunctions of injector/active/injector parts in the active region. An electric field of 41 kV/cm was applied to align the structure. The InGaAs/InAlAs layer sequence of one period of the active layers, in angstroms, starting from the injection barrier (toward the right side) is as follows: 37/31/27/75/9/58/10/52/12/41/15/38/16/35/ 17 /34/ 20 /34/23/34/28/33 where InAlAs barrier layers are in bold, InGaAs QW layers in roman, and doped layers (Si, 5x1010 cm−2) are underlined.

Fig. 2
Fig. 2

(a) Intersubband EL spectra of the mesa device for various voltages. (b) The FWHM of the spectra, for the DAU/MS device as well as for the DAU/SS, the BTC, and the bound-to-bound devices, respectively, as a function of voltage.

Fig. 3
Fig. 3

(a) Intersubband EL spectra of the mesa device for various temperatures. (b) The ratios of 1/γ and peak intensities of the EL spectra for the DAU/MS device as well as for the DAU/SS, and the bound-to-bound devices, respectively, as a function of temperature. (c) 1/γ versus temperatures for the DAU/MS device as well as for the DAU/SS, and the bound-to-bound devices.

Fig. 4
Fig. 4

(a) Pulsed current-light output characteristics of the 14.0 μm-wide, 3.0 mm-long, HR-coated, ridge laser at different heat sink temperatures. The voltage-current characteristics at various temperatures are also shown. (b) The spectra of the laser at 300 K.

Fig. 5
Fig. 5

Threshold current densities at threshold as a function of heat sink temperature in pulsed operation. The solid curves represent fits by the empirical exponential functions, J th=J 0exp(T/ T 0).

Fig. 6
Fig. 6

(a) cw current-light output characteristics of the 8.0 μm-wide, 3.0 mm-long, HR-coated, BH laser with a thick gold film at different heat sink temperatures. The voltage-current characteristics are also shown. The inset shows threshold current density as functions of heat sink temperature in cw operation. (b) The spectra in both subthreshold and above-threshold operation of the laser at 10 °C.

Metrics