Abstract

We present a general approach, based on the discrete dipole approximation (DDA), for the computation of the exchange of momentum between light and a magnetodielectric, three-dimensional object with arbitrary geometry and linear permittivity and permeability tensors in time domain. The method can handle objects with an arbitrary shape, including objects with dispersive dielectric and/or magnetic material responses.

© 2011 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Efficient iterative solution of the discrete dipole approximation for magnetodielectric scatterers

Patrick C. Chaumet and Adel Rahmani
Opt. Lett. 34(7) 917-919 (2009)

Coupled-dipole method in time domain

Patrick C. Chaumet, Kamal Belkebir, and Adel Rahmani
Opt. Express 16(25) 20157-20165 (2008)

Electromagnetic force and torque on magnetic and negative-index scatterers

Patrick C. Chaumet and Adel Rahmani
Opt. Express 17(4) 2224-2234 (2009)

References

  • View by:
  • |
  • |
  • |

  1. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
    [Crossref]
  2. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
    [Crossref]
  3. P. C. Chaumet, A. Rahmani, and G. W. Bryant, “Generalization of the coupled dipole method to periodic structure,” Phys. Rev. B 67, 165,404–5 (2003).
    [Crossref]
  4. P. C. Chaumet and A. Sentenac, “Numerical simulations of the electromagnetic field scattered by defects in a double-periodic structure,” Phys. Rev. B 72, 205,437–8 (2005).
    [Crossref]
  5. A. Rahmani, P. C. Chaumet, and F. de Fornel, “Enrironment-induced modification of spontaneous emission: Single-molecule near-field probe,” Phys. Rev. A 63, 023,819–11 (2001).
    [Crossref]
  6. A. Rahmani and G. W. Bryant, “Spontaneous emission in microcavity electrodynamics,” Phys. Rev. A 65, 033,817–12 (2002).
    [Crossref]
  7. F. Bordas, N. Louvion, S. Callard, P. C. Chaumet, and A. Rahmani, “Coupled dipole method for radiation dynamics in finite photonic crystal structures,” Phys. Rev. E 73, 056,601 (2006).
    [Crossref]
  8. A. Rahmani, P. C. Chaumet, and G. W. Bryant, “Discrete dipole approximation for the study of radiation dynamics in a magnetodielectric environment,” Opt. Express 18, 8499–8504 (2010).
    [Crossref] [PubMed]
  9. B. T. Draine and J. C. Weingartner, “Radiative Torques on Interstellar Grains: I. Superthermal Spinup,” Astrophys. J. 470, 551–565 (1996).
    [Crossref]
  10. A. G. Hoekstra, M. Frijlink, L. B. F. M. Waters, and P. M. A. Sloot, “Radiation forces in the discrete-dipole approximation,” J. Opt. Soc. Am. A 18, 1944–1953 (2001).
    [Crossref]
  11. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Photonic force spectroscopy on metallic and absorbing nanoparticles,” Phys. Rev. B 71, 045,425 (2005).
    [Crossref]
  12. P. C. Chaumet, A. Rahmani, A. Sentenac, and G. W. Bryant, “Efficient computation of optical forces with the coupled dipole method,” Phys. Rev. E 72, 046,708–6 (2005).
    [Crossref]
  13. A. Rahmani and P. C. Chaumet, “Optical Trapping near a Photonic Crystal,” Opt. Express 14, 6353–6358 (2006).
    [Crossref] [PubMed]
  14. P. C. Chaumet and C. Billaudeau, “Coupled dipole method to compute optical torque: Application to a micro-propeller,” J. Appl. Phys. 101, 023,106–6 (2007).
    [Crossref]
  15. M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spect. Rad. Transf. 106, 558–589 (2007).
    [Crossref]
  16. P. C. Chaumet, K. Belkebir, and A. Rahmani, “Coupled-dipole method in time domain,” Opt. Express 16, 20,157–20,165 (2008).
    [Crossref]
  17. P. C. Chaumet, K. Belkebir, and A. Rahmani, “Optical forces in time domain on arbitrary objects,” Phys. Rev. A (2010).
    [Crossref]
  18. P. C. Chaumet and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000).
    [Crossref]
  19. B. D. H. Tellegen, “Magnetic-Dipole models,” Am. J. Phys. 30, 650–652 (1962).
    [Crossref]
  20. L. Vaidman, “Torque and force on a magnetic dipole,” Am. J. Phys. 58, 978–983 (1990).
    [Crossref]
  21. M. Mansuripur, “Radiation pressure and the linear momentum of the electromagnetic field in magnetic media,” Opt. Express 15, 13,502–13,518 (2007).
    [Crossref]
  22. M. Mansuripur and A. R. Zakharian, “Maxwell’s macroscopic equations, the energy-momentum postulates, and the Lorentz law of force,” Phys. Rev. E 79, 026,608–10 (2009).
    [Crossref]
  23. E. E. Radescu and G. Vaman, “Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles,” Phys. Rev. A 65, 046,609–47 (2002).
  24. E. E. Radescu and G. Vaman, “Toroid moments in the momentum and angular momentum loss by a radiating arbitrary source,” Phys. Rev. A 65, 035,601–3 (2002).
  25. P. C. Chaumet and A. Rahmani, “Electromagnetic force and torque on magnetic and negative-index scatterers,” Opt. Express 17, 2224–2234 (2009).
    [Crossref] [PubMed]
  26. P. C. Chaumet and A. Rahmani, “Efficient iterative solution of the discrete dipole approximation for mag neto-dielectric scatterers,” Opt. Lett. 34, 917–919 (2009).
    [Crossref] [PubMed]
  27. P. C. Chaumet and A. Rahmani, “Coupled-dipole method for magnetic and negative refraction materials,” J. Quant. Spect. Rad. Transf. 110, 22–29 (2009).
    [Crossref]
  28. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat. 14, 302–307 (1969).
  29. A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Transactions on Microwave Theory and Techniques 23, 623–630 (1975).
    [Crossref]
  30. A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady state electromagnetic penetration problems,” IEEE Trans. Antennas Propagat. 22, 191–202 (1975).
  31. P. C. Chaumet, “Comment on “Trapping force, force constant, and potential depths for dielectric spheres in the presence of spherical aberrations”,” Appl. Opt. 43, 1825–1826 (2004).
    [Crossref] [PubMed]
  32. J. R. Arias-González and M. Nieto-Vesperinas, “Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions,” J. Opt. Soc. Am. A 20, 1201–1209 (2003).
    [Crossref]
  33. R. W. Ziolkowski, “Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs,” Opt. Express 11, 662–681 (2003).
    [Crossref] [PubMed]

2010 (2)

2009 (4)

P. C. Chaumet and A. Rahmani, “Electromagnetic force and torque on magnetic and negative-index scatterers,” Opt. Express 17, 2224–2234 (2009).
[Crossref] [PubMed]

P. C. Chaumet and A. Rahmani, “Efficient iterative solution of the discrete dipole approximation for mag neto-dielectric scatterers,” Opt. Lett. 34, 917–919 (2009).
[Crossref] [PubMed]

P. C. Chaumet and A. Rahmani, “Coupled-dipole method for magnetic and negative refraction materials,” J. Quant. Spect. Rad. Transf. 110, 22–29 (2009).
[Crossref]

M. Mansuripur and A. R. Zakharian, “Maxwell’s macroscopic equations, the energy-momentum postulates, and the Lorentz law of force,” Phys. Rev. E 79, 026,608–10 (2009).
[Crossref]

2008 (1)

P. C. Chaumet, K. Belkebir, and A. Rahmani, “Coupled-dipole method in time domain,” Opt. Express 16, 20,157–20,165 (2008).
[Crossref]

2007 (3)

P. C. Chaumet and C. Billaudeau, “Coupled dipole method to compute optical torque: Application to a micro-propeller,” J. Appl. Phys. 101, 023,106–6 (2007).
[Crossref]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spect. Rad. Transf. 106, 558–589 (2007).
[Crossref]

M. Mansuripur, “Radiation pressure and the linear momentum of the electromagnetic field in magnetic media,” Opt. Express 15, 13,502–13,518 (2007).
[Crossref]

2006 (2)

A. Rahmani and P. C. Chaumet, “Optical Trapping near a Photonic Crystal,” Opt. Express 14, 6353–6358 (2006).
[Crossref] [PubMed]

F. Bordas, N. Louvion, S. Callard, P. C. Chaumet, and A. Rahmani, “Coupled dipole method for radiation dynamics in finite photonic crystal structures,” Phys. Rev. E 73, 056,601 (2006).
[Crossref]

2005 (3)

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Photonic force spectroscopy on metallic and absorbing nanoparticles,” Phys. Rev. B 71, 045,425 (2005).
[Crossref]

P. C. Chaumet, A. Rahmani, A. Sentenac, and G. W. Bryant, “Efficient computation of optical forces with the coupled dipole method,” Phys. Rev. E 72, 046,708–6 (2005).
[Crossref]

P. C. Chaumet and A. Sentenac, “Numerical simulations of the electromagnetic field scattered by defects in a double-periodic structure,” Phys. Rev. B 72, 205,437–8 (2005).
[Crossref]

2004 (1)

2003 (3)

2002 (3)

A. Rahmani and G. W. Bryant, “Spontaneous emission in microcavity electrodynamics,” Phys. Rev. A 65, 033,817–12 (2002).
[Crossref]

E. E. Radescu and G. Vaman, “Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles,” Phys. Rev. A 65, 046,609–47 (2002).

E. E. Radescu and G. Vaman, “Toroid moments in the momentum and angular momentum loss by a radiating arbitrary source,” Phys. Rev. A 65, 035,601–3 (2002).

2001 (2)

A. Rahmani, P. C. Chaumet, and F. de Fornel, “Enrironment-induced modification of spontaneous emission: Single-molecule near-field probe,” Phys. Rev. A 63, 023,819–11 (2001).
[Crossref]

A. G. Hoekstra, M. Frijlink, L. B. F. M. Waters, and P. M. A. Sloot, “Radiation forces in the discrete-dipole approximation,” J. Opt. Soc. Am. A 18, 1944–1953 (2001).
[Crossref]

2000 (1)

1996 (1)

B. T. Draine and J. C. Weingartner, “Radiative Torques on Interstellar Grains: I. Superthermal Spinup,” Astrophys. J. 470, 551–565 (1996).
[Crossref]

1990 (1)

L. Vaidman, “Torque and force on a magnetic dipole,” Am. J. Phys. 58, 978–983 (1990).
[Crossref]

1988 (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

1975 (2)

A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Transactions on Microwave Theory and Techniques 23, 623–630 (1975).
[Crossref]

A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady state electromagnetic penetration problems,” IEEE Trans. Antennas Propagat. 22, 191–202 (1975).

1973 (1)

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]

1969 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat. 14, 302–307 (1969).

1962 (1)

B. D. H. Tellegen, “Magnetic-Dipole models,” Am. J. Phys. 30, 650–652 (1962).
[Crossref]

Arias-González, J. R.

Belkebir, K.

P. C. Chaumet, K. Belkebir, and A. Rahmani, “Optical forces in time domain on arbitrary objects,” Phys. Rev. A (2010).
[Crossref]

P. C. Chaumet, K. Belkebir, and A. Rahmani, “Coupled-dipole method in time domain,” Opt. Express 16, 20,157–20,165 (2008).
[Crossref]

Billaudeau, C.

P. C. Chaumet and C. Billaudeau, “Coupled dipole method to compute optical torque: Application to a micro-propeller,” J. Appl. Phys. 101, 023,106–6 (2007).
[Crossref]

Bordas, F.

F. Bordas, N. Louvion, S. Callard, P. C. Chaumet, and A. Rahmani, “Coupled dipole method for radiation dynamics in finite photonic crystal structures,” Phys. Rev. E 73, 056,601 (2006).
[Crossref]

Brodwin, M. E.

A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Transactions on Microwave Theory and Techniques 23, 623–630 (1975).
[Crossref]

Bryant, G. W.

A. Rahmani, P. C. Chaumet, and G. W. Bryant, “Discrete dipole approximation for the study of radiation dynamics in a magnetodielectric environment,” Opt. Express 18, 8499–8504 (2010).
[Crossref] [PubMed]

P. C. Chaumet, A. Rahmani, A. Sentenac, and G. W. Bryant, “Efficient computation of optical forces with the coupled dipole method,” Phys. Rev. E 72, 046,708–6 (2005).
[Crossref]

P. C. Chaumet, A. Rahmani, and G. W. Bryant, “Generalization of the coupled dipole method to periodic structure,” Phys. Rev. B 67, 165,404–5 (2003).
[Crossref]

A. Rahmani and G. W. Bryant, “Spontaneous emission in microcavity electrodynamics,” Phys. Rev. A 65, 033,817–12 (2002).
[Crossref]

Callard, S.

F. Bordas, N. Louvion, S. Callard, P. C. Chaumet, and A. Rahmani, “Coupled dipole method for radiation dynamics in finite photonic crystal structures,” Phys. Rev. E 73, 056,601 (2006).
[Crossref]

Chaumet, P. C.

P. C. Chaumet, K. Belkebir, and A. Rahmani, “Optical forces in time domain on arbitrary objects,” Phys. Rev. A (2010).
[Crossref]

A. Rahmani, P. C. Chaumet, and G. W. Bryant, “Discrete dipole approximation for the study of radiation dynamics in a magnetodielectric environment,” Opt. Express 18, 8499–8504 (2010).
[Crossref] [PubMed]

P. C. Chaumet and A. Rahmani, “Coupled-dipole method for magnetic and negative refraction materials,” J. Quant. Spect. Rad. Transf. 110, 22–29 (2009).
[Crossref]

P. C. Chaumet and A. Rahmani, “Electromagnetic force and torque on magnetic and negative-index scatterers,” Opt. Express 17, 2224–2234 (2009).
[Crossref] [PubMed]

P. C. Chaumet and A. Rahmani, “Efficient iterative solution of the discrete dipole approximation for mag neto-dielectric scatterers,” Opt. Lett. 34, 917–919 (2009).
[Crossref] [PubMed]

P. C. Chaumet, K. Belkebir, and A. Rahmani, “Coupled-dipole method in time domain,” Opt. Express 16, 20,157–20,165 (2008).
[Crossref]

P. C. Chaumet and C. Billaudeau, “Coupled dipole method to compute optical torque: Application to a micro-propeller,” J. Appl. Phys. 101, 023,106–6 (2007).
[Crossref]

F. Bordas, N. Louvion, S. Callard, P. C. Chaumet, and A. Rahmani, “Coupled dipole method for radiation dynamics in finite photonic crystal structures,” Phys. Rev. E 73, 056,601 (2006).
[Crossref]

A. Rahmani and P. C. Chaumet, “Optical Trapping near a Photonic Crystal,” Opt. Express 14, 6353–6358 (2006).
[Crossref] [PubMed]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Photonic force spectroscopy on metallic and absorbing nanoparticles,” Phys. Rev. B 71, 045,425 (2005).
[Crossref]

P. C. Chaumet and A. Sentenac, “Numerical simulations of the electromagnetic field scattered by defects in a double-periodic structure,” Phys. Rev. B 72, 205,437–8 (2005).
[Crossref]

P. C. Chaumet, A. Rahmani, A. Sentenac, and G. W. Bryant, “Efficient computation of optical forces with the coupled dipole method,” Phys. Rev. E 72, 046,708–6 (2005).
[Crossref]

P. C. Chaumet, “Comment on “Trapping force, force constant, and potential depths for dielectric spheres in the presence of spherical aberrations”,” Appl. Opt. 43, 1825–1826 (2004).
[Crossref] [PubMed]

P. C. Chaumet, A. Rahmani, and G. W. Bryant, “Generalization of the coupled dipole method to periodic structure,” Phys. Rev. B 67, 165,404–5 (2003).
[Crossref]

A. Rahmani, P. C. Chaumet, and F. de Fornel, “Enrironment-induced modification of spontaneous emission: Single-molecule near-field probe,” Phys. Rev. A 63, 023,819–11 (2001).
[Crossref]

P. C. Chaumet and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000).
[Crossref]

de Fornel, F.

A. Rahmani, P. C. Chaumet, and F. de Fornel, “Enrironment-induced modification of spontaneous emission: Single-molecule near-field probe,” Phys. Rev. A 63, 023,819–11 (2001).
[Crossref]

Draine, B. T.

B. T. Draine and J. C. Weingartner, “Radiative Torques on Interstellar Grains: I. Superthermal Spinup,” Astrophys. J. 470, 551–565 (1996).
[Crossref]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

Frijlink, M.

Hoekstra, A. G.

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spect. Rad. Transf. 106, 558–589 (2007).
[Crossref]

A. G. Hoekstra, M. Frijlink, L. B. F. M. Waters, and P. M. A. Sloot, “Radiation forces in the discrete-dipole approximation,” J. Opt. Soc. Am. A 18, 1944–1953 (2001).
[Crossref]

Louvion, N.

F. Bordas, N. Louvion, S. Callard, P. C. Chaumet, and A. Rahmani, “Coupled dipole method for radiation dynamics in finite photonic crystal structures,” Phys. Rev. E 73, 056,601 (2006).
[Crossref]

Mansuripur, M.

M. Mansuripur and A. R. Zakharian, “Maxwell’s macroscopic equations, the energy-momentum postulates, and the Lorentz law of force,” Phys. Rev. E 79, 026,608–10 (2009).
[Crossref]

M. Mansuripur, “Radiation pressure and the linear momentum of the electromagnetic field in magnetic media,” Opt. Express 15, 13,502–13,518 (2007).
[Crossref]

Nieto-Vesperinas, M.

Pennypacker, C. R.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]

Purcell, E. M.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]

Radescu, E. E.

E. E. Radescu and G. Vaman, “Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles,” Phys. Rev. A 65, 046,609–47 (2002).

E. E. Radescu and G. Vaman, “Toroid moments in the momentum and angular momentum loss by a radiating arbitrary source,” Phys. Rev. A 65, 035,601–3 (2002).

Rahmani, A.

A. Rahmani, P. C. Chaumet, and G. W. Bryant, “Discrete dipole approximation for the study of radiation dynamics in a magnetodielectric environment,” Opt. Express 18, 8499–8504 (2010).
[Crossref] [PubMed]

P. C. Chaumet, K. Belkebir, and A. Rahmani, “Optical forces in time domain on arbitrary objects,” Phys. Rev. A (2010).
[Crossref]

P. C. Chaumet and A. Rahmani, “Efficient iterative solution of the discrete dipole approximation for mag neto-dielectric scatterers,” Opt. Lett. 34, 917–919 (2009).
[Crossref] [PubMed]

P. C. Chaumet and A. Rahmani, “Electromagnetic force and torque on magnetic and negative-index scatterers,” Opt. Express 17, 2224–2234 (2009).
[Crossref] [PubMed]

P. C. Chaumet and A. Rahmani, “Coupled-dipole method for magnetic and negative refraction materials,” J. Quant. Spect. Rad. Transf. 110, 22–29 (2009).
[Crossref]

P. C. Chaumet, K. Belkebir, and A. Rahmani, “Coupled-dipole method in time domain,” Opt. Express 16, 20,157–20,165 (2008).
[Crossref]

F. Bordas, N. Louvion, S. Callard, P. C. Chaumet, and A. Rahmani, “Coupled dipole method for radiation dynamics in finite photonic crystal structures,” Phys. Rev. E 73, 056,601 (2006).
[Crossref]

A. Rahmani and P. C. Chaumet, “Optical Trapping near a Photonic Crystal,” Opt. Express 14, 6353–6358 (2006).
[Crossref] [PubMed]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Photonic force spectroscopy on metallic and absorbing nanoparticles,” Phys. Rev. B 71, 045,425 (2005).
[Crossref]

P. C. Chaumet, A. Rahmani, A. Sentenac, and G. W. Bryant, “Efficient computation of optical forces with the coupled dipole method,” Phys. Rev. E 72, 046,708–6 (2005).
[Crossref]

P. C. Chaumet, A. Rahmani, and G. W. Bryant, “Generalization of the coupled dipole method to periodic structure,” Phys. Rev. B 67, 165,404–5 (2003).
[Crossref]

A. Rahmani and G. W. Bryant, “Spontaneous emission in microcavity electrodynamics,” Phys. Rev. A 65, 033,817–12 (2002).
[Crossref]

A. Rahmani, P. C. Chaumet, and F. de Fornel, “Enrironment-induced modification of spontaneous emission: Single-molecule near-field probe,” Phys. Rev. A 63, 023,819–11 (2001).
[Crossref]

Sentenac, A.

P. C. Chaumet and A. Sentenac, “Numerical simulations of the electromagnetic field scattered by defects in a double-periodic structure,” Phys. Rev. B 72, 205,437–8 (2005).
[Crossref]

P. C. Chaumet, A. Rahmani, A. Sentenac, and G. W. Bryant, “Efficient computation of optical forces with the coupled dipole method,” Phys. Rev. E 72, 046,708–6 (2005).
[Crossref]

Sloot, P. M. A.

Taflove, A.

A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Transactions on Microwave Theory and Techniques 23, 623–630 (1975).
[Crossref]

A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady state electromagnetic penetration problems,” IEEE Trans. Antennas Propagat. 22, 191–202 (1975).

Tellegen, B. D. H.

B. D. H. Tellegen, “Magnetic-Dipole models,” Am. J. Phys. 30, 650–652 (1962).
[Crossref]

Vaidman, L.

L. Vaidman, “Torque and force on a magnetic dipole,” Am. J. Phys. 58, 978–983 (1990).
[Crossref]

Vaman, G.

E. E. Radescu and G. Vaman, “Toroid moments in the momentum and angular momentum loss by a radiating arbitrary source,” Phys. Rev. A 65, 035,601–3 (2002).

E. E. Radescu and G. Vaman, “Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles,” Phys. Rev. A 65, 046,609–47 (2002).

Waters, L. B. F. M.

Weingartner, J. C.

B. T. Draine and J. C. Weingartner, “Radiative Torques on Interstellar Grains: I. Superthermal Spinup,” Astrophys. J. 470, 551–565 (1996).
[Crossref]

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat. 14, 302–307 (1969).

Yurkin, M. A.

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spect. Rad. Transf. 106, 558–589 (2007).
[Crossref]

Zakharian, A. R.

M. Mansuripur and A. R. Zakharian, “Maxwell’s macroscopic equations, the energy-momentum postulates, and the Lorentz law of force,” Phys. Rev. E 79, 026,608–10 (2009).
[Crossref]

Ziolkowski, R. W.

Am. J. Phys. (2)

B. D. H. Tellegen, “Magnetic-Dipole models,” Am. J. Phys. 30, 650–652 (1962).
[Crossref]

L. Vaidman, “Torque and force on a magnetic dipole,” Am. J. Phys. 58, 978–983 (1990).
[Crossref]

Appl. Opt. (1)

Astrophys. J. (3)

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

B. T. Draine and J. C. Weingartner, “Radiative Torques on Interstellar Grains: I. Superthermal Spinup,” Astrophys. J. 470, 551–565 (1996).
[Crossref]

IEEE Trans. Antennas Propagat. (2)

A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady state electromagnetic penetration problems,” IEEE Trans. Antennas Propagat. 22, 191–202 (1975).

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat. 14, 302–307 (1969).

IEEE Transactions on Microwave Theory and Techniques (1)

A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Transactions on Microwave Theory and Techniques 23, 623–630 (1975).
[Crossref]

J. Appl. Phys. (1)

P. C. Chaumet and C. Billaudeau, “Coupled dipole method to compute optical torque: Application to a micro-propeller,” J. Appl. Phys. 101, 023,106–6 (2007).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Quant. Spect. Rad. Transf. (2)

P. C. Chaumet and A. Rahmani, “Coupled-dipole method for magnetic and negative refraction materials,” J. Quant. Spect. Rad. Transf. 110, 22–29 (2009).
[Crossref]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spect. Rad. Transf. 106, 558–589 (2007).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. A (5)

E. E. Radescu and G. Vaman, “Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles,” Phys. Rev. A 65, 046,609–47 (2002).

E. E. Radescu and G. Vaman, “Toroid moments in the momentum and angular momentum loss by a radiating arbitrary source,” Phys. Rev. A 65, 035,601–3 (2002).

A. Rahmani, P. C. Chaumet, and F. de Fornel, “Enrironment-induced modification of spontaneous emission: Single-molecule near-field probe,” Phys. Rev. A 63, 023,819–11 (2001).
[Crossref]

A. Rahmani and G. W. Bryant, “Spontaneous emission in microcavity electrodynamics,” Phys. Rev. A 65, 033,817–12 (2002).
[Crossref]

P. C. Chaumet, K. Belkebir, and A. Rahmani, “Optical forces in time domain on arbitrary objects,” Phys. Rev. A (2010).
[Crossref]

Phys. Rev. B (3)

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Photonic force spectroscopy on metallic and absorbing nanoparticles,” Phys. Rev. B 71, 045,425 (2005).
[Crossref]

P. C. Chaumet, A. Rahmani, and G. W. Bryant, “Generalization of the coupled dipole method to periodic structure,” Phys. Rev. B 67, 165,404–5 (2003).
[Crossref]

P. C. Chaumet and A. Sentenac, “Numerical simulations of the electromagnetic field scattered by defects in a double-periodic structure,” Phys. Rev. B 72, 205,437–8 (2005).
[Crossref]

Phys. Rev. E (3)

P. C. Chaumet, A. Rahmani, A. Sentenac, and G. W. Bryant, “Efficient computation of optical forces with the coupled dipole method,” Phys. Rev. E 72, 046,708–6 (2005).
[Crossref]

F. Bordas, N. Louvion, S. Callard, P. C. Chaumet, and A. Rahmani, “Coupled dipole method for radiation dynamics in finite photonic crystal structures,” Phys. Rev. E 73, 056,601 (2006).
[Crossref]

M. Mansuripur and A. R. Zakharian, “Maxwell’s macroscopic equations, the energy-momentum postulates, and the Lorentz law of force,” Phys. Rev. E 79, 026,608–10 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Spectral (a) and time (b) profiles of the incident field.

Fig. 2
Fig. 2

(a) Total force (solid line) versus time and its different contribution, i.e.pm = ℱpe (dashed line), ℱhm = ℱhe (dot-dashed line). (b) Total momentum imparted to the object and its contribution associated. (c) Total momentum imparted to the object by the pulse versus the numbers of subunits to represent the sphere. (d) In solid line (dashed line) ℱrecoil with N = 33552 (N = 4224) subunits to represent the object. (e) Momentum imparted to the object due to ℱrecoil versus the time. (f) Momentum imparted to the object due to ℱrecoil versus the numbers of subunits to represent the sphere.

Fig. 3
Fig. 3

(a) Total momentum imparted to the object and (b) spectrum of the force, for different values of the damping term Γ.

Fig. 4
Fig. 4

(a) Total momentum imparted to the object and (b) spectrum of the force, for different of ωp = ωpe = ωpm.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

i ( r , t ) = [ 𝒫 ( r , t ) . ] 𝒠 i ( r , t ) + 1 c [ t 𝒫 ( r , t ) × ( r , t ) ] i + [ ( r , t ) . ] i ( r , t ) 1 c [ t ( r , t ) × 𝒠 ( r , t ) ] i
i ( r , t ) = 𝒫 j ( r , t ) [ i 𝒠 j ( r , t ) ] + ε i j k c t [ 𝒫 j ( r , t ) k ( r , t ) ] + j ( r , t ) [ i j ( r , t ) ] ε i j k c t [ j ( r , t ) 𝒠 k ( r , t ) ] = he ( r , t ) + pe ( r , t ) + hm ( r , t ) + pm ( r , t )
i recoil ( r , t ) = 2 3 ε i j k c 4 [ t 2 𝒫 j ( r , t ) ] [ t 2 j ( r , t ) ] .
i he ( r , t ) = 𝒢 1 [ I ( ω ) p j ( r , ω ) ] 𝒢 1 [ I ( ω ) i E j ( r , ω ) ]
i hm ( r , t ) = 𝒢 1 [ I ( ω ) m j ( r , ω ) ] 𝒢 1 [ I ( ω ) i H j ( r , ω ) ]
𝒫 j ( r , t ) k ( r , t ) = 𝒢 1 [ I ( ω ) p j ( r , ω ) ] 𝒢 1 [ I ( ω ) H k ( r , ω ) ]
j ( r , t ) 𝒠 k ( r , t ) = 𝒢 1 [ I ( ω ) m j ( r , ω ) ] 𝒢 1 [ I ( ω ) E k ( r , ω ) ]
i pe ( r , t ) = ε i j k c 𝒢 1 { i ω 𝒢 [ 𝒫 j ( r , t ) k ( r , t ) ] }
i pm ( r , t ) = ε i j k c 𝒢 1 { i ω 𝒢 [ j ( r , t ) 𝒠 k ( r , t ) ] }
i recoil ( r , t ) = 2 3 ε i j k c 4 𝒢 1 [ ω 2 I ( ω ) p j ( r , ω ) ] 𝒢 1 [ ω 2 I ( ω ) m k ( r , ω ) ]
he ( z , t ) = α 0 e k sin ( 2 k z 2 ω t ) 2 + 2 3 ( α 0 e ) 2 k 4 sin 2 ( k z ω t )
hm ( z , t ) = α 0 m k sin ( 2 k z 2 ω t ) 2 + 2 3 ( α 0 m ) 2 k 4 sin 2 ( k z ω t )
pe ( z , t ) = α 0 e k sin ( 2 k z 2 ω t ) + 2 3 ( α 0 e ) 2 k 4 cos ( 2 k z 2 ω t )
pm ( z , t ) = α 0 m k sin ( 2 k z 2 ω t ) + 2 3 ( α 0 m ) 2 k 4 cos ( 2 k z 2 ω t )
recoil ( z , t ) = 2 3 k 4 α 0 m α 0 e cos 2 ( k z ω t )
( z , t ) = ( α 0 e + α 0 m ) k sin ( 2 k z 2 ω t ) 2 + 2 3 k 4 [ ( α 0 e ) 2 + ( α 0 m ) 2 α 0 m α e 2 ] cos 2 ( k z ω t ) ,
ε ( ω ) = 1 ( ω pe ) 2 ω ( ω + i Γ e ) , μ ( ω ) = 1 ( ω pm ) 2 ω ( ω + i Γ m )
( t ) = exp [ 16 ( t τ τ ) 2 ] sin ( 2 π f 0 t ) .

Metrics