Abstract

We have demonstrated high-speed controlled generation of single photons in a coupled atom-cavity system. A single 85Rb atom, pumped with a nanosecond-pulse laser, generates a single photon into the cavity mode, and the photon is then emitted out the cavity rapidly. By employing cavity parameters for a moderate coupling regime, the single-photon emission process was optimized for both high efficiency and fast bit rates up to 10 MHz. The temporal single-photon wave packet was studied by means of the photon-arrival-time distribution relative to the pump pulse and the efficiency of the single-photon generation was investigated as the pump power. The single-photon nature of the emission was confirmed by the second-order correlation of emitted photons.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [CrossRef]
  2. C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238–246 (2002).
    [CrossRef] [PubMed]
  3. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled wavefrom in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
    [CrossRef] [PubMed]
  4. C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83, 2722–2725 (1999).
    [CrossRef]
  5. B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
    [CrossRef] [PubMed]
  6. A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
    [CrossRef] [PubMed]
  7. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
    [CrossRef] [PubMed]
  8. J. Bochmann, M. Mücke, G. Langfahl-Klabes, C. Erbel, B. Weber, H. P. Specht, D. L. Moehring, and G. Rempe, “Fast excitation and photon emission of a single-atom-cavity system,” Phys. Rev. Lett. 101, 223601 (2008).
    [CrossRef] [PubMed]
  9. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
    [CrossRef] [PubMed]
  10. R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000).
    [CrossRef]
  11. T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
    [CrossRef] [PubMed]
  12. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [CrossRef] [PubMed]
  13. J. J. Childs, K. An, R. R. Dasari, and M. S. Feld, Cavity Quantum Electrodynamics, P. R. Berman, ed. (Academic Press, 1994).
  14. K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, “Microlaser: a laser with one atom in an optical resonator,” Phys. Rev. Lett. 73, 3375–3378 (1994).
    [CrossRef] [PubMed]
  15. J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
    [CrossRef] [PubMed]
  16. F. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O. Schmidt, and R. Blatt, “Quantum to classical transition in a single-ion laser,” Nat. Phys. 6, 350–353 (2010).
    [CrossRef]
  17. A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 203602 (2008).
    [CrossRef] [PubMed]
  18. B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. M¨ucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
    [CrossRef] [PubMed]
  19. Y. Choi, S. Kang, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Quasieigenstate coalescence in an atomcavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
    [CrossRef] [PubMed]
  20. S. Kang, Y. Choi, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Continuous control of the coupling constant in an atom-cavity system by using elliptic polarization and magnetic sublevels,” Opt. Express 18, 9286–9302 (2010).
    [CrossRef] [PubMed]
  21. G. Cui and M. G. Raymer, “Quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime,” Opt. Express 13, 9660–9665 (2005).
    [CrossRef] [PubMed]
  22. R. H. Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
    [CrossRef]
  23. J. Ye, D. W. Vernooy, and H. J. Kimble, “Trapping of single atoms in cavity QED,” Phys. Rev. Lett. 83, 4987–4990 (1999).
    [CrossRef]
  24. P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
    [CrossRef] [PubMed]

2010 (3)

Y. Choi, S. Kang, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Quasieigenstate coalescence in an atomcavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[CrossRef] [PubMed]

S. Kang, Y. Choi, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Continuous control of the coupling constant in an atom-cavity system by using elliptic polarization and magnetic sublevels,” Opt. Express 18, 9286–9302 (2010).
[CrossRef] [PubMed]

F. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O. Schmidt, and R. Blatt, “Quantum to classical transition in a single-ion laser,” Nat. Phys. 6, 350–353 (2010).
[CrossRef]

2009 (1)

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. M¨ucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef] [PubMed]

2008 (2)

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 203602 (2008).
[CrossRef] [PubMed]

J. Bochmann, M. Mücke, G. Langfahl-Klabes, C. Erbel, B. Weber, H. P. Specht, D. L. Moehring, and G. Rempe, “Fast excitation and photon emission of a single-atom-cavity system,” Phys. Rev. Lett. 101, 223601 (2008).
[CrossRef] [PubMed]

2005 (2)

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[CrossRef] [PubMed]

G. Cui and M. G. Raymer, “Quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime,” Opt. Express 13, 9660–9665 (2005).
[CrossRef] [PubMed]

2004 (3)

T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
[CrossRef] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[CrossRef] [PubMed]

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled wavefrom in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[CrossRef] [PubMed]

2003 (1)

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[CrossRef] [PubMed]

2002 (3)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238–246 (2002).
[CrossRef] [PubMed]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

2001 (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

2000 (3)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000).
[CrossRef]

P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[CrossRef] [PubMed]

1999 (2)

J. Ye, D. W. Vernooy, and H. J. Kimble, “Trapping of single atoms in cavity QED,” Phys. Rev. Lett. 83, 4987–4990 (1999).
[CrossRef]

C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83, 2722–2725 (1999).
[CrossRef]

1994 (1)

K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, “Microlaser: a laser with one atom in an optical resonator,” Phys. Rev. Lett. 73, 3375–3378 (1994).
[CrossRef] [PubMed]

1956 (1)

R. H. Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
[CrossRef]

An, K.

Y. Choi, S. Kang, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Quasieigenstate coalescence in an atomcavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[CrossRef] [PubMed]

S. Kang, Y. Choi, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Continuous control of the coupling constant in an atom-cavity system by using elliptic polarization and magnetic sublevels,” Opt. Express 18, 9286–9302 (2010).
[CrossRef] [PubMed]

K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, “Microlaser: a laser with one atom in an optical resonator,” Phys. Rev. Lett. 73, 3375–3378 (1994).
[CrossRef] [PubMed]

Barros, H. G.

F. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O. Schmidt, and R. Blatt, “Quantum to classical transition in a single-ion laser,” Nat. Phys. 6, 350–353 (2010).
[CrossRef]

Becher, C.

F. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O. Schmidt, and R. Blatt, “Quantum to classical transition in a single-ion laser,” Nat. Phys. 6, 350–353 (2010).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Bergamini, S.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[CrossRef] [PubMed]

Beugnon, J.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[CrossRef] [PubMed]

Beveratos, A.

R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000).
[CrossRef]

Blatt, R.

F. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O. Schmidt, and R. Blatt, “Quantum to classical transition in a single-ion laser,” Nat. Phys. 6, 350–353 (2010).
[CrossRef]

Boca, A.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[CrossRef] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[CrossRef] [PubMed]

Bochmann, J.

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. M¨ucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef] [PubMed]

J. Bochmann, M. Mücke, G. Langfahl-Klabes, C. Erbel, B. Weber, H. P. Specht, D. L. Moehring, and G. Rempe, “Fast excitation and photon emission of a single-atom-cavity system,” Phys. Rev. Lett. 101, 223601 (2008).
[CrossRef] [PubMed]

Boozer, A. D.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[CrossRef] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[CrossRef] [PubMed]

Brouri, R.

R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000).
[CrossRef]

Browaeys, A.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[CrossRef] [PubMed]

Brown, R. H.

R. H. Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
[CrossRef]

Brunel, C.

C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83, 2722–2725 (1999).
[CrossRef]

Buck, J. R.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[CrossRef] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[CrossRef] [PubMed]

Childs, J. J.

K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, “Microlaser: a laser with one atom in an optical resonator,” Phys. Rev. Lett. 73, 3375–3378 (1994).
[CrossRef] [PubMed]

Choi, Y.

S. Kang, Y. Choi, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Continuous control of the coupling constant in an atom-cavity system by using elliptic polarization and magnetic sublevels,” Opt. Express 18, 9286–9302 (2010).
[CrossRef] [PubMed]

Y. Choi, S. Kang, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Quasieigenstate coalescence in an atomcavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[CrossRef] [PubMed]

Cui, G.

G. Cui and M. G. Raymer, “Quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime,” Opt. Express 13, 9660–9665 (2005).
[CrossRef] [PubMed]

Darquié, B.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[CrossRef] [PubMed]

Dasari, R. R.

K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, “Microlaser: a laser with one atom in an optical resonator,” Phys. Rev. Lett. 73, 3375–3378 (1994).
[CrossRef] [PubMed]

Dingjan, J.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[CrossRef] [PubMed]

Dubin, F.

F. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O. Schmidt, and R. Blatt, “Quantum to classical transition in a single-ion laser,” Nat. Phys. 6, 350–353 (2010).
[CrossRef]

Erbel, C.

J. Bochmann, M. Mücke, G. Langfahl-Klabes, C. Erbel, B. Weber, H. P. Specht, D. L. Moehring, and G. Rempe, “Fast excitation and photon emission of a single-atom-cavity system,” Phys. Rev. Lett. 101, 223601 (2008).
[CrossRef] [PubMed]

Feld, M. S.

K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, “Microlaser: a laser with one atom in an optical resonator,” Phys. Rev. Lett. 73, 3375–3378 (1994).
[CrossRef] [PubMed]

Fischer, T.

P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[CrossRef] [PubMed]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Grangier, P.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[CrossRef] [PubMed]

R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000).
[CrossRef]

Hayasaka, K.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled wavefrom in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[CrossRef] [PubMed]

Hennrich, M.

T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
[CrossRef] [PubMed]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Imamoglu, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Jones, M. P. A.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[CrossRef] [PubMed]

Kang, S.

S. Kang, Y. Choi, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Continuous control of the coupling constant in an atom-cavity system by using elliptic polarization and magnetic sublevels,” Opt. Express 18, 9286–9302 (2010).
[CrossRef] [PubMed]

Y. Choi, S. Kang, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Quasieigenstate coalescence in an atomcavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[CrossRef] [PubMed]

Keller, M.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled wavefrom in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[CrossRef] [PubMed]

Kim, J.-R.

Y. Choi, S. Kang, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Quasieigenstate coalescence in an atomcavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[CrossRef] [PubMed]

S. Kang, Y. Choi, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Continuous control of the coupling constant in an atom-cavity system by using elliptic polarization and magnetic sublevels,” Opt. Express 18, 9286–9302 (2010).
[CrossRef] [PubMed]

Kim, W.

Y. Choi, S. Kang, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Quasieigenstate coalescence in an atomcavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[CrossRef] [PubMed]

S. Kang, Y. Choi, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Continuous control of the coupling constant in an atom-cavity system by using elliptic polarization and magnetic sublevels,” Opt. Express 18, 9286–9302 (2010).
[CrossRef] [PubMed]

Kimble, H. J.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[CrossRef] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[CrossRef] [PubMed]

J. Ye, D. W. Vernooy, and H. J. Kimble, “Trapping of single atoms in cavity QED,” Phys. Rev. Lett. 83, 4987–4990 (1999).
[CrossRef]

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

Koch, M.

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 203602 (2008).
[CrossRef] [PubMed]

Kubanek, A.

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 203602 (2008).
[CrossRef] [PubMed]

Kuhn, A.

T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
[CrossRef] [PubMed]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

Kuzmich, A.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[CrossRef] [PubMed]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

Lange, B.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled wavefrom in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[CrossRef] [PubMed]

Lange, W.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled wavefrom in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[CrossRef] [PubMed]

Langfahl-Klabes, G.

J. Bochmann, M. Mücke, G. Langfahl-Klabes, C. Erbel, B. Weber, H. P. Specht, D. L. Moehring, and G. Rempe, “Fast excitation and photon emission of a single-atom-cavity system,” Phys. Rev. Lett. 101, 223601 (2008).
[CrossRef] [PubMed]

Lee, J.-H.

Y. Choi, S. Kang, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Quasieigenstate coalescence in an atomcavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[CrossRef] [PubMed]

S. Kang, Y. Choi, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Continuous control of the coupling constant in an atom-cavity system by using elliptic polarization and magnetic sublevels,” Opt. Express 18, 9286–9302 (2010).
[CrossRef] [PubMed]

Legero, T.

T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
[CrossRef] [PubMed]

Lim, S.

S. Kang, Y. Choi, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Continuous control of the coupling constant in an atom-cavity system by using elliptic polarization and magnetic sublevels,” Opt. Express 18, 9286–9302 (2010).
[CrossRef] [PubMed]

Y. Choi, S. Kang, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Quasieigenstate coalescence in an atomcavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[CrossRef] [PubMed]

Lounis, B.

C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83, 2722–2725 (1999).
[CrossRef]

M¨ucke, M.

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. M¨ucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef] [PubMed]

Maunz, P.

P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[CrossRef] [PubMed]

McKeever, J.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[CrossRef] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[CrossRef] [PubMed]

Messin, G.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[CrossRef] [PubMed]

Michler, P.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

Miller, R.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[CrossRef] [PubMed]

Moehring, D. L.

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. M¨ucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef] [PubMed]

J. Bochmann, M. Mücke, G. Langfahl-Klabes, C. Erbel, B. Weber, H. P. Specht, D. L. Moehring, and G. Rempe, “Fast excitation and photon emission of a single-atom-cavity system,” Phys. Rev. Lett. 101, 223601 (2008).
[CrossRef] [PubMed]

Monroe, C.

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238–246 (2002).
[CrossRef] [PubMed]

Mücke, M.

J. Bochmann, M. Mücke, G. Langfahl-Klabes, C. Erbel, B. Weber, H. P. Specht, D. L. Moehring, and G. Rempe, “Fast excitation and photon emission of a single-atom-cavity system,” Phys. Rev. Lett. 101, 223601 (2008).
[CrossRef] [PubMed]

Müller, T.

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. M¨ucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef] [PubMed]

Murr, K.

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 203602 (2008).
[CrossRef] [PubMed]

Orrit, M.

C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83, 2722–2725 (1999).
[CrossRef]

Ourjoumtsev, A.

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 203602 (2008).
[CrossRef] [PubMed]

Petroff, P. M.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Pinkse, P. W. H.

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 203602 (2008).
[CrossRef] [PubMed]

P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[CrossRef] [PubMed]

Poizat, J.-P.

R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000).
[CrossRef]

Raymer, M. G.

G. Cui and M. G. Raymer, “Quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime,” Opt. Express 13, 9660–9665 (2005).
[CrossRef] [PubMed]

Rempe, G.

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. M¨ucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef] [PubMed]

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 203602 (2008).
[CrossRef] [PubMed]

J. Bochmann, M. Mücke, G. Langfahl-Klabes, C. Erbel, B. Weber, H. P. Specht, D. L. Moehring, and G. Rempe, “Fast excitation and photon emission of a single-atom-cavity system,” Phys. Rev. Lett. 101, 223601 (2008).
[CrossRef] [PubMed]

T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
[CrossRef] [PubMed]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[CrossRef] [PubMed]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Russo, C.

F. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O. Schmidt, and R. Blatt, “Quantum to classical transition in a single-ion laser,” Nat. Phys. 6, 350–353 (2010).
[CrossRef]

Schmidt, P. O.

F. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O. Schmidt, and R. Blatt, “Quantum to classical transition in a single-ion laser,” Nat. Phys. 6, 350–353 (2010).
[CrossRef]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Schuster, I.

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 203602 (2008).
[CrossRef] [PubMed]

Sortais, Y.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[CrossRef] [PubMed]

Specht, H. P.

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. M¨ucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef] [PubMed]

J. Bochmann, M. Mücke, G. Langfahl-Klabes, C. Erbel, B. Weber, H. P. Specht, D. L. Moehring, and G. Rempe, “Fast excitation and photon emission of a single-atom-cavity system,” Phys. Rev. Lett. 101, 223601 (2008).
[CrossRef] [PubMed]

Stute, A.

F. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O. Schmidt, and R. Blatt, “Quantum to classical transition in a single-ion laser,” Nat. Phys. 6, 350–353 (2010).
[CrossRef]

Tamarat, P.

C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83, 2722–2725 (1999).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Twiss, R. Q.

R. H. Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
[CrossRef]

Vernooy, D. W.

J. Ye, D. W. Vernooy, and H. J. Kimble, “Trapping of single atoms in cavity QED,” Phys. Rev. Lett. 83, 4987–4990 (1999).
[CrossRef]

Walther, H.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled wavefrom in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[CrossRef] [PubMed]

Weber, B.

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. M¨ucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef] [PubMed]

J. Bochmann, M. Mücke, G. Langfahl-Klabes, C. Erbel, B. Weber, H. P. Specht, D. L. Moehring, and G. Rempe, “Fast excitation and photon emission of a single-atom-cavity system,” Phys. Rev. Lett. 101, 223601 (2008).
[CrossRef] [PubMed]

Wilk, T.

T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
[CrossRef] [PubMed]

Ye, J.

J. Ye, D. W. Vernooy, and H. J. Kimble, “Trapping of single atoms in cavity QED,” Phys. Rev. Lett. 83, 4987–4990 (1999).
[CrossRef]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Nat. Phys. (1)

F. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O. Schmidt, and R. Blatt, “Quantum to classical transition in a single-ion laser,” Nat. Phys. 6, 350–353 (2010).
[CrossRef]

Nature (6)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238–246 (2002).
[CrossRef] [PubMed]

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled wavefrom in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[CrossRef] [PubMed]

R. H. Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
[CrossRef]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[CrossRef] [PubMed]

P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[CrossRef] [PubMed]

Opt. Express (2)

S. Kang, Y. Choi, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Continuous control of the coupling constant in an atom-cavity system by using elliptic polarization and magnetic sublevels,” Opt. Express 18, 9286–9302 (2010).
[CrossRef] [PubMed]

G. Cui and M. G. Raymer, “Quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime,” Opt. Express 13, 9660–9665 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000).
[CrossRef]

Phys. Rev. Lett. (9)

T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
[CrossRef] [PubMed]

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 203602 (2008).
[CrossRef] [PubMed]

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. M¨ucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef] [PubMed]

Y. Choi, S. Kang, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Quasieigenstate coalescence in an atomcavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[CrossRef] [PubMed]

C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83, 2722–2725 (1999).
[CrossRef]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

J. Bochmann, M. Mücke, G. Langfahl-Klabes, C. Erbel, B. Weber, H. P. Specht, D. L. Moehring, and G. Rempe, “Fast excitation and photon emission of a single-atom-cavity system,” Phys. Rev. Lett. 101, 223601 (2008).
[CrossRef] [PubMed]

K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, “Microlaser: a laser with one atom in an optical resonator,” Phys. Rev. Lett. 73, 3375–3378 (1994).
[CrossRef] [PubMed]

J. Ye, D. W. Vernooy, and H. J. Kimble, “Trapping of single atoms in cavity QED,” Phys. Rev. Lett. 83, 4987–4990 (1999).
[CrossRef]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Science (3)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[CrossRef] [PubMed]

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[CrossRef] [PubMed]

Other (1)

J. J. Childs, K. An, R. R. Dasari, and M. S. Feld, Cavity Quantum Electrodynamics, P. R. Berman, ed. (Academic Press, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic diagram of the experimental setup. Only major parts are drawn. (b) Time trace of a typical cavity transmission upon single-atom transit events with a trigger level of 0.35 illustrated. (c) Timing sequence of the experiment. It takes 450 ms for one cycle of experiment. During a period of 25 μs single photons are generated at a repetition rate of 9.8 MHz.

Fig. 2
Fig. 2

(a) Measured arrival-time distribution (filled circles) with respect to the pump pulse (shaded area). The pump profile is scaled down for better comparison with the arrival-time distribution and its QTS fit (solid curve). Spontaneous emission decay (dashed curve) is also shown for comparison. (b) Single-photon-generation efficiency Ps as a function of the square root of the pump pulse energy.

Fig. 3
Fig. 3

Two-photon coincidence rates (open circles) as a function of delay time τ. Solid curve represents a fit based on a two-level theory formulated in Ref. [21]. Dashed curve is a fit for a two-photon emission peak.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P s = P e P c = P e κ κ + γ G 1 + G ,

Metrics