Abstract

We have demonstrated high-speed controlled generation of single photons in a coupled atom-cavity system. A single 85Rb atom, pumped with a nanosecond-pulse laser, generates a single photon into the cavity mode, and the photon is then emitted out the cavity rapidly. By employing cavity parameters for a moderate coupling regime, the single-photon emission process was optimized for both high efficiency and fast bit rates up to 10 MHz. The temporal single-photon wave packet was studied by means of the photon-arrival-time distribution relative to the pump pulse and the efficiency of the single-photon generation was investigated as the pump power. The single-photon nature of the emission was confirmed by the second-order correlation of emitted photons.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [CrossRef]
  2. C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238–246 (2002).
    [CrossRef] [PubMed]
  3. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled wavefrom in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
    [CrossRef] [PubMed]
  4. C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83, 2722–2725 (1999).
    [CrossRef]
  5. B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
    [CrossRef] [PubMed]
  6. A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
    [CrossRef] [PubMed]
  7. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
    [CrossRef] [PubMed]
  8. J. Bochmann, M. Mücke, G. Langfahl-Klabes, C. Erbel, B. Weber, H. P. Specht, D. L. Moehring, and G. Rempe, “Fast excitation and photon emission of a single-atom-cavity system,” Phys. Rev. Lett. 101, 223601 (2008).
    [CrossRef] [PubMed]
  9. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
    [CrossRef] [PubMed]
  10. R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000).
    [CrossRef]
  11. T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
    [CrossRef] [PubMed]
  12. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [CrossRef] [PubMed]
  13. J. J. Childs, K. An, R. R. Dasari, and M. S. Feld, Cavity Quantum Electrodynamics, P. R. Berman, ed. (Academic Press, 1994).
  14. K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, “Microlaser: a laser with one atom in an optical resonator,” Phys. Rev. Lett. 73, 3375–3378 (1994).
    [CrossRef] [PubMed]
  15. J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
    [CrossRef] [PubMed]
  16. F. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O. Schmidt, and R. Blatt, “Quantum to classical transition in a single-ion laser,” Nat. Phys. 6, 350–353 (2010).
    [CrossRef]
  17. A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 203602 (2008).
    [CrossRef] [PubMed]
  18. B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. M¨ucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
    [CrossRef] [PubMed]
  19. Y. Choi, S. Kang, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Quasieigenstate coalescence in an atomcavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
    [CrossRef] [PubMed]
  20. S. Kang, Y. Choi, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Continuous control of the coupling constant in an atom-cavity system by using elliptic polarization and magnetic sublevels,” Opt. Express 18, 9286–9302 (2010).
    [CrossRef] [PubMed]
  21. G. Cui and M. G. Raymer, “Quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime,” Opt. Express 13, 9660–9665 (2005).
    [CrossRef] [PubMed]
  22. R. H. Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
    [CrossRef]
  23. J. Ye, D. W. Vernooy, and H. J. Kimble, “Trapping of single atoms in cavity QED,” Phys. Rev. Lett. 83, 4987–4990 (1999).
    [CrossRef]
  24. P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
    [CrossRef] [PubMed]

2010

Y. Choi, S. Kang, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Quasieigenstate coalescence in an atomcavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[CrossRef] [PubMed]

S. Kang, Y. Choi, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Continuous control of the coupling constant in an atom-cavity system by using elliptic polarization and magnetic sublevels,” Opt. Express 18, 9286–9302 (2010).
[CrossRef] [PubMed]

F. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O. Schmidt, and R. Blatt, “Quantum to classical transition in a single-ion laser,” Nat. Phys. 6, 350–353 (2010).
[CrossRef]

2009

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. M¨ucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef] [PubMed]

2008

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 203602 (2008).
[CrossRef] [PubMed]

J. Bochmann, M. Mücke, G. Langfahl-Klabes, C. Erbel, B. Weber, H. P. Specht, D. L. Moehring, and G. Rempe, “Fast excitation and photon emission of a single-atom-cavity system,” Phys. Rev. Lett. 101, 223601 (2008).
[CrossRef] [PubMed]

2005

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[CrossRef] [PubMed]

G. Cui and M. G. Raymer, “Quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime,” Opt. Express 13, 9660–9665 (2005).
[CrossRef] [PubMed]

2004

T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
[CrossRef] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[CrossRef] [PubMed]

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled wavefrom in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[CrossRef] [PubMed]

2003

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[CrossRef] [PubMed]

2002

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238–246 (2002).
[CrossRef] [PubMed]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

2001

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

2000

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000).
[CrossRef]

P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[CrossRef] [PubMed]

1999

J. Ye, D. W. Vernooy, and H. J. Kimble, “Trapping of single atoms in cavity QED,” Phys. Rev. Lett. 83, 4987–4990 (1999).
[CrossRef]

C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83, 2722–2725 (1999).
[CrossRef]

1994

K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, “Microlaser: a laser with one atom in an optical resonator,” Phys. Rev. Lett. 73, 3375–3378 (1994).
[CrossRef] [PubMed]

1956

R. H. Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
[CrossRef]

An, K.

Y. Choi, S. Kang, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Quasieigenstate coalescence in an atomcavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[CrossRef] [PubMed]

S. Kang, Y. Choi, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Continuous control of the coupling constant in an atom-cavity system by using elliptic polarization and magnetic sublevels,” Opt. Express 18, 9286–9302 (2010).
[CrossRef] [PubMed]

K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, “Microlaser: a laser with one atom in an optical resonator,” Phys. Rev. Lett. 73, 3375–3378 (1994).
[CrossRef] [PubMed]

Barros, H. G.

F. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O. Schmidt, and R. Blatt, “Quantum to classical transition in a single-ion laser,” Nat. Phys. 6, 350–353 (2010).
[CrossRef]

Becher, C.

F. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O. Schmidt, and R. Blatt, “Quantum to classical transition in a single-ion laser,” Nat. Phys. 6, 350–353 (2010).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Bergamini, S.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[CrossRef] [PubMed]

Beugnon, J.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[CrossRef] [PubMed]

Beveratos, A.

R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000).
[CrossRef]

Blatt, R.

F. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O. Schmidt, and R. Blatt, “Quantum to classical transition in a single-ion laser,” Nat. Phys. 6, 350–353 (2010).
[CrossRef]

Boca, A.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[CrossRef] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[CrossRef] [PubMed]

Bochmann, J.

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. M¨ucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef] [PubMed]

J. Bochmann, M. Mücke, G. Langfahl-Klabes, C. Erbel, B. Weber, H. P. Specht, D. L. Moehring, and G. Rempe, “Fast excitation and photon emission of a single-atom-cavity system,” Phys. Rev. Lett. 101, 223601 (2008).
[CrossRef] [PubMed]

Boozer, A. D.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[CrossRef] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[CrossRef] [PubMed]

Brouri, R.

R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000).
[CrossRef]

Browaeys, A.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[CrossRef] [PubMed]

Brown, R. H.

R. H. Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
[CrossRef]

Brunel, C.

C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83, 2722–2725 (1999).
[CrossRef]

Buck, J. R.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[CrossRef] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[CrossRef] [PubMed]

Childs, J. J.

K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, “Microlaser: a laser with one atom in an optical resonator,” Phys. Rev. Lett. 73, 3375–3378 (1994).
[CrossRef] [PubMed]

Choi, Y.

S. Kang, Y. Choi, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Continuous control of the coupling constant in an atom-cavity system by using elliptic polarization and magnetic sublevels,” Opt. Express 18, 9286–9302 (2010).
[CrossRef] [PubMed]

Y. Choi, S. Kang, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Quasieigenstate coalescence in an atomcavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[CrossRef] [PubMed]

Cui, G.

G. Cui and M. G. Raymer, “Quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime,” Opt. Express 13, 9660–9665 (2005).
[CrossRef] [PubMed]

Darquié, B.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[CrossRef] [PubMed]

Dasari, R. R.

K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, “Microlaser: a laser with one atom in an optical resonator,” Phys. Rev. Lett. 73, 3375–3378 (1994).
[CrossRef] [PubMed]

Dingjan, J.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[CrossRef] [PubMed]

Dubin, F.

F. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O. Schmidt, and R. Blatt, “Quantum to classical transition in a single-ion laser,” Nat. Phys. 6, 350–353 (2010).
[CrossRef]

Erbel, C.

J. Bochmann, M. Mücke, G. Langfahl-Klabes, C. Erbel, B. Weber, H. P. Specht, D. L. Moehring, and G. Rempe, “Fast excitation and photon emission of a single-atom-cavity system,” Phys. Rev. Lett. 101, 223601 (2008).
[CrossRef] [PubMed]

Feld, M. S.

K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, “Microlaser: a laser with one atom in an optical resonator,” Phys. Rev. Lett. 73, 3375–3378 (1994).
[CrossRef] [PubMed]

Fischer, T.

P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[CrossRef] [PubMed]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Grangier, P.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[CrossRef] [PubMed]

R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000).
[CrossRef]

Hayasaka, K.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled wavefrom in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[CrossRef] [PubMed]

Hennrich, M.

T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
[CrossRef] [PubMed]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Imamoglu, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Jones, M. P. A.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[CrossRef] [PubMed]

Kang, S.

Y. Choi, S. Kang, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Quasieigenstate coalescence in an atomcavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[CrossRef] [PubMed]

S. Kang, Y. Choi, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Continuous control of the coupling constant in an atom-cavity system by using elliptic polarization and magnetic sublevels,” Opt. Express 18, 9286–9302 (2010).
[CrossRef] [PubMed]

Keller, M.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled wavefrom in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[CrossRef] [PubMed]

Kim, J.-R.

S. Kang, Y. Choi, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Continuous control of the coupling constant in an atom-cavity system by using elliptic polarization and magnetic sublevels,” Opt. Express 18, 9286–9302 (2010).
[CrossRef] [PubMed]

Y. Choi, S. Kang, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Quasieigenstate coalescence in an atomcavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[CrossRef] [PubMed]

Kim, W.

Y. Choi, S. Kang, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Quasieigenstate coalescence in an atomcavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[CrossRef] [PubMed]

S. Kang, Y. Choi, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Continuous control of the coupling constant in an atom-cavity system by using elliptic polarization and magnetic sublevels,” Opt. Express 18, 9286–9302 (2010).
[CrossRef] [PubMed]

Kimble, H. J.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[CrossRef] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[CrossRef] [PubMed]

J. Ye, D. W. Vernooy, and H. J. Kimble, “Trapping of single atoms in cavity QED,” Phys. Rev. Lett. 83, 4987–4990 (1999).
[CrossRef]

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

Koch, M.

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 203602 (2008).
[CrossRef] [PubMed]

Kubanek, A.

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 203602 (2008).
[CrossRef] [PubMed]

Kuhn, A.

T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
[CrossRef] [PubMed]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

Kuzmich, A.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[CrossRef] [PubMed]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

Lange, B.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled wavefrom in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[CrossRef] [PubMed]

Lange, W.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled wavefrom in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[CrossRef] [PubMed]

Langfahl-Klabes, G.

J. Bochmann, M. Mücke, G. Langfahl-Klabes, C. Erbel, B. Weber, H. P. Specht, D. L. Moehring, and G. Rempe, “Fast excitation and photon emission of a single-atom-cavity system,” Phys. Rev. Lett. 101, 223601 (2008).
[CrossRef] [PubMed]

Lee, J.-H.

Y. Choi, S. Kang, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Quasieigenstate coalescence in an atomcavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[CrossRef] [PubMed]

S. Kang, Y. Choi, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Continuous control of the coupling constant in an atom-cavity system by using elliptic polarization and magnetic sublevels,” Opt. Express 18, 9286–9302 (2010).
[CrossRef] [PubMed]

Legero, T.

T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
[CrossRef] [PubMed]

Lim, S.

S. Kang, Y. Choi, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Continuous control of the coupling constant in an atom-cavity system by using elliptic polarization and magnetic sublevels,” Opt. Express 18, 9286–9302 (2010).
[CrossRef] [PubMed]

Y. Choi, S. Kang, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Quasieigenstate coalescence in an atomcavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[CrossRef] [PubMed]

Lounis, B.

C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83, 2722–2725 (1999).
[CrossRef]

M¨ucke, M.

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. M¨ucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef] [PubMed]

Maunz, P.

P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[CrossRef] [PubMed]

McKeever, J.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[CrossRef] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[CrossRef] [PubMed]

Messin, G.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[CrossRef] [PubMed]

Michler, P.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

Miller, R.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[CrossRef] [PubMed]

Moehring, D. L.

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. M¨ucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef] [PubMed]

J. Bochmann, M. Mücke, G. Langfahl-Klabes, C. Erbel, B. Weber, H. P. Specht, D. L. Moehring, and G. Rempe, “Fast excitation and photon emission of a single-atom-cavity system,” Phys. Rev. Lett. 101, 223601 (2008).
[CrossRef] [PubMed]

Monroe, C.

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238–246 (2002).
[CrossRef] [PubMed]

Mücke, M.

J. Bochmann, M. Mücke, G. Langfahl-Klabes, C. Erbel, B. Weber, H. P. Specht, D. L. Moehring, and G. Rempe, “Fast excitation and photon emission of a single-atom-cavity system,” Phys. Rev. Lett. 101, 223601 (2008).
[CrossRef] [PubMed]

Müller, T.

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. M¨ucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef] [PubMed]

Murr, K.

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 203602 (2008).
[CrossRef] [PubMed]

Orrit, M.

C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83, 2722–2725 (1999).
[CrossRef]

Ourjoumtsev, A.

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 203602 (2008).
[CrossRef] [PubMed]

Petroff, P. M.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Pinkse, P. W. H.

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 203602 (2008).
[CrossRef] [PubMed]

P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[CrossRef] [PubMed]

Poizat, J.-P.

R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000).
[CrossRef]

Raymer, M. G.

G. Cui and M. G. Raymer, “Quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime,” Opt. Express 13, 9660–9665 (2005).
[CrossRef] [PubMed]

Rempe, G.

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. M¨ucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef] [PubMed]

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 203602 (2008).
[CrossRef] [PubMed]

J. Bochmann, M. Mücke, G. Langfahl-Klabes, C. Erbel, B. Weber, H. P. Specht, D. L. Moehring, and G. Rempe, “Fast excitation and photon emission of a single-atom-cavity system,” Phys. Rev. Lett. 101, 223601 (2008).
[CrossRef] [PubMed]

T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
[CrossRef] [PubMed]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[CrossRef] [PubMed]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Russo, C.

F. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O. Schmidt, and R. Blatt, “Quantum to classical transition in a single-ion laser,” Nat. Phys. 6, 350–353 (2010).
[CrossRef]

Schmidt, P. O.

F. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O. Schmidt, and R. Blatt, “Quantum to classical transition in a single-ion laser,” Nat. Phys. 6, 350–353 (2010).
[CrossRef]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Schuster, I.

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 203602 (2008).
[CrossRef] [PubMed]

Sortais, Y.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[CrossRef] [PubMed]

Specht, H. P.

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. M¨ucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef] [PubMed]

J. Bochmann, M. Mücke, G. Langfahl-Klabes, C. Erbel, B. Weber, H. P. Specht, D. L. Moehring, and G. Rempe, “Fast excitation and photon emission of a single-atom-cavity system,” Phys. Rev. Lett. 101, 223601 (2008).
[CrossRef] [PubMed]

Stute, A.

F. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O. Schmidt, and R. Blatt, “Quantum to classical transition in a single-ion laser,” Nat. Phys. 6, 350–353 (2010).
[CrossRef]

Tamarat, P.

C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83, 2722–2725 (1999).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Twiss, R. Q.

R. H. Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
[CrossRef]

Vernooy, D. W.

J. Ye, D. W. Vernooy, and H. J. Kimble, “Trapping of single atoms in cavity QED,” Phys. Rev. Lett. 83, 4987–4990 (1999).
[CrossRef]

Walther, H.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled wavefrom in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[CrossRef] [PubMed]

Weber, B.

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. M¨ucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef] [PubMed]

J. Bochmann, M. Mücke, G. Langfahl-Klabes, C. Erbel, B. Weber, H. P. Specht, D. L. Moehring, and G. Rempe, “Fast excitation and photon emission of a single-atom-cavity system,” Phys. Rev. Lett. 101, 223601 (2008).
[CrossRef] [PubMed]

Wilk, T.

T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
[CrossRef] [PubMed]

Ye, J.

J. Ye, D. W. Vernooy, and H. J. Kimble, “Trapping of single atoms in cavity QED,” Phys. Rev. Lett. 83, 4987–4990 (1999).
[CrossRef]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Nat. Phys.

F. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O. Schmidt, and R. Blatt, “Quantum to classical transition in a single-ion laser,” Nat. Phys. 6, 350–353 (2010).
[CrossRef]

Nature

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238–246 (2002).
[CrossRef] [PubMed]

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled wavefrom in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[CrossRef] [PubMed]

R. H. Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
[CrossRef]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[CrossRef] [PubMed]

P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[CrossRef] [PubMed]

Opt. Express

S. Kang, Y. Choi, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Continuous control of the coupling constant in an atom-cavity system by using elliptic polarization and magnetic sublevels,” Opt. Express 18, 9286–9302 (2010).
[CrossRef] [PubMed]

G. Cui and M. G. Raymer, “Quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime,” Opt. Express 13, 9660–9665 (2005).
[CrossRef] [PubMed]

Opt. Lett.

R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000).
[CrossRef]

Phys. Rev. Lett.

T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
[CrossRef] [PubMed]

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 203602 (2008).
[CrossRef] [PubMed]

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. M¨ucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef] [PubMed]

Y. Choi, S. Kang, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Quasieigenstate coalescence in an atomcavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[CrossRef] [PubMed]

C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83, 2722–2725 (1999).
[CrossRef]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

J. Bochmann, M. Mücke, G. Langfahl-Klabes, C. Erbel, B. Weber, H. P. Specht, D. L. Moehring, and G. Rempe, “Fast excitation and photon emission of a single-atom-cavity system,” Phys. Rev. Lett. 101, 223601 (2008).
[CrossRef] [PubMed]

K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, “Microlaser: a laser with one atom in an optical resonator,” Phys. Rev. Lett. 73, 3375–3378 (1994).
[CrossRef] [PubMed]

J. Ye, D. W. Vernooy, and H. J. Kimble, “Trapping of single atoms in cavity QED,” Phys. Rev. Lett. 83, 4987–4990 (1999).
[CrossRef]

Rev. Mod. Phys.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Science

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[CrossRef] [PubMed]

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[CrossRef] [PubMed]

Other

J. J. Childs, K. An, R. R. Dasari, and M. S. Feld, Cavity Quantum Electrodynamics, P. R. Berman, ed. (Academic Press, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic diagram of the experimental setup. Only major parts are drawn. (b) Time trace of a typical cavity transmission upon single-atom transit events with a trigger level of 0.35 illustrated. (c) Timing sequence of the experiment. It takes 450 ms for one cycle of experiment. During a period of 25 μs single photons are generated at a repetition rate of 9.8 MHz.

Fig. 2
Fig. 2

(a) Measured arrival-time distribution (filled circles) with respect to the pump pulse (shaded area). The pump profile is scaled down for better comparison with the arrival-time distribution and its QTS fit (solid curve). Spontaneous emission decay (dashed curve) is also shown for comparison. (b) Single-photon-generation efficiency Ps as a function of the square root of the pump pulse energy.

Fig. 3
Fig. 3

Two-photon coincidence rates (open circles) as a function of delay time τ. Solid curve represents a fit based on a two-level theory formulated in Ref. [21]. Dashed curve is a fit for a two-photon emission peak.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P s = P e P c = P e κ κ + γ G 1 + G ,

Metrics