Abstract

We observe Fano-like resonance in the vibration spectrum of an optically driven atomic force microscope cantilever system. The vibration of the cantilever is photothermally induced by exciting it with a 780-nm laser diode. The asymmetry of the resonance curve strongly depends on the position of the excitation spot along the central axis of the cantilever. By using a simple physical model, we could extract and analyze the hidden resonance and continuous components in the vibration spectrum.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [CrossRef]
  2. M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
    [CrossRef] [PubMed]
  3. A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005).
    [CrossRef]
  4. Y. Lu, J. Yao, X. Li, and P. Wang, “Tunable asymmetrical Fano resonance and bistability in a microcavity-resonator-coupled Mach-Zehnder interferometer,” Opt. Lett. 30(22), 3069–3071 (2005).
    [CrossRef] [PubMed]
  5. Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
    [CrossRef]
  6. M. Z. Ansari and C. Cho, “Deflection, frequeny, and stress characteristics of rectangular, triangular, and step profile microcantilevers for biosensors,” Sensors (Basel Switzerland) 9(8), 6046–6057 (2009).
  7. S. W. Stahl, E. M. Puchner, and H. E. Gaub, “Photothermal cantilever actuation for fast single-molecule force spectroscopy,” Rev. Sci. Instrum. 80(7), 073702 (2009).
    [CrossRef] [PubMed]
  8. J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A femtojoule calorimeter using micromechanical sensors,” Rev. Sci. Instrum. 65(12), 3793–3798 (1994).
    [CrossRef]
  9. S. Nishida, D. Kobayashi, T. Sakurada, T. Nakazawa, Y. Hoshi, and H. Kawakatsu, “Photothermal excitation and laser Doppler velocimetry of higher cantilever vibration modes for dynamic atomic force microscopy in liquid,” Rev. Sci. Instrum. 79(12), 123703 (2008).
    [CrossRef]
  10. R. M. A. Fatah, “Mechanisms of optical of micromechanical resonators,” Sens. Actuators A Phys. 33(3), 229–236 (1992).
    [CrossRef]
  11. C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
    [CrossRef] [PubMed]
  12. D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444(7115), 75–78 (2006).
    [CrossRef] [PubMed]
  13. N. Selden, C. Ngalande, S. Gimelshein, E. P. Muntz, A. Alexeenko, and A. Ketsdever, “Area and edge effects in radiometric forces,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041201 (2009).
    [CrossRef] [PubMed]
  14. C. Metzger, I. Favero, A. Ortlieb, and K. Karrai, “Optical self cooling of a deformable Fabry-Perot cavity in the classical limit,” Phys. Rev. B 78(3), 035309 (2008).
    [CrossRef]
  15. D. Ramos, J. Mertens, M. Calleja, and J. Tamayo, “Study of the origin of bending induced by bimetallic effect on microcantilever,” Sensors (Basel Switzerland) 7(9), 1757–1765 (2007).
  16. S. Kadri, H. Fujiwara, and K. Sasaki, “Analysis of photothermally induced vibration in metal coated AFM cantilever,” Proc. SPIE 7743, 774307, 774307-6 (2010).
    [CrossRef]
  17. A. Wig, A. Passian, E. Arakawa, T. L. Ferrell, and T. Thundat, “Optical thin-film interference effects in microcantilevers,” J. Appl. Phys. 95(3), 1162–1165 (2004).
    [CrossRef]
  18. Y. Song, B. Cretin, D. M. Todorovic, and P. Vairac, “Study of photothermal vibrations of semiconductor cantilevers near the resonant frequency,” J. Phys. D Appl. Phys. 41(15), 155106 (2008).
    [CrossRef]
  19. K. Hane, T. Iwatuki, S. Inaba, and S. Okuma, “Frequency shift on a micromachined resonator excited photothermally in vacuum,” Rev. Sci. Instrum. 63(7), 3781–3782 (1992).
    [CrossRef]
  20. G. C. Ratcliff, D. A. Erie, and R. Superfine, “Photothermal modulation for oscillating mode atomic force microscopy in solution,” Appl. Phys. Lett. 72(15), 1911–1913 (1998).
    [CrossRef]
  21. R. W. Stark, T. Drobek, and W. M. Heckl, “Thermomechanical noise of a free v-shaped cantilever for atomic-force microscopy,” Ultramicroscopy 86(1-2), 207–215 (2001).
    [CrossRef] [PubMed]
  22. G. Jourdan, F. Comin, and J. Chevrier, “Mechanical mode dependence of bolometric backaction in an atomic force microscopy microlever,” Phys. Rev. Lett. 101(13), 133904 (2008).
    [CrossRef] [PubMed]
  23. D. W. Jordan and P. Smith, Mathematical Techniques, 3rd ed. (Oxford, New York, 2002), Chap. 20.
  24. D. Ramos, J. Tamayo, J. Mertens, and M. Calleja, “Photothermal excitation of microcantilevers in liquids,” J. Appl. Phys. 99(12), 124904 (2006).
    [CrossRef]
  25. E. Finot, A. Passian, and T. Thundat, “Measurement of mechanical properties of cantilever shaped materials,” Sensors (Basel Switzerland) 8(5), 3497–3541 (2008).

2010 (1)

S. Kadri, H. Fujiwara, and K. Sasaki, “Analysis of photothermally induced vibration in metal coated AFM cantilever,” Proc. SPIE 7743, 774307, 774307-6 (2010).
[CrossRef]

2009 (3)

N. Selden, C. Ngalande, S. Gimelshein, E. P. Muntz, A. Alexeenko, and A. Ketsdever, “Area and edge effects in radiometric forces,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041201 (2009).
[CrossRef] [PubMed]

M. Z. Ansari and C. Cho, “Deflection, frequeny, and stress characteristics of rectangular, triangular, and step profile microcantilevers for biosensors,” Sensors (Basel Switzerland) 9(8), 6046–6057 (2009).

S. W. Stahl, E. M. Puchner, and H. E. Gaub, “Photothermal cantilever actuation for fast single-molecule force spectroscopy,” Rev. Sci. Instrum. 80(7), 073702 (2009).
[CrossRef] [PubMed]

2008 (6)

S. Nishida, D. Kobayashi, T. Sakurada, T. Nakazawa, Y. Hoshi, and H. Kawakatsu, “Photothermal excitation and laser Doppler velocimetry of higher cantilever vibration modes for dynamic atomic force microscopy in liquid,” Rev. Sci. Instrum. 79(12), 123703 (2008).
[CrossRef]

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

C. Metzger, I. Favero, A. Ortlieb, and K. Karrai, “Optical self cooling of a deformable Fabry-Perot cavity in the classical limit,” Phys. Rev. B 78(3), 035309 (2008).
[CrossRef]

Y. Song, B. Cretin, D. M. Todorovic, and P. Vairac, “Study of photothermal vibrations of semiconductor cantilevers near the resonant frequency,” J. Phys. D Appl. Phys. 41(15), 155106 (2008).
[CrossRef]

G. Jourdan, F. Comin, and J. Chevrier, “Mechanical mode dependence of bolometric backaction in an atomic force microscopy microlever,” Phys. Rev. Lett. 101(13), 133904 (2008).
[CrossRef] [PubMed]

E. Finot, A. Passian, and T. Thundat, “Measurement of mechanical properties of cantilever shaped materials,” Sensors (Basel Switzerland) 8(5), 3497–3541 (2008).

2007 (1)

D. Ramos, J. Mertens, M. Calleja, and J. Tamayo, “Study of the origin of bending induced by bimetallic effect on microcantilever,” Sensors (Basel Switzerland) 7(9), 1757–1765 (2007).

2006 (3)

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444(7115), 75–78 (2006).
[CrossRef] [PubMed]

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[CrossRef]

D. Ramos, J. Tamayo, J. Mertens, and M. Calleja, “Photothermal excitation of microcantilevers in liquids,” J. Appl. Phys. 99(12), 124904 (2006).
[CrossRef]

2005 (2)

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005).
[CrossRef]

Y. Lu, J. Yao, X. Li, and P. Wang, “Tunable asymmetrical Fano resonance and bistability in a microcavity-resonator-coupled Mach-Zehnder interferometer,” Opt. Lett. 30(22), 3069–3071 (2005).
[CrossRef] [PubMed]

2004 (2)

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
[CrossRef] [PubMed]

A. Wig, A. Passian, E. Arakawa, T. L. Ferrell, and T. Thundat, “Optical thin-film interference effects in microcantilevers,” J. Appl. Phys. 95(3), 1162–1165 (2004).
[CrossRef]

2001 (1)

R. W. Stark, T. Drobek, and W. M. Heckl, “Thermomechanical noise of a free v-shaped cantilever for atomic-force microscopy,” Ultramicroscopy 86(1-2), 207–215 (2001).
[CrossRef] [PubMed]

1998 (1)

G. C. Ratcliff, D. A. Erie, and R. Superfine, “Photothermal modulation for oscillating mode atomic force microscopy in solution,” Appl. Phys. Lett. 72(15), 1911–1913 (1998).
[CrossRef]

1994 (1)

J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A femtojoule calorimeter using micromechanical sensors,” Rev. Sci. Instrum. 65(12), 3793–3798 (1994).
[CrossRef]

1992 (2)

R. M. A. Fatah, “Mechanisms of optical of micromechanical resonators,” Sens. Actuators A Phys. 33(3), 229–236 (1992).
[CrossRef]

K. Hane, T. Iwatuki, S. Inaba, and S. Okuma, “Frequency shift on a micromachined resonator excited photothermally in vacuum,” Rev. Sci. Instrum. 63(7), 3781–3782 (1992).
[CrossRef]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Alexeenko, A.

N. Selden, C. Ngalande, S. Gimelshein, E. P. Muntz, A. Alexeenko, and A. Ketsdever, “Area and edge effects in radiometric forces,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041201 (2009).
[CrossRef] [PubMed]

Ansari, M. Z.

M. Z. Ansari and C. Cho, “Deflection, frequeny, and stress characteristics of rectangular, triangular, and step profile microcantilevers for biosensors,” Sensors (Basel Switzerland) 9(8), 6046–6057 (2009).

Arakawa, E.

A. Wig, A. Passian, E. Arakawa, T. L. Ferrell, and T. Thundat, “Optical thin-film interference effects in microcantilevers,” J. Appl. Phys. 95(3), 1162–1165 (2004).
[CrossRef]

Badolato, A.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

Barbour, R.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

Barnes, J. R.

J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A femtojoule calorimeter using micromechanical sensors,” Rev. Sci. Instrum. 65(12), 3793–3798 (1994).
[CrossRef]

Biedermann, B.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

Bouwmeester, D.

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444(7115), 75–78 (2006).
[CrossRef] [PubMed]

Calleja, M.

D. Ramos, J. Mertens, M. Calleja, and J. Tamayo, “Study of the origin of bending induced by bimetallic effect on microcantilever,” Sensors (Basel Switzerland) 7(9), 1757–1765 (2007).

D. Ramos, J. Tamayo, J. Mertens, and M. Calleja, “Photothermal excitation of microcantilevers in liquids,” J. Appl. Phys. 99(12), 124904 (2006).
[CrossRef]

Chevrier, J.

G. Jourdan, F. Comin, and J. Chevrier, “Mechanical mode dependence of bolometric backaction in an atomic force microscopy microlever,” Phys. Rev. Lett. 101(13), 133904 (2008).
[CrossRef] [PubMed]

Chiba, A.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005).
[CrossRef]

Cho, C.

M. Z. Ansari and C. Cho, “Deflection, frequeny, and stress characteristics of rectangular, triangular, and step profile microcantilevers for biosensors,” Sensors (Basel Switzerland) 9(8), 6046–6057 (2009).

Comin, F.

G. Jourdan, F. Comin, and J. Chevrier, “Mechanical mode dependence of bolometric backaction in an atomic force microscopy microlever,” Phys. Rev. Lett. 101(13), 133904 (2008).
[CrossRef] [PubMed]

Cretin, B.

Y. Song, B. Cretin, D. M. Todorovic, and P. Vairac, “Study of photothermal vibrations of semiconductor cantilevers near the resonant frequency,” J. Phys. D Appl. Phys. 41(15), 155106 (2008).
[CrossRef]

Drobek, T.

R. W. Stark, T. Drobek, and W. M. Heckl, “Thermomechanical noise of a free v-shaped cantilever for atomic-force microscopy,” Ultramicroscopy 86(1-2), 207–215 (2001).
[CrossRef] [PubMed]

Erie, D. A.

G. C. Ratcliff, D. A. Erie, and R. Superfine, “Photothermal modulation for oscillating mode atomic force microscopy in solution,” Appl. Phys. Lett. 72(15), 1911–1913 (1998).
[CrossRef]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Fatah, R. M. A.

R. M. A. Fatah, “Mechanisms of optical of micromechanical resonators,” Sens. Actuators A Phys. 33(3), 229–236 (1992).
[CrossRef]

Favero, I.

C. Metzger, I. Favero, A. Ortlieb, and K. Karrai, “Optical self cooling of a deformable Fabry-Perot cavity in the classical limit,” Phys. Rev. B 78(3), 035309 (2008).
[CrossRef]

Ferrell, T. L.

A. Wig, A. Passian, E. Arakawa, T. L. Ferrell, and T. Thundat, “Optical thin-film interference effects in microcantilevers,” J. Appl. Phys. 95(3), 1162–1165 (2004).
[CrossRef]

Finot, E.

E. Finot, A. Passian, and T. Thundat, “Measurement of mechanical properties of cantilever shaped materials,” Sensors (Basel Switzerland) 8(5), 3497–3541 (2008).

Fujiwara, H.

S. Kadri, H. Fujiwara, and K. Sasaki, “Analysis of photothermally induced vibration in metal coated AFM cantilever,” Proc. SPIE 7743, 774307, 774307-6 (2010).
[CrossRef]

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005).
[CrossRef]

Gaub, H. E.

S. W. Stahl, E. M. Puchner, and H. E. Gaub, “Photothermal cantilever actuation for fast single-molecule force spectroscopy,” Rev. Sci. Instrum. 80(7), 073702 (2009).
[CrossRef] [PubMed]

Gerardot, B. D.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

Gerber, C.

J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A femtojoule calorimeter using micromechanical sensors,” Rev. Sci. Instrum. 65(12), 3793–3798 (1994).
[CrossRef]

Gimelshein, S.

N. Selden, C. Ngalande, S. Gimelshein, E. P. Muntz, A. Alexeenko, and A. Ketsdever, “Area and edge effects in radiometric forces,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041201 (2009).
[CrossRef] [PubMed]

Gimzewski, J. K.

J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A femtojoule calorimeter using micromechanical sensors,” Rev. Sci. Instrum. 65(12), 3793–3798 (1994).
[CrossRef]

Govorov, A. O.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

Hane, K.

K. Hane, T. Iwatuki, S. Inaba, and S. Okuma, “Frequency shift on a micromachined resonator excited photothermally in vacuum,” Rev. Sci. Instrum. 63(7), 3781–3782 (1992).
[CrossRef]

Heckl, W. M.

R. W. Stark, T. Drobek, and W. M. Heckl, “Thermomechanical noise of a free v-shaped cantilever for atomic-force microscopy,” Ultramicroscopy 86(1-2), 207–215 (2001).
[CrossRef] [PubMed]

Hoshi, Y.

S. Nishida, D. Kobayashi, T. Sakurada, T. Nakazawa, Y. Hoshi, and H. Kawakatsu, “Photothermal excitation and laser Doppler velocimetry of higher cantilever vibration modes for dynamic atomic force microscopy in liquid,” Rev. Sci. Instrum. 79(12), 123703 (2008).
[CrossRef]

Hotta, J.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005).
[CrossRef]

Inaba, S.

K. Hane, T. Iwatuki, S. Inaba, and S. Okuma, “Frequency shift on a micromachined resonator excited photothermally in vacuum,” Rev. Sci. Instrum. 63(7), 3781–3782 (1992).
[CrossRef]

Iwatuki, T.

K. Hane, T. Iwatuki, S. Inaba, and S. Okuma, “Frequency shift on a micromachined resonator excited photothermally in vacuum,” Rev. Sci. Instrum. 63(7), 3781–3782 (1992).
[CrossRef]

Joe, Y. S.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[CrossRef]

Jourdan, G.

G. Jourdan, F. Comin, and J. Chevrier, “Mechanical mode dependence of bolometric backaction in an atomic force microscopy microlever,” Phys. Rev. Lett. 101(13), 133904 (2008).
[CrossRef] [PubMed]

Kadri, S.

S. Kadri, H. Fujiwara, and K. Sasaki, “Analysis of photothermally induced vibration in metal coated AFM cantilever,” Proc. SPIE 7743, 774307, 774307-6 (2010).
[CrossRef]

Karrai, K.

C. Metzger, I. Favero, A. Ortlieb, and K. Karrai, “Optical self cooling of a deformable Fabry-Perot cavity in the classical limit,” Phys. Rev. B 78(3), 035309 (2008).
[CrossRef]

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
[CrossRef] [PubMed]

Kawakatsu, H.

S. Nishida, D. Kobayashi, T. Sakurada, T. Nakazawa, Y. Hoshi, and H. Kawakatsu, “Photothermal excitation and laser Doppler velocimetry of higher cantilever vibration modes for dynamic atomic force microscopy in liquid,” Rev. Sci. Instrum. 79(12), 123703 (2008).
[CrossRef]

Ketsdever, A.

N. Selden, C. Ngalande, S. Gimelshein, E. P. Muntz, A. Alexeenko, and A. Ketsdever, “Area and edge effects in radiometric forces,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041201 (2009).
[CrossRef] [PubMed]

Kim, C. S.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[CrossRef]

Kleckner, D.

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444(7115), 75–78 (2006).
[CrossRef] [PubMed]

Kobayashi, D.

S. Nishida, D. Kobayashi, T. Sakurada, T. Nakazawa, Y. Hoshi, and H. Kawakatsu, “Photothermal excitation and laser Doppler velocimetry of higher cantilever vibration modes for dynamic atomic force microscopy in liquid,” Rev. Sci. Instrum. 79(12), 123703 (2008).
[CrossRef]

Kroner, M.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

Li, X.

Y. Lu, J. Yao, X. Li, and P. Wang, “Tunable asymmetrical Fano resonance and bistability in a microcavity-resonator-coupled Mach-Zehnder interferometer,” Opt. Lett. 30(22), 3069–3071 (2005).
[CrossRef] [PubMed]

Lu, Y.

Y. Lu, J. Yao, X. Li, and P. Wang, “Tunable asymmetrical Fano resonance and bistability in a microcavity-resonator-coupled Mach-Zehnder interferometer,” Opt. Lett. 30(22), 3069–3071 (2005).
[CrossRef] [PubMed]

Mertens, J.

D. Ramos, J. Mertens, M. Calleja, and J. Tamayo, “Study of the origin of bending induced by bimetallic effect on microcantilever,” Sensors (Basel Switzerland) 7(9), 1757–1765 (2007).

D. Ramos, J. Tamayo, J. Mertens, and M. Calleja, “Photothermal excitation of microcantilevers in liquids,” J. Appl. Phys. 99(12), 124904 (2006).
[CrossRef]

Metzger, C.

C. Metzger, I. Favero, A. Ortlieb, and K. Karrai, “Optical self cooling of a deformable Fabry-Perot cavity in the classical limit,” Phys. Rev. B 78(3), 035309 (2008).
[CrossRef]

Metzger, C. H.

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
[CrossRef] [PubMed]

Muntz, E. P.

N. Selden, C. Ngalande, S. Gimelshein, E. P. Muntz, A. Alexeenko, and A. Ketsdever, “Area and edge effects in radiometric forces,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041201 (2009).
[CrossRef] [PubMed]

Nakazawa, T.

S. Nishida, D. Kobayashi, T. Sakurada, T. Nakazawa, Y. Hoshi, and H. Kawakatsu, “Photothermal excitation and laser Doppler velocimetry of higher cantilever vibration modes for dynamic atomic force microscopy in liquid,” Rev. Sci. Instrum. 79(12), 123703 (2008).
[CrossRef]

Ngalande, C.

N. Selden, C. Ngalande, S. Gimelshein, E. P. Muntz, A. Alexeenko, and A. Ketsdever, “Area and edge effects in radiometric forces,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041201 (2009).
[CrossRef] [PubMed]

Nishida, S.

S. Nishida, D. Kobayashi, T. Sakurada, T. Nakazawa, Y. Hoshi, and H. Kawakatsu, “Photothermal excitation and laser Doppler velocimetry of higher cantilever vibration modes for dynamic atomic force microscopy in liquid,” Rev. Sci. Instrum. 79(12), 123703 (2008).
[CrossRef]

O’Shea, S. J.

J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A femtojoule calorimeter using micromechanical sensors,” Rev. Sci. Instrum. 65(12), 3793–3798 (1994).
[CrossRef]

Okuma, S.

K. Hane, T. Iwatuki, S. Inaba, and S. Okuma, “Frequency shift on a micromachined resonator excited photothermally in vacuum,” Rev. Sci. Instrum. 63(7), 3781–3782 (1992).
[CrossRef]

Ortlieb, A.

C. Metzger, I. Favero, A. Ortlieb, and K. Karrai, “Optical self cooling of a deformable Fabry-Perot cavity in the classical limit,” Phys. Rev. B 78(3), 035309 (2008).
[CrossRef]

Passian, A.

E. Finot, A. Passian, and T. Thundat, “Measurement of mechanical properties of cantilever shaped materials,” Sensors (Basel Switzerland) 8(5), 3497–3541 (2008).

A. Wig, A. Passian, E. Arakawa, T. L. Ferrell, and T. Thundat, “Optical thin-film interference effects in microcantilevers,” J. Appl. Phys. 95(3), 1162–1165 (2004).
[CrossRef]

Petroff, P. M.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

Puchner, E. M.

S. W. Stahl, E. M. Puchner, and H. E. Gaub, “Photothermal cantilever actuation for fast single-molecule force spectroscopy,” Rev. Sci. Instrum. 80(7), 073702 (2009).
[CrossRef] [PubMed]

Ramos, D.

D. Ramos, J. Mertens, M. Calleja, and J. Tamayo, “Study of the origin of bending induced by bimetallic effect on microcantilever,” Sensors (Basel Switzerland) 7(9), 1757–1765 (2007).

D. Ramos, J. Tamayo, J. Mertens, and M. Calleja, “Photothermal excitation of microcantilevers in liquids,” J. Appl. Phys. 99(12), 124904 (2006).
[CrossRef]

Ratcliff, G. C.

G. C. Ratcliff, D. A. Erie, and R. Superfine, “Photothermal modulation for oscillating mode atomic force microscopy in solution,” Appl. Phys. Lett. 72(15), 1911–1913 (1998).
[CrossRef]

Rayment, T.

J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A femtojoule calorimeter using micromechanical sensors,” Rev. Sci. Instrum. 65(12), 3793–3798 (1994).
[CrossRef]

Remi, S.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

Sakurada, T.

S. Nishida, D. Kobayashi, T. Sakurada, T. Nakazawa, Y. Hoshi, and H. Kawakatsu, “Photothermal excitation and laser Doppler velocimetry of higher cantilever vibration modes for dynamic atomic force microscopy in liquid,” Rev. Sci. Instrum. 79(12), 123703 (2008).
[CrossRef]

Sasaki, K.

S. Kadri, H. Fujiwara, and K. Sasaki, “Analysis of photothermally induced vibration in metal coated AFM cantilever,” Proc. SPIE 7743, 774307, 774307-6 (2010).
[CrossRef]

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005).
[CrossRef]

Satanin, A. M.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[CrossRef]

Seidl, S.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

Selden, N.

N. Selden, C. Ngalande, S. Gimelshein, E. P. Muntz, A. Alexeenko, and A. Ketsdever, “Area and edge effects in radiometric forces,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041201 (2009).
[CrossRef] [PubMed]

Song, Y.

Y. Song, B. Cretin, D. M. Todorovic, and P. Vairac, “Study of photothermal vibrations of semiconductor cantilevers near the resonant frequency,” J. Phys. D Appl. Phys. 41(15), 155106 (2008).
[CrossRef]

Stahl, S. W.

S. W. Stahl, E. M. Puchner, and H. E. Gaub, “Photothermal cantilever actuation for fast single-molecule force spectroscopy,” Rev. Sci. Instrum. 80(7), 073702 (2009).
[CrossRef] [PubMed]

Stark, R. W.

R. W. Stark, T. Drobek, and W. M. Heckl, “Thermomechanical noise of a free v-shaped cantilever for atomic-force microscopy,” Ultramicroscopy 86(1-2), 207–215 (2001).
[CrossRef] [PubMed]

Stephenson, R. J.

J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A femtojoule calorimeter using micromechanical sensors,” Rev. Sci. Instrum. 65(12), 3793–3798 (1994).
[CrossRef]

Superfine, R.

G. C. Ratcliff, D. A. Erie, and R. Superfine, “Photothermal modulation for oscillating mode atomic force microscopy in solution,” Appl. Phys. Lett. 72(15), 1911–1913 (1998).
[CrossRef]

Takeuchi, S.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005).
[CrossRef]

Tamayo, J.

D. Ramos, J. Mertens, M. Calleja, and J. Tamayo, “Study of the origin of bending induced by bimetallic effect on microcantilever,” Sensors (Basel Switzerland) 7(9), 1757–1765 (2007).

D. Ramos, J. Tamayo, J. Mertens, and M. Calleja, “Photothermal excitation of microcantilevers in liquids,” J. Appl. Phys. 99(12), 124904 (2006).
[CrossRef]

Thundat, T.

E. Finot, A. Passian, and T. Thundat, “Measurement of mechanical properties of cantilever shaped materials,” Sensors (Basel Switzerland) 8(5), 3497–3541 (2008).

A. Wig, A. Passian, E. Arakawa, T. L. Ferrell, and T. Thundat, “Optical thin-film interference effects in microcantilevers,” J. Appl. Phys. 95(3), 1162–1165 (2004).
[CrossRef]

Todorovic, D. M.

Y. Song, B. Cretin, D. M. Todorovic, and P. Vairac, “Study of photothermal vibrations of semiconductor cantilevers near the resonant frequency,” J. Phys. D Appl. Phys. 41(15), 155106 (2008).
[CrossRef]

Vairac, P.

Y. Song, B. Cretin, D. M. Todorovic, and P. Vairac, “Study of photothermal vibrations of semiconductor cantilevers near the resonant frequency,” J. Phys. D Appl. Phys. 41(15), 155106 (2008).
[CrossRef]

Wang, P.

Y. Lu, J. Yao, X. Li, and P. Wang, “Tunable asymmetrical Fano resonance and bistability in a microcavity-resonator-coupled Mach-Zehnder interferometer,” Opt. Lett. 30(22), 3069–3071 (2005).
[CrossRef] [PubMed]

Warburton, R. J.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

Welland, M. E.

J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A femtojoule calorimeter using micromechanical sensors,” Rev. Sci. Instrum. 65(12), 3793–3798 (1994).
[CrossRef]

Wig, A.

A. Wig, A. Passian, E. Arakawa, T. L. Ferrell, and T. Thundat, “Optical thin-film interference effects in microcantilevers,” J. Appl. Phys. 95(3), 1162–1165 (2004).
[CrossRef]

Woodburn, C. N.

J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A femtojoule calorimeter using micromechanical sensors,” Rev. Sci. Instrum. 65(12), 3793–3798 (1994).
[CrossRef]

Yao, J.

Y. Lu, J. Yao, X. Li, and P. Wang, “Tunable asymmetrical Fano resonance and bistability in a microcavity-resonator-coupled Mach-Zehnder interferometer,” Opt. Lett. 30(22), 3069–3071 (2005).
[CrossRef] [PubMed]

Zhang, W.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005).
[CrossRef]

G. C. Ratcliff, D. A. Erie, and R. Superfine, “Photothermal modulation for oscillating mode atomic force microscopy in solution,” Appl. Phys. Lett. 72(15), 1911–1913 (1998).
[CrossRef]

J. Appl. Phys. (2)

D. Ramos, J. Tamayo, J. Mertens, and M. Calleja, “Photothermal excitation of microcantilevers in liquids,” J. Appl. Phys. 99(12), 124904 (2006).
[CrossRef]

A. Wig, A. Passian, E. Arakawa, T. L. Ferrell, and T. Thundat, “Optical thin-film interference effects in microcantilevers,” J. Appl. Phys. 95(3), 1162–1165 (2004).
[CrossRef]

J. Phys. D Appl. Phys. (1)

Y. Song, B. Cretin, D. M. Todorovic, and P. Vairac, “Study of photothermal vibrations of semiconductor cantilevers near the resonant frequency,” J. Phys. D Appl. Phys. 41(15), 155106 (2008).
[CrossRef]

Nature (3)

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
[CrossRef] [PubMed]

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444(7115), 75–78 (2006).
[CrossRef] [PubMed]

Opt. Lett. (1)

Y. Lu, J. Yao, X. Li, and P. Wang, “Tunable asymmetrical Fano resonance and bistability in a microcavity-resonator-coupled Mach-Zehnder interferometer,” Opt. Lett. 30(22), 3069–3071 (2005).
[CrossRef] [PubMed]

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Phys. Rev. B (1)

C. Metzger, I. Favero, A. Ortlieb, and K. Karrai, “Optical self cooling of a deformable Fabry-Perot cavity in the classical limit,” Phys. Rev. B 78(3), 035309 (2008).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

N. Selden, C. Ngalande, S. Gimelshein, E. P. Muntz, A. Alexeenko, and A. Ketsdever, “Area and edge effects in radiometric forces,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041201 (2009).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

G. Jourdan, F. Comin, and J. Chevrier, “Mechanical mode dependence of bolometric backaction in an atomic force microscopy microlever,” Phys. Rev. Lett. 101(13), 133904 (2008).
[CrossRef] [PubMed]

Phys. Scr. (1)

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[CrossRef]

Proc. SPIE (1)

S. Kadri, H. Fujiwara, and K. Sasaki, “Analysis of photothermally induced vibration in metal coated AFM cantilever,” Proc. SPIE 7743, 774307, 774307-6 (2010).
[CrossRef]

Rev. Sci. Instrum. (4)

S. W. Stahl, E. M. Puchner, and H. E. Gaub, “Photothermal cantilever actuation for fast single-molecule force spectroscopy,” Rev. Sci. Instrum. 80(7), 073702 (2009).
[CrossRef] [PubMed]

J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A femtojoule calorimeter using micromechanical sensors,” Rev. Sci. Instrum. 65(12), 3793–3798 (1994).
[CrossRef]

S. Nishida, D. Kobayashi, T. Sakurada, T. Nakazawa, Y. Hoshi, and H. Kawakatsu, “Photothermal excitation and laser Doppler velocimetry of higher cantilever vibration modes for dynamic atomic force microscopy in liquid,” Rev. Sci. Instrum. 79(12), 123703 (2008).
[CrossRef]

K. Hane, T. Iwatuki, S. Inaba, and S. Okuma, “Frequency shift on a micromachined resonator excited photothermally in vacuum,” Rev. Sci. Instrum. 63(7), 3781–3782 (1992).
[CrossRef]

Sens. Actuators A Phys. (1)

R. M. A. Fatah, “Mechanisms of optical of micromechanical resonators,” Sens. Actuators A Phys. 33(3), 229–236 (1992).
[CrossRef]

Sensors (Basel Switzerland) (3)

M. Z. Ansari and C. Cho, “Deflection, frequeny, and stress characteristics of rectangular, triangular, and step profile microcantilevers for biosensors,” Sensors (Basel Switzerland) 9(8), 6046–6057 (2009).

D. Ramos, J. Mertens, M. Calleja, and J. Tamayo, “Study of the origin of bending induced by bimetallic effect on microcantilever,” Sensors (Basel Switzerland) 7(9), 1757–1765 (2007).

E. Finot, A. Passian, and T. Thundat, “Measurement of mechanical properties of cantilever shaped materials,” Sensors (Basel Switzerland) 8(5), 3497–3541 (2008).

Ultramicroscopy (1)

R. W. Stark, T. Drobek, and W. M. Heckl, “Thermomechanical noise of a free v-shaped cantilever for atomic-force microscopy,” Ultramicroscopy 86(1-2), 207–215 (2001).
[CrossRef] [PubMed]

Other (1)

D. W. Jordan and P. Smith, Mathematical Techniques, 3rd ed. (Oxford, New York, 2002), Chap. 20.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Experimental setup and (b) scanning electron microscope image of the AFM cantilever.

Fig. 2
Fig. 2

(a) Modulation intensity profile and (b) cantilever bending mechanism. Top and bottom layers of the cantilever are gold and silicon nitride, respectively

Fig. 3
Fig. 3

Thermal noise of the cantilever in the absence of excitation laser

Fig. 4
Fig. 4

Vibration spectra in terms of amplitude (right column) and phase (left column) show the measurement data (black) and fit (red). Measured from the free end of the cantilever, the position of the excitation spot was 23 µm for (a) and (g), 36 µm for (b) and (h), 48 µm for (c) and (i), 61 µm for (d) and (j), 74 µm for (e) and (k), and 87 µm (f) and (l).

Fig. 5
Fig. 5

Nyquist plot for vibration spectrum at various excitation-spot positions; measurement data (black) and fit (red). The excitation-spot positions are (a) 23 µm, (b) 36 µm, (c) 48 µm, (d) 61 µm, (e) 74 µm, and (f) 87 µm from the free end of the cantilever.

Fig. 6
Fig. 6

Decomposition of resonance (solid line) and continuous (dashed line) components in the vibration spectrum for an excitation-spot position of 61μm.

Fig. 7
Fig. 7

Result of fit for resonating component | A r | (filled circles), and continuous component | A c | (filled squares) as a function of the excitation-spot position.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A ( ω ) = 1 1 + i ω τ ( A r 1 ( ω / ω 0 ) 2 + i 2 β ω / ω 0 2 + A c ) ,

Metrics