Abstract

A method to extend the spectral range of a tunable optical filter is proposed in this paper. Two identical Fabry-Perot filters and an additional tunable filter with a different free spectral range are cascaded to extend the spectral range and reduce side lobes. Over 400 nm of free spectral range and 4 nm of FWHM of the filter are achieved. The design procedure and simulation are described in detail. An experimental three-stage tunable Fabry–Perot filter with visible and infrared spectra is demonstrated. The experimental results and the theoretical analysis are presented in detail to verify this method. The results reveal that a compact and extended tunable spectral range of Fabry–Perot filters can be easily attainable by this method.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kurosaki, H. Koshiishi, T. Suzuki, and K. Tsuchiya, “Development of tunable imaging spectro-polarimeter for remote sensing,” Adv. Space Res. 32(11), 2141–2146 (2003).
    [Crossref]
  2. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
    [Crossref] [PubMed]
  3. S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
    [Crossref] [PubMed]
  4. N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
    [Crossref]
  5. K. Hirabayashi and T. Kurokawa, “Liquid crystal devices for optical communication and information processing systems,” Liq. Cryst. 14(2), 307–317 (1993).
    [Crossref]
  6. A. Sneh and K. M. Johnson, “High-speed continuously tunable liquid crystal filter for WDM networks,” J. Lightwave Technol. 14(6), 1067–1080 (1996).
    [Crossref]
  7. G. A. Kopp, M. J. Derks, D. F. Elmore, D. M. Hassler, J. C. Woods, J. L. Streete, and J. G. Blankner, “Tunable liquid-crystal filter for solar imaging at the He i 1083-nm line,” Appl. Opt. 36(1), 291–296 (1997).
    [Crossref] [PubMed]
  8. P. J. Miller, “Tunable narrowband birefringent filters for astronomical imaging,” Proc. SPIE 1235, 466–473 (1990).
    [Crossref]
  9. S. Saeed and P. J. Bos, “Multispectrum, spatially addressable polarization interference filter,” J. Opt. Soc. Am. A 19(11), 2301–2312 (2002).
    [Crossref]
  10. D. D. Huang, X. J. Yu, H. C. Huang, and H. S. Kwok, “Design of polarizing color filters with double-liquid-crystal cells,” Appl. Opt. 41(22), 4638–4644 (2002).
    [Crossref] [PubMed]
  11. H. A. Tarry, “Electrically tunable narrowband optical filter,” Electron. Lett. 11(19), 471–472 (1975).
    [Crossref]
  12. C. Ye, “Low-loss birefringent spectral filters comprising three identical retarders,” Appl. Opt. 45(31), 8044–8051 (2006).
    [Crossref] [PubMed]
  13. G. Kopp, “Tunable birefringent filters using liquid crystal variable retarders,” Proc. SPIE 2873, 324–327 (1996).
  14. B. Lyot, “Optical apparatus with wide field using interference of polarized light,” C.R. Acad. Sci. (Paris) 197, 1593 (1933).
  15. I. Šolc, “Birefringent chain filters,” J. Opt. Soc. Am. 55(6), 621–625 (1965).
    [Crossref]
  16. A. Frenkel and C. Lin, “Angle-tuned etalon filters for optical channel selection in high density wavelength division multiplexed systems,” J. Lightwave Technol. 7(4), 615–624 (1989).
    [Crossref]
  17. B. Pezeshki, F. K. Tong, J. A. Kash, D. W. Kisker, and R. M. Potemski, “Tapered Fabry–Perot waveguide optical demultiplexer,” IEEE Photon. Technol. Lett. 5(9), 1082–1085 (1993).
    [Crossref]
  18. T. Niemi, M. Uusimaa, S. Tammela, P. Heimala, T. Kajava, M. Kaivola, and H. Ludvigsen, “Tunable silicon etalon for simultaneous spectral filtering and wavelength monitoring of a DWDM transmitter,” IEEE Photon. Technol. Lett. 13(1), 58–60 (2001).
    [Crossref]
  19. K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable wavelength-selective liquid crystal filters for 600-channel WDM system,” IEEE Photon. Technol. Lett. 4(6), 597–599 (1992).
    [Crossref]
  20. O. Aharon and I. Abdulhalim, “Liquid crystal Lyot tunable filter with extended free spectral range,” Opt. Express 17(14), 11426–11433 (2009).
    [Crossref] [PubMed]
  21. O. Aharon and I. Abdulhalim, “Tunable optical filter having a large dynamic range,” Opt. Lett. 34(14), 2114–2116 (2009).
    [Crossref] [PubMed]
  22. A. A. M. Saleh and J. Stone, “Two-stage Fabry–Perot filters as demultiplexers in optical FDMA LAN's,” J. Lightwave Technol. 7(2), 323–330 (1989).
    [Crossref]
  23. E.-A. Dorjgotov, A. K. Bhowmik, and P. J. Bos, “Switchable polarization-independent liquid-crystal Fabry–Perot filter,” Appl. Opt. 48(1), 74–79 (2009).
    [Crossref]
  24. E. Dorjgotov, A. Bhowmik, and P. Bos, “Design of a wide bandwidth switchable mirror based on a liquid crystal etalon,” J. Appl. Phys. 105, 104906 (2009)
    [Crossref]
  25. S. A. Alboon and R. G. Lindquist, “Flat top liquid crystal tunable filter using coupled Fabry–Perot cavities,” Opt. Express 16(1), 231–236 (2008).
    [Crossref] [PubMed]
  26. A. H. Atabaki, B. Momeni, A. A. Eftekhar, E. S. Hosseini, S. Yegnanarayanan, and A. Adibi, “Tuning of resonance-spacing in a traveling-wave resonator device,” Opt. Express 18(9), 9447–9455 (2010).
    [Crossref] [PubMed]
  27. Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, “Design and demonstration of compact, wide bandwidth coupled-resonator filters on a siliconon- insulator platform,” Opt. Express 17(4), 2247–2254 (2009).
    [Crossref] [PubMed]
  28. R. Boeck, N. A. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement,” Opt. Express 18(24), 25151–25157 (2010).
    [Crossref] [PubMed]

2010 (2)

2009 (5)

2008 (1)

2007 (1)

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[Crossref] [PubMed]

2003 (1)

H. Kurosaki, H. Koshiishi, T. Suzuki, and K. Tsuchiya, “Development of tunable imaging spectro-polarimeter for remote sensing,” Adv. Space Res. 32(11), 2141–2146 (2003).
[Crossref]

2002 (2)

2001 (1)

T. Niemi, M. Uusimaa, S. Tammela, P. Heimala, T. Kajava, M. Kaivola, and H. Ludvigsen, “Tunable silicon etalon for simultaneous spectral filtering and wavelength monitoring of a DWDM transmitter,” IEEE Photon. Technol. Lett. 13(1), 58–60 (2001).
[Crossref]

2000 (1)

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

1997 (1)

1996 (2)

G. Kopp, “Tunable birefringent filters using liquid crystal variable retarders,” Proc. SPIE 2873, 324–327 (1996).

A. Sneh and K. M. Johnson, “High-speed continuously tunable liquid crystal filter for WDM networks,” J. Lightwave Technol. 14(6), 1067–1080 (1996).
[Crossref]

1993 (2)

B. Pezeshki, F. K. Tong, J. A. Kash, D. W. Kisker, and R. M. Potemski, “Tapered Fabry–Perot waveguide optical demultiplexer,” IEEE Photon. Technol. Lett. 5(9), 1082–1085 (1993).
[Crossref]

K. Hirabayashi and T. Kurokawa, “Liquid crystal devices for optical communication and information processing systems,” Liq. Cryst. 14(2), 307–317 (1993).
[Crossref]

1992 (1)

K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable wavelength-selective liquid crystal filters for 600-channel WDM system,” IEEE Photon. Technol. Lett. 4(6), 597–599 (1992).
[Crossref]

1990 (1)

P. J. Miller, “Tunable narrowband birefringent filters for astronomical imaging,” Proc. SPIE 1235, 466–473 (1990).
[Crossref]

1989 (2)

A. Frenkel and C. Lin, “Angle-tuned etalon filters for optical channel selection in high density wavelength division multiplexed systems,” J. Lightwave Technol. 7(4), 615–624 (1989).
[Crossref]

A. A. M. Saleh and J. Stone, “Two-stage Fabry–Perot filters as demultiplexers in optical FDMA LAN's,” J. Lightwave Technol. 7(2), 323–330 (1989).
[Crossref]

1975 (1)

H. A. Tarry, “Electrically tunable narrowband optical filter,” Electron. Lett. 11(19), 471–472 (1975).
[Crossref]

1965 (1)

1933 (1)

B. Lyot, “Optical apparatus with wide field using interference of polarized light,” C.R. Acad. Sci. (Paris) 197, 1593 (1933).

Abdulhalim, I.

Adibi, A.

Aharon, O.

Alboon, S. A.

Atabaki, A. H.

Bading, J. R.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[Crossref] [PubMed]

Bhowmik, A.

E. Dorjgotov, A. Bhowmik, and P. Bos, “Design of a wide bandwidth switchable mirror based on a liquid crystal etalon,” J. Appl. Phys. 105, 104906 (2009)
[Crossref]

Bhowmik, A. K.

Blankner, J. G.

Boeck, R.

Bos, P.

E. Dorjgotov, A. Bhowmik, and P. Bos, “Design of a wide bandwidth switchable mirror based on a liquid crystal etalon,” J. Appl. Phys. 105, 104906 (2009)
[Crossref]

Bos, P. J.

Chaudhari, A. J.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[Crossref] [PubMed]

Cherry, S. R.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[Crossref] [PubMed]

Chrostowski, L.

Conti, P. S.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[Crossref] [PubMed]

Crawford, G. P.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Darvas, F.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[Crossref] [PubMed]

Derks, M. J.

Dorjgotov, E.

E. Dorjgotov, A. Bhowmik, and P. Bos, “Design of a wide bandwidth switchable mirror based on a liquid crystal etalon,” J. Appl. Phys. 105, 104906 (2009)
[Crossref]

Dorjgotov, E.-A.

Eftekhar, A. A.

Elmore, D. F.

Frenkel, A.

A. Frenkel and C. Lin, “Angle-tuned etalon filters for optical channel selection in high density wavelength division multiplexed systems,” J. Lightwave Technol. 7(4), 615–624 (1989).
[Crossref]

Gat, N.

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

Hassler, D. M.

Heimala, P.

T. Niemi, M. Uusimaa, S. Tammela, P. Heimala, T. Kajava, M. Kaivola, and H. Ludvigsen, “Tunable silicon etalon for simultaneous spectral filtering and wavelength monitoring of a DWDM transmitter,” IEEE Photon. Technol. Lett. 13(1), 58–60 (2001).
[Crossref]

Hirabayashi, K.

K. Hirabayashi and T. Kurokawa, “Liquid crystal devices for optical communication and information processing systems,” Liq. Cryst. 14(2), 307–317 (1993).
[Crossref]

K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable wavelength-selective liquid crystal filters for 600-channel WDM system,” IEEE Photon. Technol. Lett. 4(6), 597–599 (1992).
[Crossref]

Hosseini, E. S.

Huang, D. D.

Huang, H. C.

Jaeger, N. A.

Jay, G. D.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Johnson, K. M.

A. Sneh and K. M. Johnson, “High-speed continuously tunable liquid crystal filter for WDM networks,” J. Lightwave Technol. 14(6), 1067–1080 (1996).
[Crossref]

Kaivola, M.

T. Niemi, M. Uusimaa, S. Tammela, P. Heimala, T. Kajava, M. Kaivola, and H. Ludvigsen, “Tunable silicon etalon for simultaneous spectral filtering and wavelength monitoring of a DWDM transmitter,” IEEE Photon. Technol. Lett. 13(1), 58–60 (2001).
[Crossref]

Kajava, T.

T. Niemi, M. Uusimaa, S. Tammela, P. Heimala, T. Kajava, M. Kaivola, and H. Ludvigsen, “Tunable silicon etalon for simultaneous spectral filtering and wavelength monitoring of a DWDM transmitter,” IEEE Photon. Technol. Lett. 13(1), 58–60 (2001).
[Crossref]

Kash, J. A.

B. Pezeshki, F. K. Tong, J. A. Kash, D. W. Kisker, and R. M. Potemski, “Tapered Fabry–Perot waveguide optical demultiplexer,” IEEE Photon. Technol. Lett. 5(9), 1082–1085 (1993).
[Crossref]

Kisker, D. W.

B. Pezeshki, F. K. Tong, J. A. Kash, D. W. Kisker, and R. M. Potemski, “Tapered Fabry–Perot waveguide optical demultiplexer,” IEEE Photon. Technol. Lett. 5(9), 1082–1085 (1993).
[Crossref]

Kopp, G.

G. Kopp, “Tunable birefringent filters using liquid crystal variable retarders,” Proc. SPIE 2873, 324–327 (1996).

Kopp, G. A.

Koshiishi, H.

H. Kurosaki, H. Koshiishi, T. Suzuki, and K. Tsuchiya, “Development of tunable imaging spectro-polarimeter for remote sensing,” Adv. Space Res. 32(11), 2141–2146 (2003).
[Crossref]

Kurokawa, T.

K. Hirabayashi and T. Kurokawa, “Liquid crystal devices for optical communication and information processing systems,” Liq. Cryst. 14(2), 307–317 (1993).
[Crossref]

K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable wavelength-selective liquid crystal filters for 600-channel WDM system,” IEEE Photon. Technol. Lett. 4(6), 597–599 (1992).
[Crossref]

Kurosaki, H.

H. Kurosaki, H. Koshiishi, T. Suzuki, and K. Tsuchiya, “Development of tunable imaging spectro-polarimeter for remote sensing,” Adv. Space Res. 32(11), 2141–2146 (2003).
[Crossref]

Kwok, H. S.

Leahy, R. M.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[Crossref] [PubMed]

Li, Q.

Lin, C.

A. Frenkel and C. Lin, “Angle-tuned etalon filters for optical channel selection in high density wavelength division multiplexed systems,” J. Lightwave Technol. 7(4), 615–624 (1989).
[Crossref]

Lindquist, R. G.

Ludvigsen, H.

T. Niemi, M. Uusimaa, S. Tammela, P. Heimala, T. Kajava, M. Kaivola, and H. Ludvigsen, “Tunable silicon etalon for simultaneous spectral filtering and wavelength monitoring of a DWDM transmitter,” IEEE Photon. Technol. Lett. 13(1), 58–60 (2001).
[Crossref]

Lyot, B.

B. Lyot, “Optical apparatus with wide field using interference of polarized light,” C.R. Acad. Sci. (Paris) 197, 1593 (1933).

Miller, P. J.

P. J. Miller, “Tunable narrowband birefringent filters for astronomical imaging,” Proc. SPIE 1235, 466–473 (1990).
[Crossref]

Moats, R. A.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[Crossref] [PubMed]

Momeni, B.

Niemi, T.

T. Niemi, M. Uusimaa, S. Tammela, P. Heimala, T. Kajava, M. Kaivola, and H. Ludvigsen, “Tunable silicon etalon for simultaneous spectral filtering and wavelength monitoring of a DWDM transmitter,” IEEE Photon. Technol. Lett. 13(1), 58–60 (2001).
[Crossref]

Pezeshki, B.

B. Pezeshki, F. K. Tong, J. A. Kash, D. W. Kisker, and R. M. Potemski, “Tapered Fabry–Perot waveguide optical demultiplexer,” IEEE Photon. Technol. Lett. 5(9), 1082–1085 (1993).
[Crossref]

Potemski, R. M.

B. Pezeshki, F. K. Tong, J. A. Kash, D. W. Kisker, and R. M. Potemski, “Tapered Fabry–Perot waveguide optical demultiplexer,” IEEE Photon. Technol. Lett. 5(9), 1082–1085 (1993).
[Crossref]

Rouger, N.

Saeed, S.

Saleh, A. A. M.

A. A. M. Saleh and J. Stone, “Two-stage Fabry–Perot filters as demultiplexers in optical FDMA LAN's,” J. Lightwave Technol. 7(2), 323–330 (1989).
[Crossref]

Smith, D. J.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[Crossref] [PubMed]

Sneh, A.

A. Sneh and K. M. Johnson, “High-speed continuously tunable liquid crystal filter for WDM networks,” J. Lightwave Technol. 14(6), 1067–1080 (1996).
[Crossref]

Šolc, I.

Soltani, M.

Stone, J.

A. A. M. Saleh and J. Stone, “Two-stage Fabry–Perot filters as demultiplexers in optical FDMA LAN's,” J. Lightwave Technol. 7(2), 323–330 (1989).
[Crossref]

Streete, J. L.

Suzuki, T.

H. Kurosaki, H. Koshiishi, T. Suzuki, and K. Tsuchiya, “Development of tunable imaging spectro-polarimeter for remote sensing,” Adv. Space Res. 32(11), 2141–2146 (2003).
[Crossref]

Tammela, S.

T. Niemi, M. Uusimaa, S. Tammela, P. Heimala, T. Kajava, M. Kaivola, and H. Ludvigsen, “Tunable silicon etalon for simultaneous spectral filtering and wavelength monitoring of a DWDM transmitter,” IEEE Photon. Technol. Lett. 13(1), 58–60 (2001).
[Crossref]

Tarry, H. A.

H. A. Tarry, “Electrically tunable narrowband optical filter,” Electron. Lett. 11(19), 471–472 (1975).
[Crossref]

Tong, F. K.

B. Pezeshki, F. K. Tong, J. A. Kash, D. W. Kisker, and R. M. Potemski, “Tapered Fabry–Perot waveguide optical demultiplexer,” IEEE Photon. Technol. Lett. 5(9), 1082–1085 (1993).
[Crossref]

Tsuchiya, K.

H. Kurosaki, H. Koshiishi, T. Suzuki, and K. Tsuchiya, “Development of tunable imaging spectro-polarimeter for remote sensing,” Adv. Space Res. 32(11), 2141–2146 (2003).
[Crossref]

Tsuda, H.

K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable wavelength-selective liquid crystal filters for 600-channel WDM system,” IEEE Photon. Technol. Lett. 4(6), 597–599 (1992).
[Crossref]

Uusimaa, M.

T. Niemi, M. Uusimaa, S. Tammela, P. Heimala, T. Kajava, M. Kaivola, and H. Ludvigsen, “Tunable silicon etalon for simultaneous spectral filtering and wavelength monitoring of a DWDM transmitter,” IEEE Photon. Technol. Lett. 13(1), 58–60 (2001).
[Crossref]

Woltman, S. J.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Woods, J. C.

Ye, C.

Yegnanarayanan, S.

Yu, X. J.

Adv. Space Res. (1)

H. Kurosaki, H. Koshiishi, T. Suzuki, and K. Tsuchiya, “Development of tunable imaging spectro-polarimeter for remote sensing,” Adv. Space Res. 32(11), 2141–2146 (2003).
[Crossref]

Appl. Opt. (4)

C.R. Acad. Sci. (Paris) (1)

B. Lyot, “Optical apparatus with wide field using interference of polarized light,” C.R. Acad. Sci. (Paris) 197, 1593 (1933).

Electron. Lett. (1)

H. A. Tarry, “Electrically tunable narrowband optical filter,” Electron. Lett. 11(19), 471–472 (1975).
[Crossref]

IEEE Photon. Technol. Lett. (3)

B. Pezeshki, F. K. Tong, J. A. Kash, D. W. Kisker, and R. M. Potemski, “Tapered Fabry–Perot waveguide optical demultiplexer,” IEEE Photon. Technol. Lett. 5(9), 1082–1085 (1993).
[Crossref]

T. Niemi, M. Uusimaa, S. Tammela, P. Heimala, T. Kajava, M. Kaivola, and H. Ludvigsen, “Tunable silicon etalon for simultaneous spectral filtering and wavelength monitoring of a DWDM transmitter,” IEEE Photon. Technol. Lett. 13(1), 58–60 (2001).
[Crossref]

K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable wavelength-selective liquid crystal filters for 600-channel WDM system,” IEEE Photon. Technol. Lett. 4(6), 597–599 (1992).
[Crossref]

J. Appl. Phys. (1)

E. Dorjgotov, A. Bhowmik, and P. Bos, “Design of a wide bandwidth switchable mirror based on a liquid crystal etalon,” J. Appl. Phys. 105, 104906 (2009)
[Crossref]

J. Lightwave Technol. (3)

A. A. M. Saleh and J. Stone, “Two-stage Fabry–Perot filters as demultiplexers in optical FDMA LAN's,” J. Lightwave Technol. 7(2), 323–330 (1989).
[Crossref]

A. Frenkel and C. Lin, “Angle-tuned etalon filters for optical channel selection in high density wavelength division multiplexed systems,” J. Lightwave Technol. 7(4), 615–624 (1989).
[Crossref]

A. Sneh and K. M. Johnson, “High-speed continuously tunable liquid crystal filter for WDM networks,” J. Lightwave Technol. 14(6), 1067–1080 (1996).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Liq. Cryst. (1)

K. Hirabayashi and T. Kurokawa, “Liquid crystal devices for optical communication and information processing systems,” Liq. Cryst. 14(2), 307–317 (1993).
[Crossref]

Nat. Mater. (1)

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Med. Biol. (1)

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[Crossref] [PubMed]

Proc. SPIE (3)

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

P. J. Miller, “Tunable narrowband birefringent filters for astronomical imaging,” Proc. SPIE 1235, 466–473 (1990).
[Crossref]

G. Kopp, “Tunable birefringent filters using liquid crystal variable retarders,” Proc. SPIE 2873, 324–327 (1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Fabry–Perot LC tunable filter; (b) layout of three-stage LC tunable Fabry–Perot filter.

Fig. 2
Fig. 2

(a) Transmission spectra for the first (pink, d = 3000nm, m = 11) and second (blue, d = 3000 nm, m + 1 = 12) Fabry–Perot filter. (b) Transmission spectra of cascaded first and second filters. (c) Transmission spectra for the third (d = 2700nm, m-1 = 10) filter. (d) Total output of three-stage LC Fabry–Perot tunable filter.

Fig. 3
Fig. 3

Experimental three-stage LC Fabry–Perot filter.

Fig. 4
Fig. 4

Five examples of measured spectra of three-stage LC Fabry–Perot tunable filter: the peak wavelength of the filter at 848 nm, 750 nm, 695nm, 625 nm and 490 nm when the loading voltages for the three stages were: {2.03V, 5.75V, 2.12V}, {8.49V, 12.58V, 7.86V}, {12.85V, 16.21V, 13.72V}, {8.23V, 15.45V, 9.16V}, {13.25V, 6.15V, 3.05V}, correspondingly.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

T = I ( t ) I ( i ) = 1 1 + F sin 2 δ 2 ,
n = 1 d d 2 d 2 n o [ 1 ( 1 n o 2 n e 2 ) sin 2 θ ] 1 2 d z ,
λ p e a k = 2 n d m ; F S R = λ p e a k 2 2 n d = 2 n d m 2 = λ p e a k m ; F W H M = 2 λ m π 1 F ,
T = 1 1 + F sin 2 δ 1 2 1 1 + F sin 2 δ 2 2 1 1 + F sin 2 δ 3 2 = 1 1 + F sin 2 ( 2 π λ n 1 d ) 1 1 + F sin 2 ( 2 π λ n 2 d ) 1 1 + F sin 2 ( 2 π λ n 3 d 3 ) ,
F = 4 R ( 1 R ) 2 .
F S R 1 = λ p e a k m ; F S R 2 = λ p e a k m + 1 ; F S R 3 = λ p e a k m 1 .
λ int e r v a l = λ p e a k m λ p e a k m + 1 = λ p e a k m ( m + 1 ) .
λ p e a k ' = 2 n 1 d m + F S R 1 λ int e r v a l = 2 n 1 d 2 m + 1 = λ p e a k m 2 m + 1 ,
F S R = λ p e a k m + 1 2m+1 ,
T ( 1 1 + F sin 2 δ 1 2 ) 3 .
F W H M 2 3 2 λ p e a k m π 1 F .

Metrics