Abstract

We present a resonance waveguide grating with relatively wide bandwidth in the visible region of the spectrum compared to typical resonance structures. The reflective properties of the grating are based on amorphous atomic layer deposited titanium dioxide which has rather high refractive index at the visible wavelengths. The resonance grating provides approximately 20–30 nm bandwidth with over 90% reflectance at the visible wavelengths. The measured reflectances of the fabricated elements show also very good agreement with the theoretical predictions. These kind of reflectors may be useful in applications that make use of LED sources.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
    [CrossRef]
  2. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993).
    [CrossRef] [PubMed]
  3. T. Vallius, P. Vahimaa, and J. Turunen, “Pulse deformations at guided-mode resonance filters,” Opt. Express 10, 840–843 (2002).
    [PubMed]
  4. M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91, 111109 (2007).
    [CrossRef]
  5. P. Karvinen, T. Nuutinen, O. Hyvärinen, and P. Vahimaa, “Enhancement of laser-induced fluorescence at 473 nm excitation with subwavelength resonant waveguide gratings,” Opt. Express 16, 16364–16370 (2008).
    [CrossRef] [PubMed]
  6. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
    [CrossRef]
  7. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12, 5661–5674 (2004).
    [CrossRef] [PubMed]
  8. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16, 3456–3462 (2008).
    [CrossRef] [PubMed]
  9. M. Shokooh-Saremi and R. Magnusson, “Leaky-mode resonant reflectors with extreme bandwidths,” Opt. Lett. 35, 1121–1123 (2010).
    [CrossRef] [PubMed]
  10. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 m) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
    [CrossRef]
  11. L. Chen, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, “Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror,” Appl. Phys. Lett.,  88, 031102 (2006)
    [CrossRef]
  12. J. M. Kontio, J. Simonen, K. Leinonen, M. Kuittinen, and T. Niemi, “Broadband infrared mirror using guided-mode resonance in a subwavelength germanium grating,” Opt. Lett.,  35, 2564–2566 (2010).
    [CrossRef] [PubMed]
  13. H. Wu, J. Hou, W. Mo, D. Gao, and Z. Zhou, “A broadband reflector using a multilayered grating structure with multi-subpart profile,” Appl. Phys. B 99, 519–524 (2010).
    [CrossRef]
  14. A. Ricciardi, S. Campopiano, A. Cusano, T. F. Krauss, and L. O’Faolain, “Broadband Mirrors in the Near-Infrared Based on Subwavelength Gratings in SOI,” IEEE Photon. J. 2, 696–702 (2010).
    [CrossRef]
  15. T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Säynätjoki, A. Tervonen, P. Stenberg, M. Kuittinen, and S. Honkanen, “Atomic layer deposited titanium dioxide and its application in resonant waveguide grating,” Appl. Opt. 49, 4321–4325 (2010).
    [CrossRef] [PubMed]
  16. J. Turunen, “Diffraction theory of microrelief gratings,” in Micro-optics: Elements, Systems and Applications, H. Herzig, ed. (Taylor & Francis, 1997).

2010 (5)

2008 (2)

2007 (1)

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

2006 (1)

L. Chen, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, “Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror,” Appl. Phys. Lett.,  88, 031102 (2006)
[CrossRef]

2004 (3)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12, 5661–5674 (2004).
[CrossRef] [PubMed]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 m) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
[CrossRef]

2002 (1)

1993 (1)

1992 (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

Alasaarela, T.

Campopiano, S.

A. Ricciardi, S. Campopiano, A. Cusano, T. F. Krauss, and L. O’Faolain, “Broadband Mirrors in the Near-Infrared Based on Subwavelength Gratings in SOI,” IEEE Photon. J. 2, 696–702 (2010).
[CrossRef]

Chang-Hasnain, C. J.

L. Chen, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, “Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror,” Appl. Phys. Lett.,  88, 031102 (2006)
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 m) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Chen, L.

L. Chen, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, “Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror,” Appl. Phys. Lett.,  88, 031102 (2006)
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 m) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
[CrossRef]

Cusano, A.

A. Ricciardi, S. Campopiano, A. Cusano, T. F. Krauss, and L. O’Faolain, “Broadband Mirrors in the Near-Infrared Based on Subwavelength Gratings in SOI,” IEEE Photon. J. 2, 696–702 (2010).
[CrossRef]

Deng, Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Ding, Y.

Gao, D.

H. Wu, J. Hou, W. Mo, D. Gao, and Z. Zhou, “A broadband reflector using a multilayered grating structure with multi-subpart profile,” Appl. Phys. B 99, 519–524 (2010).
[CrossRef]

Hiltunen, J.

Honkanen, S.

Hou, J.

H. Wu, J. Hou, W. Mo, D. Gao, and Z. Zhou, “A broadband reflector using a multilayered grating structure with multi-subpart profile,” Appl. Phys. B 99, 519–524 (2010).
[CrossRef]

Huang, M. C. Y.

L. Chen, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, “Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror,” Appl. Phys. Lett.,  88, 031102 (2006)
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 m) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
[CrossRef]

Hyvärinen, O.

Karvinen, P.

P. Karvinen, T. Nuutinen, O. Hyvärinen, and P. Vahimaa, “Enhancement of laser-induced fluorescence at 473 nm excitation with subwavelength resonant waveguide gratings,” Opt. Express 16, 16364–16370 (2008).
[CrossRef] [PubMed]

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

Kauranen, M.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

Kontio, J. M.

Krauss, T. F.

A. Ricciardi, S. Campopiano, A. Cusano, T. F. Krauss, and L. O’Faolain, “Broadband Mirrors in the Near-Infrared Based on Subwavelength Gratings in SOI,” IEEE Photon. J. 2, 696–702 (2010).
[CrossRef]

Kuittinen, M.

Leinonen, K.

Leivo, S.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

Magnusson, R.

Mateus, C. F. R.

L. Chen, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, “Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror,” Appl. Phys. Lett.,  88, 031102 (2006)
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 m) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Mo, W.

H. Wu, J. Hou, W. Mo, D. Gao, and Z. Zhou, “A broadband reflector using a multilayered grating structure with multi-subpart profile,” Appl. Phys. B 99, 519–524 (2010).
[CrossRef]

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Niemi, T.

Nuutinen, T.

O’Faolain, L.

A. Ricciardi, S. Campopiano, A. Cusano, T. F. Krauss, and L. O’Faolain, “Broadband Mirrors in the Near-Infrared Based on Subwavelength Gratings in SOI,” IEEE Photon. J. 2, 696–702 (2010).
[CrossRef]

Ricciardi, A.

A. Ricciardi, S. Campopiano, A. Cusano, T. F. Krauss, and L. O’Faolain, “Broadband Mirrors in the Near-Infrared Based on Subwavelength Gratings in SOI,” IEEE Photon. J. 2, 696–702 (2010).
[CrossRef]

Saastamoinen, T.

Säynätjoki, A.

Shokooh-Saremi, M.

Siltanen, M.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

Simonen, J.

Stenberg, P.

Suzuki, Y.

L. Chen, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, “Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror,” Appl. Phys. Lett.,  88, 031102 (2006)
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 m) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
[CrossRef]

Tervonen, A.

Turunen, J.

T. Vallius, P. Vahimaa, and J. Turunen, “Pulse deformations at guided-mode resonance filters,” Opt. Express 10, 840–843 (2002).
[PubMed]

J. Turunen, “Diffraction theory of microrelief gratings,” in Micro-optics: Elements, Systems and Applications, H. Herzig, ed. (Taylor & Francis, 1997).

Vahimaa, P.

Vallius, T.

Voima, P.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

Wang, S. S.

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993).
[CrossRef] [PubMed]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

Wu, H.

H. Wu, J. Hou, W. Mo, D. Gao, and Z. Zhou, “A broadband reflector using a multilayered grating structure with multi-subpart profile,” Appl. Phys. B 99, 519–524 (2010).
[CrossRef]

Zhou, Z.

H. Wu, J. Hou, W. Mo, D. Gao, and Z. Zhou, “A broadband reflector using a multilayered grating structure with multi-subpart profile,” Appl. Phys. B 99, 519–524 (2010).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

H. Wu, J. Hou, W. Mo, D. Gao, and Z. Zhou, “A broadband reflector using a multilayered grating structure with multi-subpart profile,” Appl. Phys. B 99, 519–524 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

L. Chen, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, “Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror,” Appl. Phys. Lett.,  88, 031102 (2006)
[CrossRef]

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

IEEE Photon. J. (1)

A. Ricciardi, S. Campopiano, A. Cusano, T. F. Krauss, and L. O’Faolain, “Broadband Mirrors in the Near-Infrared Based on Subwavelength Gratings in SOI,” IEEE Photon. J. 2, 696–702 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 m) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Other (1)

J. Turunen, “Diffraction theory of microrelief gratings,” in Micro-optics: Elements, Systems and Applications, H. Herzig, ed. (Taylor & Francis, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Design of the RWG grating where hc is the thickness of the TiO2 coating, hg is the height of the grating, and d is the period of the grating. The substrate material is SiO2.

Fig. 2
Fig. 2

Refractive index of ALD TiO2 at the visible wavelengths.

Fig. 3
Fig. 3

SEM image of the RWG grating operating at 20 degrees incidence. The binary SiO2 grating contains amorphous TiO2 coating.

Fig. 4
Fig. 4

Reflectance of the RWG grating for the incident angle of 20 degrees in TE- and TM-polarizations. The period of the grating d = 378 nm, the height hg = 106 nm, the fill-factor f = 0.26, and the thickness of the TiO2 coating is hc = 56 nm. TE exp and TM exp denote the measured reflectance curves and TE theory and TM theory are the corresponding calculated reflectances.

Fig. 5
Fig. 5

Reflectance of the RWG grating for the incident angle of zero degrees in TE- and TM-polarizations. The period of the grating d = 390 nm, the height hg = 120 nm, the fill-factor f = 0.25, and the thickness of the TiO2 coating is hc = 68 nm. TE exp and TM exp denote the measured reflectance curves and TE theory and TM theory are the corresponding calculated reflectances.

Fig. 6
Fig. 6

Theoretical reflectance of the RWG grating determined from the transmittance using the relation R = 1 − T. The solid lines represents the case where we take into account only the zeroth transmitted order in the substrate. The dashed lines represents the case where we take into account all the transmitted orders in the substrate. Furthermore, in both cases the grating profile is rounded to match the fabricated profile shown in Fig. 3. Because the cut-off wavelength of the grating is approximately at 574 nm, the solid and dashed lines overlap above this wavelength.

Metrics