Abstract

We study both steady and dynamic optical responses of three samples with the same amounts of cold atoms but very different density functions. These samples are driven into the regime of electromagnetically induced transparency by a probe and a coupling in the Lambda configuration. When the coupling is in the traveling-wave pattern, all samples have the same transmission spectra and therefore identical transmitted pulses at the sample exits. In the case of a standing-wave coupling, however, very different reflection and transmission spectra are found for the three samples. Accordingly, reflected pulses at the sample entrances and transmitted pulses at the sample exits are quite sensitive to the spatial inhomogeneity of cold atoms. These interesting phenomena are qualitatively analyzed in terms of constructive and destructive interference between forward and backward probe photons scattered by a standing-wave atomic grating.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
    [CrossRef]
  2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [CrossRef]
  3. H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996).
    [CrossRef] [PubMed]
  4. D. A. Braje, V. Balic, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801 (2003).
    [CrossRef]
  5. S.-J. Li, X.-D. Yang, X.-M. Cao, C.-H. Zhang, C.-D. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system,” Phys. Rev. Lett. 101, 073602 (2008).
    [CrossRef] [PubMed]
  6. C. Hang and G.-X. Huang, “Giant Kerr nonlinearity and weak-light superluminal optical solitons in a four-state atomic system with gain doublet,” Opt. Express 18, 2952–2966 (2010).
    [CrossRef] [PubMed]
  7. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [CrossRef]
  8. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
    [CrossRef] [PubMed]
  9. C.-L. Cui, J.-K. Jia, J.-W. Gao, Y. Xue, G. Wang, and J.-H. Wu, “Ultraslow and superluminal light propagation in a four-level atomic system,” Phys. Rev. A 76, 033815 (2007).
    [CrossRef]
  10. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulsed,” Nature 409, 490–493 (2001).
    [CrossRef] [PubMed]
  11. T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
    [CrossRef] [PubMed]
  12. Z. Li, D.-Z. Cao, and K. Wang, “Manipulating synchronous optical signals with a double-Λ atomic ensemble,” Phys. Lett. A 341, 366–370 (2005).
    [CrossRef]
  13. R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007).
    [CrossRef] [PubMed]
  14. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
    [CrossRef] [PubMed]
  15. A. Andre and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89, 143602 (2002).
    [CrossRef] [PubMed]
  16. X.-M. Su and B. S. Ham, “Dynamic control of the photonic band gap using quantum coherence,” Phys. Rev. A 71, 013821 (2005).
    [CrossRef]
  17. M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett. 96, 073905 (2006).
    [CrossRef] [PubMed]
  18. S.-Q. Kuang, R.-G. Wan, P. Du, Y. Jiang, and J.-Y. Gao, “Transmission and reflection of electromagnetically induced absorption grating in homogeneous atomic media,” Opt. Express 16, 15455–15462 (2008).
    [CrossRef] [PubMed]
  19. J.-H. Wu, G. C. La Rocca, and M. Artoni, “Controlled light-pulse propagation in driven color centers in diamond,” Phys. Rev. B 77, 113106 (2008).
    [CrossRef]
  20. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
    [CrossRef] [PubMed]
  21. K. R. Hansen and K. Molmer, “Trapping of light pulses in ensembles of stationary Λ atoms,” Phys. Rev. A 75, 053802 (2007).
    [CrossRef]
  22. Y.-W. Lin, W.-T. Liao, T. Peters, H.-C. Chou, J.-S. Wang, H.-W. Cho, P.-C. Kuan, and I. A. Yu, “Stationary light pulses in cold atomic media and without bragg gratings,” Phys. Rev. Lett. 102, 213601 (2009).
    [CrossRef] [PubMed]
  23. J. Otterbach, R. G. Unanyan, and M. Fleischhauer, “Confining stationary light: dirac dynamics and klein tunneling,” Phys. Rev. Lett. 102, 063602 (2009).
    [CrossRef] [PubMed]
  24. J.-H. Wu, M. Artoni, and G. C. La Rocca, “Decay of stationary light pulses in ultracold atoms,” Phys. Rev. A 81, 033822 (2010).
    [CrossRef]
  25. J.-H. Wu, M. Artoni, and G. C. La Rocca, “All-optical light confinement in dynamic cavities in cold atoms,” Phys. Rev. Lett. 103, 133601 (2009).
    [CrossRef] [PubMed]
  26. J.-W. Gao, J.-H. Wu, N. Ba, C.-L. Cui, and X.-X. Tian, “Efficient all-optical routing using dynamically induced transparency windows and photonic band gaps,” Phys. Rev. A 81, 013804 (2010).
    [CrossRef]
  27. H.-W. Cho, Y.-C. He, T. Peters, Y.-H. Chen, H.-C. Chen, S.-C. Lin, Y.-C. Lee, and I. A. Yu, “Direct measurement of the atom number in a Bose condensate,” Opt. Express 15, 12114–12122 (2007).
    [CrossRef] [PubMed]
  28. Y.-W. Lin, H.-C. Chou, P. P. Dwivedi, Y.-H. Chen, and I. A. Yu, “Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density,” Opt. Express 16, 3753–3761 (2008).
    [CrossRef] [PubMed]
  29. M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 046604 (2005).
    [CrossRef]

2010

C. Hang and G.-X. Huang, “Giant Kerr nonlinearity and weak-light superluminal optical solitons in a four-state atomic system with gain doublet,” Opt. Express 18, 2952–2966 (2010).
[CrossRef] [PubMed]

J.-H. Wu, M. Artoni, and G. C. La Rocca, “Decay of stationary light pulses in ultracold atoms,” Phys. Rev. A 81, 033822 (2010).
[CrossRef]

J.-W. Gao, J.-H. Wu, N. Ba, C.-L. Cui, and X.-X. Tian, “Efficient all-optical routing using dynamically induced transparency windows and photonic band gaps,” Phys. Rev. A 81, 013804 (2010).
[CrossRef]

2009

J.-H. Wu, M. Artoni, and G. C. La Rocca, “All-optical light confinement in dynamic cavities in cold atoms,” Phys. Rev. Lett. 103, 133601 (2009).
[CrossRef] [PubMed]

Y.-W. Lin, W.-T. Liao, T. Peters, H.-C. Chou, J.-S. Wang, H.-W. Cho, P.-C. Kuan, and I. A. Yu, “Stationary light pulses in cold atomic media and without bragg gratings,” Phys. Rev. Lett. 102, 213601 (2009).
[CrossRef] [PubMed]

J. Otterbach, R. G. Unanyan, and M. Fleischhauer, “Confining stationary light: dirac dynamics and klein tunneling,” Phys. Rev. Lett. 102, 063602 (2009).
[CrossRef] [PubMed]

2008

S.-Q. Kuang, R.-G. Wan, P. Du, Y. Jiang, and J.-Y. Gao, “Transmission and reflection of electromagnetically induced absorption grating in homogeneous atomic media,” Opt. Express 16, 15455–15462 (2008).
[CrossRef] [PubMed]

J.-H. Wu, G. C. La Rocca, and M. Artoni, “Controlled light-pulse propagation in driven color centers in diamond,” Phys. Rev. B 77, 113106 (2008).
[CrossRef]

Y.-W. Lin, H.-C. Chou, P. P. Dwivedi, Y.-H. Chen, and I. A. Yu, “Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density,” Opt. Express 16, 3753–3761 (2008).
[CrossRef] [PubMed]

S.-J. Li, X.-D. Yang, X.-M. Cao, C.-H. Zhang, C.-D. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system,” Phys. Rev. Lett. 101, 073602 (2008).
[CrossRef] [PubMed]

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[CrossRef] [PubMed]

2007

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007).
[CrossRef] [PubMed]

C.-L. Cui, J.-K. Jia, J.-W. Gao, Y. Xue, G. Wang, and J.-H. Wu, “Ultraslow and superluminal light propagation in a four-level atomic system,” Phys. Rev. A 76, 033815 (2007).
[CrossRef]

H.-W. Cho, Y.-C. He, T. Peters, Y.-H. Chen, H.-C. Chen, S.-C. Lin, Y.-C. Lee, and I. A. Yu, “Direct measurement of the atom number in a Bose condensate,” Opt. Express 15, 12114–12122 (2007).
[CrossRef] [PubMed]

K. R. Hansen and K. Molmer, “Trapping of light pulses in ensembles of stationary Λ atoms,” Phys. Rev. A 75, 053802 (2007).
[CrossRef]

2006

M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett. 96, 073905 (2006).
[CrossRef] [PubMed]

2005

M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 046604 (2005).
[CrossRef]

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[CrossRef] [PubMed]

Z. Li, D.-Z. Cao, and K. Wang, “Manipulating synchronous optical signals with a double-Λ atomic ensemble,” Phys. Lett. A 341, 366–370 (2005).
[CrossRef]

X.-M. Su and B. S. Ham, “Dynamic control of the photonic band gap using quantum coherence,” Phys. Rev. A 71, 013821 (2005).
[CrossRef]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

2003

D. A. Braje, V. Balic, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801 (2003).
[CrossRef]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[CrossRef] [PubMed]

2002

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

A. Andre and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89, 143602 (2002).
[CrossRef] [PubMed]

2001

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulsed,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

1999

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

1997

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

1996

H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996).
[CrossRef] [PubMed]

Andre, A.

A. Andre and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89, 143602 (2002).
[CrossRef] [PubMed]

Artoni, M.

J.-H. Wu, M. Artoni, and G. C. La Rocca, “Decay of stationary light pulses in ultracold atoms,” Phys. Rev. A 81, 033822 (2010).
[CrossRef]

J.-H. Wu, M. Artoni, and G. C. La Rocca, “All-optical light confinement in dynamic cavities in cold atoms,” Phys. Rev. Lett. 103, 133601 (2009).
[CrossRef] [PubMed]

J.-H. Wu, G. C. La Rocca, and M. Artoni, “Controlled light-pulse propagation in driven color centers in diamond,” Phys. Rev. B 77, 113106 (2008).
[CrossRef]

M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett. 96, 073905 (2006).
[CrossRef] [PubMed]

M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 046604 (2005).
[CrossRef]

Ba, N.

J.-W. Gao, J.-H. Wu, N. Ba, C.-L. Cui, and X.-X. Tian, “Efficient all-optical routing using dynamically induced transparency windows and photonic band gaps,” Phys. Rev. A 81, 013804 (2010).
[CrossRef]

Bajcsy, M.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[CrossRef] [PubMed]

Balic, V.

D. A. Braje, V. Balic, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801 (2003).
[CrossRef]

Bassani, F.

M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 046604 (2005).
[CrossRef]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulsed,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Braje, D. A.

D. A. Braje, V. Balic, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801 (2003).
[CrossRef]

Cao, D.-Z.

Z. Li, D.-Z. Cao, and K. Wang, “Manipulating synchronous optical signals with a double-Λ atomic ensemble,” Phys. Lett. A 341, 366–370 (2005).
[CrossRef]

Cao, X.-M.

S.-J. Li, X.-D. Yang, X.-M. Cao, C.-H. Zhang, C.-D. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system,” Phys. Rev. Lett. 101, 073602 (2008).
[CrossRef] [PubMed]

Chanelière, T.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[CrossRef] [PubMed]

Chen, H.-C.

H.-W. Cho, Y.-C. He, T. Peters, Y.-H. Chen, H.-C. Chen, S.-C. Lin, Y.-C. Lee, and I. A. Yu, “Direct measurement of the atom number in a Bose condensate,” Opt. Express 15, 12114–12122 (2007).
[CrossRef] [PubMed]

Chen, Y.-H.

Y.-W. Lin, H.-C. Chou, P. P. Dwivedi, Y.-H. Chen, and I. A. Yu, “Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density,” Opt. Express 16, 3753–3761 (2008).
[CrossRef] [PubMed]

H.-W. Cho, Y.-C. He, T. Peters, Y.-H. Chen, H.-C. Chen, S.-C. Lin, Y.-C. Lee, and I. A. Yu, “Direct measurement of the atom number in a Bose condensate,” Opt. Express 15, 12114–12122 (2007).
[CrossRef] [PubMed]

Cho, H.-W.

Y.-W. Lin, W.-T. Liao, T. Peters, H.-C. Chou, J.-S. Wang, H.-W. Cho, P.-C. Kuan, and I. A. Yu, “Stationary light pulses in cold atomic media and without bragg gratings,” Phys. Rev. Lett. 102, 213601 (2009).
[CrossRef] [PubMed]

H.-W. Cho, Y.-C. He, T. Peters, Y.-H. Chen, H.-C. Chen, S.-C. Lin, Y.-C. Lee, and I. A. Yu, “Direct measurement of the atom number in a Bose condensate,” Opt. Express 15, 12114–12122 (2007).
[CrossRef] [PubMed]

Choi, K. S.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[CrossRef] [PubMed]

Chou, H.-C.

Y.-W. Lin, W.-T. Liao, T. Peters, H.-C. Chou, J.-S. Wang, H.-W. Cho, P.-C. Kuan, and I. A. Yu, “Stationary light pulses in cold atomic media and without bragg gratings,” Phys. Rev. Lett. 102, 213601 (2009).
[CrossRef] [PubMed]

Y.-W. Lin, H.-C. Chou, P. P. Dwivedi, Y.-H. Chen, and I. A. Yu, “Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density,” Opt. Express 16, 3753–3761 (2008).
[CrossRef] [PubMed]

Cui, C.-L.

J.-W. Gao, J.-H. Wu, N. Ba, C.-L. Cui, and X.-X. Tian, “Efficient all-optical routing using dynamically induced transparency windows and photonic band gaps,” Phys. Rev. A 81, 013804 (2010).
[CrossRef]

C.-L. Cui, J.-K. Jia, J.-W. Gao, Y. Xue, G. Wang, and J.-H. Wu, “Ultraslow and superluminal light propagation in a four-level atomic system,” Phys. Rev. A 76, 033815 (2007).
[CrossRef]

Davidson, N.

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007).
[CrossRef] [PubMed]

Deng, H.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[CrossRef] [PubMed]

Du, P.

S.-Q. Kuang, R.-G. Wan, P. Du, Y. Jiang, and J.-Y. Gao, “Transmission and reflection of electromagnetically induced absorption grating in homogeneous atomic media,” Opt. Express 16, 15455–15462 (2008).
[CrossRef] [PubMed]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulsed,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Dwivedi, P. P.

Y.-W. Lin, H.-C. Chou, P. P. Dwivedi, Y.-H. Chen, and I. A. Yu, “Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density,” Opt. Express 16, 3753–3761 (2008).
[CrossRef] [PubMed]

Firstenberg, O.

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007).
[CrossRef] [PubMed]

Fleischhauer, M.

J. Otterbach, R. G. Unanyan, and M. Fleischhauer, “Confining stationary light: dirac dynamics and klein tunneling,” Phys. Rev. Lett. 102, 063602 (2009).
[CrossRef] [PubMed]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Gao, J.-W.

J.-W. Gao, J.-H. Wu, N. Ba, C.-L. Cui, and X.-X. Tian, “Efficient all-optical routing using dynamically induced transparency windows and photonic band gaps,” Phys. Rev. A 81, 013804 (2010).
[CrossRef]

C.-L. Cui, J.-K. Jia, J.-W. Gao, Y. Xue, G. Wang, and J.-H. Wu, “Ultraslow and superluminal light propagation in a four-level atomic system,” Phys. Rev. A 76, 033815 (2007).
[CrossRef]

Gao, J.-Y.

S.-Q. Kuang, R.-G. Wan, P. Du, Y. Jiang, and J.-Y. Gao, “Transmission and reflection of electromagnetically induced absorption grating in homogeneous atomic media,” Opt. Express 16, 15455–15462 (2008).
[CrossRef] [PubMed]

Ham, B. S.

X.-M. Su and B. S. Ham, “Dynamic control of the photonic band gap using quantum coherence,” Phys. Rev. A 71, 013821 (2005).
[CrossRef]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Hang, C.

C. Hang and G.-X. Huang, “Giant Kerr nonlinearity and weak-light superluminal optical solitons in a four-state atomic system with gain doublet,” Opt. Express 18, 2952–2966 (2010).
[CrossRef] [PubMed]

Hansen, K. R.

K. R. Hansen and K. Molmer, “Trapping of light pulses in ensembles of stationary Λ atoms,” Phys. Rev. A 75, 053802 (2007).
[CrossRef]

Harris, S. E.

D. A. Braje, V. Balic, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801 (2003).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulsed,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

He, Y.-C.

H.-W. Cho, Y.-C. He, T. Peters, Y.-H. Chen, H.-C. Chen, S.-C. Lin, Y.-C. Lee, and I. A. Yu, “Direct measurement of the atom number in a Bose condensate,” Opt. Express 15, 12114–12122 (2007).
[CrossRef] [PubMed]

Hemmer, P.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Huang, G.-X.

C. Hang and G.-X. Huang, “Giant Kerr nonlinearity and weak-light superluminal optical solitons in a four-state atomic system with gain doublet,” Opt. Express 18, 2952–2966 (2010).
[CrossRef] [PubMed]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996).
[CrossRef] [PubMed]

Jenkins, S. D.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[CrossRef] [PubMed]

Jia, J.-K.

C.-L. Cui, J.-K. Jia, J.-W. Gao, Y. Xue, G. Wang, and J.-H. Wu, “Ultraslow and superluminal light propagation in a four-level atomic system,” Phys. Rev. A 76, 033815 (2007).
[CrossRef]

Jiang, Y.

S.-Q. Kuang, R.-G. Wan, P. Du, Y. Jiang, and J.-Y. Gao, “Transmission and reflection of electromagnetically induced absorption grating in homogeneous atomic media,” Opt. Express 16, 15455–15462 (2008).
[CrossRef] [PubMed]

Kennedy, T. A. B.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[CrossRef] [PubMed]

Kimble, H. J.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[CrossRef] [PubMed]

Kuan, P.-C.

Y.-W. Lin, W.-T. Liao, T. Peters, H.-C. Chou, J.-S. Wang, H.-W. Cho, P.-C. Kuan, and I. A. Yu, “Stationary light pulses in cold atomic media and without bragg gratings,” Phys. Rev. Lett. 102, 213601 (2009).
[CrossRef] [PubMed]

Kuang, S.-Q.

S.-Q. Kuang, R.-G. Wan, P. Du, Y. Jiang, and J.-Y. Gao, “Transmission and reflection of electromagnetically induced absorption grating in homogeneous atomic media,” Opt. Express 16, 15455–15462 (2008).
[CrossRef] [PubMed]

Kuzmich, A.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[CrossRef] [PubMed]

La Rocca, G.

M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 046604 (2005).
[CrossRef]

La Rocca, G. C.

J.-H. Wu, M. Artoni, and G. C. La Rocca, “Decay of stationary light pulses in ultracold atoms,” Phys. Rev. A 81, 033822 (2010).
[CrossRef]

J.-H. Wu, M. Artoni, and G. C. La Rocca, “All-optical light confinement in dynamic cavities in cold atoms,” Phys. Rev. Lett. 103, 133601 (2009).
[CrossRef] [PubMed]

J.-H. Wu, G. C. La Rocca, and M. Artoni, “Controlled light-pulse propagation in driven color centers in diamond,” Phys. Rev. B 77, 113106 (2008).
[CrossRef]

M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett. 96, 073905 (2006).
[CrossRef] [PubMed]

Lan, S.-Y.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[CrossRef] [PubMed]

Laurat, J.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[CrossRef] [PubMed]

Lee, Y.-C.

H.-W. Cho, Y.-C. He, T. Peters, Y.-H. Chen, H.-C. Chen, S.-C. Lin, Y.-C. Lee, and I. A. Yu, “Direct measurement of the atom number in a Bose condensate,” Opt. Express 15, 12114–12122 (2007).
[CrossRef] [PubMed]

Li, S.-J.

S.-J. Li, X.-D. Yang, X.-M. Cao, C.-H. Zhang, C.-D. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system,” Phys. Rev. Lett. 101, 073602 (2008).
[CrossRef] [PubMed]

Li, Z.

Z. Li, D.-Z. Cao, and K. Wang, “Manipulating synchronous optical signals with a double-Λ atomic ensemble,” Phys. Lett. A 341, 366–370 (2005).
[CrossRef]

Liao, W.-T.

Y.-W. Lin, W.-T. Liao, T. Peters, H.-C. Chou, J.-S. Wang, H.-W. Cho, P.-C. Kuan, and I. A. Yu, “Stationary light pulses in cold atomic media and without bragg gratings,” Phys. Rev. Lett. 102, 213601 (2009).
[CrossRef] [PubMed]

Lin, S.-C.

H.-W. Cho, Y.-C. He, T. Peters, Y.-H. Chen, H.-C. Chen, S.-C. Lin, Y.-C. Lee, and I. A. Yu, “Direct measurement of the atom number in a Bose condensate,” Opt. Express 15, 12114–12122 (2007).
[CrossRef] [PubMed]

Lin, Y.-W.

Y.-W. Lin, W.-T. Liao, T. Peters, H.-C. Chou, J.-S. Wang, H.-W. Cho, P.-C. Kuan, and I. A. Yu, “Stationary light pulses in cold atomic media and without bragg gratings,” Phys. Rev. Lett. 102, 213601 (2009).
[CrossRef] [PubMed]

Y.-W. Lin, H.-C. Chou, P. P. Dwivedi, Y.-H. Chen, and I. A. Yu, “Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density,” Opt. Express 16, 3753–3761 (2008).
[CrossRef] [PubMed]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulsed,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Lukin, M. D.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[CrossRef] [PubMed]

A. Andre and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89, 143602 (2002).
[CrossRef] [PubMed]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Matsukevich, D. N.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[CrossRef] [PubMed]

Molmer, K.

K. R. Hansen and K. Molmer, “Trapping of light pulses in ensembles of stationary Λ atoms,” Phys. Rev. A 75, 053802 (2007).
[CrossRef]

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Otterbach, J.

J. Otterbach, R. G. Unanyan, and M. Fleischhauer, “Confining stationary light: dirac dynamics and klein tunneling,” Phys. Rev. Lett. 102, 063602 (2009).
[CrossRef] [PubMed]

Peters, T.

Y.-W. Lin, W.-T. Liao, T. Peters, H.-C. Chou, J.-S. Wang, H.-W. Cho, P.-C. Kuan, and I. A. Yu, “Stationary light pulses in cold atomic media and without bragg gratings,” Phys. Rev. Lett. 102, 213601 (2009).
[CrossRef] [PubMed]

H.-W. Cho, Y.-C. He, T. Peters, Y.-H. Chen, H.-C. Chen, S.-C. Lin, Y.-C. Lee, and I. A. Yu, “Direct measurement of the atom number in a Bose condensate,” Opt. Express 15, 12114–12122 (2007).
[CrossRef] [PubMed]

Pugatch, R.

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007).
[CrossRef] [PubMed]

Ron, A.

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007).
[CrossRef] [PubMed]

Schmidt, H.

H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996).
[CrossRef] [PubMed]

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Shuker, M.

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007).
[CrossRef] [PubMed]

Su, X.-M.

X.-M. Su and B. S. Ham, “Dynamic control of the photonic band gap using quantum coherence,” Phys. Rev. A 71, 013821 (2005).
[CrossRef]

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Tian, X.-X.

J.-W. Gao, J.-H. Wu, N. Ba, C.-L. Cui, and X.-X. Tian, “Efficient all-optical routing using dynamically induced transparency windows and photonic band gaps,” Phys. Rev. A 81, 013804 (2010).
[CrossRef]

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Unanyan, R. G.

J. Otterbach, R. G. Unanyan, and M. Fleischhauer, “Confining stationary light: dirac dynamics and klein tunneling,” Phys. Rev. Lett. 102, 063602 (2009).
[CrossRef] [PubMed]

Wan, R.-G.

S.-Q. Kuang, R.-G. Wan, P. Du, Y. Jiang, and J.-Y. Gao, “Transmission and reflection of electromagnetically induced absorption grating in homogeneous atomic media,” Opt. Express 16, 15455–15462 (2008).
[CrossRef] [PubMed]

Wang, G.

C.-L. Cui, J.-K. Jia, J.-W. Gao, Y. Xue, G. Wang, and J.-H. Wu, “Ultraslow and superluminal light propagation in a four-level atomic system,” Phys. Rev. A 76, 033815 (2007).
[CrossRef]

Wang, H.

S.-J. Li, X.-D. Yang, X.-M. Cao, C.-H. Zhang, C.-D. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system,” Phys. Rev. Lett. 101, 073602 (2008).
[CrossRef] [PubMed]

Wang, J.-S.

Y.-W. Lin, W.-T. Liao, T. Peters, H.-C. Chou, J.-S. Wang, H.-W. Cho, P.-C. Kuan, and I. A. Yu, “Stationary light pulses in cold atomic media and without bragg gratings,” Phys. Rev. Lett. 102, 213601 (2009).
[CrossRef] [PubMed]

Wang, K.

Z. Li, D.-Z. Cao, and K. Wang, “Manipulating synchronous optical signals with a double-Λ atomic ensemble,” Phys. Lett. A 341, 366–370 (2005).
[CrossRef]

Wu, J.-H.

J.-H. Wu, M. Artoni, and G. C. La Rocca, “Decay of stationary light pulses in ultracold atoms,” Phys. Rev. A 81, 033822 (2010).
[CrossRef]

J.-W. Gao, J.-H. Wu, N. Ba, C.-L. Cui, and X.-X. Tian, “Efficient all-optical routing using dynamically induced transparency windows and photonic band gaps,” Phys. Rev. A 81, 013804 (2010).
[CrossRef]

J.-H. Wu, M. Artoni, and G. C. La Rocca, “All-optical light confinement in dynamic cavities in cold atoms,” Phys. Rev. Lett. 103, 133601 (2009).
[CrossRef] [PubMed]

J.-H. Wu, G. C. La Rocca, and M. Artoni, “Controlled light-pulse propagation in driven color centers in diamond,” Phys. Rev. B 77, 113106 (2008).
[CrossRef]

C.-L. Cui, J.-K. Jia, J.-W. Gao, Y. Xue, G. Wang, and J.-H. Wu, “Ultraslow and superluminal light propagation in a four-level atomic system,” Phys. Rev. A 76, 033815 (2007).
[CrossRef]

Xie, C.-D.

S.-J. Li, X.-D. Yang, X.-M. Cao, C.-H. Zhang, C.-D. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system,” Phys. Rev. Lett. 101, 073602 (2008).
[CrossRef] [PubMed]

Xue, Y.

C.-L. Cui, J.-K. Jia, J.-W. Gao, Y. Xue, G. Wang, and J.-H. Wu, “Ultraslow and superluminal light propagation in a four-level atomic system,” Phys. Rev. A 76, 033815 (2007).
[CrossRef]

Yang, X.-D.

S.-J. Li, X.-D. Yang, X.-M. Cao, C.-H. Zhang, C.-D. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system,” Phys. Rev. Lett. 101, 073602 (2008).
[CrossRef] [PubMed]

Yin, G. Y.

D. A. Braje, V. Balic, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801 (2003).
[CrossRef]

Yu, I. A.

Y.-W. Lin, W.-T. Liao, T. Peters, H.-C. Chou, J.-S. Wang, H.-W. Cho, P.-C. Kuan, and I. A. Yu, “Stationary light pulses in cold atomic media and without bragg gratings,” Phys. Rev. Lett. 102, 213601 (2009).
[CrossRef] [PubMed]

Y.-W. Lin, H.-C. Chou, P. P. Dwivedi, Y.-H. Chen, and I. A. Yu, “Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density,” Opt. Express 16, 3753–3761 (2008).
[CrossRef] [PubMed]

H.-W. Cho, Y.-C. He, T. Peters, Y.-H. Chen, H.-C. Chen, S.-C. Lin, Y.-C. Lee, and I. A. Yu, “Direct measurement of the atom number in a Bose condensate,” Opt. Express 15, 12114–12122 (2007).
[CrossRef] [PubMed]

Zhang, C.-H.

S.-J. Li, X.-D. Yang, X.-M. Cao, C.-H. Zhang, C.-D. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system,” Phys. Rev. Lett. 101, 073602 (2008).
[CrossRef] [PubMed]

Zibrov, A. S.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[CrossRef] [PubMed]

Nature

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulsed,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[CrossRef] [PubMed]

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[CrossRef] [PubMed]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[CrossRef] [PubMed]

Opt. Express

S.-Q. Kuang, R.-G. Wan, P. Du, Y. Jiang, and J.-Y. Gao, “Transmission and reflection of electromagnetically induced absorption grating in homogeneous atomic media,” Opt. Express 16, 15455–15462 (2008).
[CrossRef] [PubMed]

H.-W. Cho, Y.-C. He, T. Peters, Y.-H. Chen, H.-C. Chen, S.-C. Lin, Y.-C. Lee, and I. A. Yu, “Direct measurement of the atom number in a Bose condensate,” Opt. Express 15, 12114–12122 (2007).
[CrossRef] [PubMed]

Y.-W. Lin, H.-C. Chou, P. P. Dwivedi, Y.-H. Chen, and I. A. Yu, “Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density,” Opt. Express 16, 3753–3761 (2008).
[CrossRef] [PubMed]

C. Hang and G.-X. Huang, “Giant Kerr nonlinearity and weak-light superluminal optical solitons in a four-state atomic system with gain doublet,” Opt. Express 18, 2952–2966 (2010).
[CrossRef] [PubMed]

Opt. Lett.

H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996).
[CrossRef] [PubMed]

Phys. Lett. A

Z. Li, D.-Z. Cao, and K. Wang, “Manipulating synchronous optical signals with a double-Λ atomic ensemble,” Phys. Lett. A 341, 366–370 (2005).
[CrossRef]

Phys. Rev. A

X.-M. Su and B. S. Ham, “Dynamic control of the photonic band gap using quantum coherence,” Phys. Rev. A 71, 013821 (2005).
[CrossRef]

D. A. Braje, V. Balic, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801 (2003).
[CrossRef]

C.-L. Cui, J.-K. Jia, J.-W. Gao, Y. Xue, G. Wang, and J.-H. Wu, “Ultraslow and superluminal light propagation in a four-level atomic system,” Phys. Rev. A 76, 033815 (2007).
[CrossRef]

J.-W. Gao, J.-H. Wu, N. Ba, C.-L. Cui, and X.-X. Tian, “Efficient all-optical routing using dynamically induced transparency windows and photonic band gaps,” Phys. Rev. A 81, 013804 (2010).
[CrossRef]

J.-H. Wu, M. Artoni, and G. C. La Rocca, “Decay of stationary light pulses in ultracold atoms,” Phys. Rev. A 81, 033822 (2010).
[CrossRef]

K. R. Hansen and K. Molmer, “Trapping of light pulses in ensembles of stationary Λ atoms,” Phys. Rev. A 75, 053802 (2007).
[CrossRef]

Phys. Rev. B

J.-H. Wu, G. C. La Rocca, and M. Artoni, “Controlled light-pulse propagation in driven color centers in diamond,” Phys. Rev. B 77, 113106 (2008).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 046604 (2005).
[CrossRef]

Phys. Rev. Lett.

J.-H. Wu, M. Artoni, and G. C. La Rocca, “All-optical light confinement in dynamic cavities in cold atoms,” Phys. Rev. Lett. 103, 133601 (2009).
[CrossRef] [PubMed]

Y.-W. Lin, W.-T. Liao, T. Peters, H.-C. Chou, J.-S. Wang, H.-W. Cho, P.-C. Kuan, and I. A. Yu, “Stationary light pulses in cold atomic media and without bragg gratings,” Phys. Rev. Lett. 102, 213601 (2009).
[CrossRef] [PubMed]

J. Otterbach, R. G. Unanyan, and M. Fleischhauer, “Confining stationary light: dirac dynamics and klein tunneling,” Phys. Rev. Lett. 102, 063602 (2009).
[CrossRef] [PubMed]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

S.-J. Li, X.-D. Yang, X.-M. Cao, C.-H. Zhang, C.-D. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system,” Phys. Rev. Lett. 101, 073602 (2008).
[CrossRef] [PubMed]

M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett. 96, 073905 (2006).
[CrossRef] [PubMed]

A. Andre and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89, 143602 (2002).
[CrossRef] [PubMed]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007).
[CrossRef] [PubMed]

Phys. Today

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

Rev. Mod. Phys.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Color online) Schematic diagram of a three-level Λ-type atomic system interacting with a weak probe field ωp and a strong coupling field ωc. The coupling field may be either in the TW pattern or in the SW pattern.

Fig. 2
Fig. 2

(Color online) Atomic density functions Nai(z) versus the spatial variable z. Black-solid: Na1(z) = N0; Red-dashed: Na2(z) = N′ sin(πz/L) with N′ = N0π/2; Blue-dotted: Na3(z) = N″ exp[−20(zL/2)2/L2] with N = N 0 20 / π. The three samples have the same medium length L = 1.5 mm and the same average atomic density N0 = 2.0 × 1010 mm−3.

Fig. 3
Fig. 3

(Color online) Transmissivity versus probe detuning Δp (a) and scaled intensities versus time t (b) with d13 = 1.0375 × 10−29 C·m, λp = 794.983 nm, λc = 794.969 nm, γ21 = 0.2 kHz, γ31 = 5.75 MHz, Δc = 0, Ωc+ = 10 MHz, and Ωc = 0. The black-solid, red-dashed, and blue-dotted curves are respectively obtained with Na1(z), Na2(z), and Na3(z). The thin grey curve in (b) denotes the incident pulse with δt = 20 μs, t0 = 35 μs, and Δ0 = 0.

Fig. 4
Fig. 4

(Color online) Reflectivity and transmissivity versus probe detuning Δp (a, b) and scaled intensities versus time t (c, d). Black-solid, red-dashed, and blue-dotted curves are respectively obtained with Na1(z), Na2(z), and Na3(z). Thin grey curves in (c, d) denote the incident pulse with δt = 10 μs, t0 = 15 μs, and Δ0 = −0.72 MHz. Other parameters are the same as in Fig. 3 except Ωc+ = 30 MHz and Ωc = 20 MHz.

Fig. 5
Fig. 5

(Color online) Reflectivity versus probe detuning Δp for Na2(z) in (a) and Na3(z) in (b). The black-solid curves are attained with Ωc+ = 30 MHz and Ωc = 20 MHz. The red-dashed curve in (a) is attained with Ωc+ = 35 MHz and Ωc = 24 MHz while that in (b) is attained with Ωc+ = 41 MHz and Ωc = 30 MHz. Other parameters are the same as in Fig. 3.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

H I = h ¯ δ | 2 2 | h ¯ Δ | 3 3 | h ¯ [ Ω p | 3 1 | + Ω c | 3 2 | + h . c . ] ,
Ω c ( z ) = Ω c + e + i k c z + Ω c e i k c z ,
ρ 11 t = Γ 31 ρ 33 + i Ω p * ρ 31 i Ω p ρ 13 , ρ 22 t = Γ 32 ρ 33 + i Ω c * ρ 32 i Ω c ρ 23 , ρ 12 t = [ γ 12 i δ ] ρ 12 + i Ω p * ρ 32 i Ω c ρ 13 , ρ 13 t = [ γ 13 i Δ ] ρ 13 i Ω c * ρ 12 + i Ω p * ( ρ 33 ρ 11 ) , ρ 23 t = [ γ 23 i ( Δ δ ) ] ρ 23 i Ω p * ρ 21 + i Ω c * ( ρ 33 ρ 22 ) ,
χ p ( Δ , z ) = N a ( z ) | d 13 | 2 2 ɛ 0 h ¯ ρ 31 ( Δ , z ) Ω p = N a ( z ) | d 13 | 2 2 ɛ 0 h ¯ i ( γ 12 i δ ) ( γ 12 i δ ) ( γ 13 i Δ ) + | Ω c ( z ) | 2 ,
n p ( Δ , z ) = 1 + χ p ( Δ , z ) ,
[ E p + ( n d ) E p ( n d ) ] = M n ( Δ , d ) [ E p + ( n d d ) E p ( n d d ) ] ,
R ( Δ , L ) = | r ( Δ , L ) | 2 = | M ( 12 ) ( Δ , L ) M ( 22 ) ( Δ , L ) | 2 , T ( Δ , L ) = | t ( Δ , L ) | 2 = | 1 M ( 22 ) ( Δ , L ) | 2 ,
E R t ( t ) = E R f ( Δ ) e i ( Δ Δ 0 ) t d ( Δ ) , E T t ( t ) = E T f ( Δ ) e i ( Δ Δ 0 ) t d ( Δ ) .
E I t ( t ) = E 0 t e ( t t 0 ) 2 / δ t 2 , E I f ( t ) = E 0 f e ( Δ Δ 0 ) 2 / δ p 2 ,

Metrics