Abstract

We report unprecedentedly high output powers measured from large area two-dimensional square-lattice photonic-crystal band-edge lasers (BELs), patterned by holographic lithography. In order to ensure mechanical rigidity, the BELs were fabricated in an InP-based epilayer bonded onto a fused silica substrate beforehand. The BEL devices, employing the surface-emitting Γ-point monopole band-edge mode, provide a fiber-coupled single mode output power as high as 2.6 mW and an external differential quantum efficiency of ~4%. The results of a three-dimensional finite-difference time-domain simulation agree with the experimental observation that the large BELs are beneficial for achieving both high power output and high differential quantum efficiency.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
    [CrossRef] [PubMed]
  2. H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80(19), 3476 (2002).
    [CrossRef]
  3. S. J. Koester, C. L. Schow, L. Schares, G. Dehlinger, J. D. Schaub, F. E. Doany, and R. A. John, “Ge-on-SOI-Detector/Si-CMOS-Amplifier Receivers for High-Performance Optical-Communication Applications,” J. Lightwave Technol. 25(1), 46–57 (2007).
    [CrossRef]
  4. H. Altug and J. Vucković, “Photonic crystal nanocavity array laser,” Opt. Express 13(22), 8819–8828 (2005).
    [CrossRef] [PubMed]
  5. L. Lu, A. Mock, E. H. Hwang, J. O’Brien, and P. D. Dapkus, “High-peak-power efficient edge-emitting photonic crystal nanocavity lasers,” Opt. Lett. 34(17), 2646–2648 (2009).
    [CrossRef] [PubMed]
  6. S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal bandedge laser for biochemical sensor applications,” Appl. Phys. Lett. 94(13), 133503 (2009).
    [CrossRef]
  7. C.-O. Cho, J. Jeong, J. Lee, H. Jeon, I. Kim, D. H. Jang, Y. S. Park, and J. C. Woo, “Photonic crystal band edge laser array with a holographically generated square-lattice pattern,” Appl. Phys. Lett. 87(16), 161102 (2005).
    [CrossRef]
  8. S. Ahn, S. Kim, and H. Jeon, “Single-defect photonic crystal cavity laser fabricated by a combination of laser holography and focused ion beam lithography,” Appl. Phys. Lett. 96(13), 131101 (2010).
    [CrossRef]
  9. C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
    [CrossRef]
  10. M. Yokoyama and S. Noda, “Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser,” Opt. Express 13(8), 2869–2880 (2005).
    [CrossRef] [PubMed]
  11. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001).
    [CrossRef] [PubMed]
  12. L. J. Martínez, B. Alén, I. Prieto, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, P. Viktorovitch, and P. A. Postigo, “Two-dimensional surface emitting photonic crystal laser with hybrid triangular-graphite structure,” Opt. Express 17(17), 15043–15051 (2009).
    [CrossRef] [PubMed]
  13. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31(20), 2972–2974 (2006).
    [CrossRef] [PubMed]
  14. M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. J. Wei, S. J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities,” IEEE Photon. Technol. Lett. 18(3), 535–537 (2006).
    [CrossRef]

2010 (1)

S. Ahn, S. Kim, and H. Jeon, “Single-defect photonic crystal cavity laser fabricated by a combination of laser holography and focused ion beam lithography,” Appl. Phys. Lett. 96(13), 131101 (2010).
[CrossRef]

2009 (3)

L. Lu, A. Mock, E. H. Hwang, J. O’Brien, and P. D. Dapkus, “High-peak-power efficient edge-emitting photonic crystal nanocavity lasers,” Opt. Lett. 34(17), 2646–2648 (2009).
[CrossRef] [PubMed]

S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal bandedge laser for biochemical sensor applications,” Appl. Phys. Lett. 94(13), 133503 (2009).
[CrossRef]

L. J. Martínez, B. Alén, I. Prieto, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, P. Viktorovitch, and P. A. Postigo, “Two-dimensional surface emitting photonic crystal laser with hybrid triangular-graphite structure,” Opt. Express 17(17), 15043–15051 (2009).
[CrossRef] [PubMed]

2007 (1)

S. J. Koester, C. L. Schow, L. Schares, G. Dehlinger, J. D. Schaub, F. E. Doany, and R. A. John, “Ge-on-SOI-Detector/Si-CMOS-Amplifier Receivers for High-Performance Optical-Communication Applications,” J. Lightwave Technol. 25(1), 46–57 (2007).
[CrossRef]

2006 (2)

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31(20), 2972–2974 (2006).
[CrossRef] [PubMed]

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. J. Wei, S. J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities,” IEEE Photon. Technol. Lett. 18(3), 535–537 (2006).
[CrossRef]

2005 (4)

C.-O. Cho, J. Jeong, J. Lee, H. Jeon, I. Kim, D. H. Jang, Y. S. Park, and J. C. Woo, “Photonic crystal band edge laser array with a holographically generated square-lattice pattern,” Appl. Phys. Lett. 87(16), 161102 (2005).
[CrossRef]

H. Altug and J. Vucković, “Photonic crystal nanocavity array laser,” Opt. Express 13(22), 8819–8828 (2005).
[CrossRef] [PubMed]

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
[CrossRef]

M. Yokoyama and S. Noda, “Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser,” Opt. Express 13(8), 2869–2880 (2005).
[CrossRef] [PubMed]

2002 (1)

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80(19), 3476 (2002).
[CrossRef]

2001 (1)

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001).
[CrossRef] [PubMed]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Ahn, S.

S. Ahn, S. Kim, and H. Jeon, “Single-defect photonic crystal cavity laser fabricated by a combination of laser holography and focused ion beam lithography,” Appl. Phys. Lett. 96(13), 131101 (2010).
[CrossRef]

Alén, B.

L. J. Martínez, B. Alén, I. Prieto, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, P. Viktorovitch, and P. A. Postigo, “Two-dimensional surface emitting photonic crystal laser with hybrid triangular-graphite structure,” Opt. Express 17(17), 15043–15051 (2009).
[CrossRef] [PubMed]

Altug, H.

H. Altug and J. Vucković, “Photonic crystal nanocavity array laser,” Opt. Express 13(22), 8819–8828 (2005).
[CrossRef] [PubMed]

Andreani, L. C.

L. J. Martínez, B. Alén, I. Prieto, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, P. Viktorovitch, and P. A. Postigo, “Two-dimensional surface emitting photonic crystal laser with hybrid triangular-graphite structure,” Opt. Express 17(17), 15043–15051 (2009).
[CrossRef] [PubMed]

Bagheri, M.

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. J. Wei, S. J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities,” IEEE Photon. Technol. Lett. 18(3), 535–537 (2006).
[CrossRef]

Bakir, B. B.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
[CrossRef]

Bermel, P.

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31(20), 2972–2974 (2006).
[CrossRef] [PubMed]

Burr, G. W.

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31(20), 2972–2974 (2006).
[CrossRef] [PubMed]

Cho, C.-O.

C.-O. Cho, J. Jeong, J. Lee, H. Jeon, I. Kim, D. H. Jang, Y. S. Park, and J. C. Woo, “Photonic crystal band edge laser array with a holographically generated square-lattice pattern,” Appl. Phys. Lett. 87(16), 161102 (2005).
[CrossRef]

Choi, S. J.

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. J. Wei, S. J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities,” IEEE Photon. Technol. Lett. 18(3), 535–537 (2006).
[CrossRef]

Chutinan, A.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001).
[CrossRef] [PubMed]

Dapkus, P. D.

L. Lu, A. Mock, E. H. Hwang, J. O’Brien, and P. D. Dapkus, “High-peak-power efficient edge-emitting photonic crystal nanocavity lasers,” Opt. Lett. 34(17), 2646–2648 (2009).
[CrossRef] [PubMed]

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. J. Wei, S. J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities,” IEEE Photon. Technol. Lett. 18(3), 535–537 (2006).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Dehlinger, G.

S. J. Koester, C. L. Schow, L. Schares, G. Dehlinger, J. D. Schaub, F. E. Doany, and R. A. John, “Ge-on-SOI-Detector/Si-CMOS-Amplifier Receivers for High-Performance Optical-Communication Applications,” J. Lightwave Technol. 25(1), 46–57 (2007).
[CrossRef]

Doany, F. E.

S. J. Koester, C. L. Schow, L. Schares, G. Dehlinger, J. D. Schaub, F. E. Doany, and R. A. John, “Ge-on-SOI-Detector/Si-CMOS-Amplifier Receivers for High-Performance Optical-Communication Applications,” J. Lightwave Technol. 25(1), 46–57 (2007).
[CrossRef]

Farjadpour, A.

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31(20), 2972–2974 (2006).
[CrossRef] [PubMed]

Galisteo-López, J. F.

L. J. Martínez, B. Alén, I. Prieto, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, P. Viktorovitch, and P. A. Postigo, “Two-dimensional surface emitting photonic crystal laser with hybrid triangular-graphite structure,” Opt. Express 17(17), 15043–15051 (2009).
[CrossRef] [PubMed]

Galli, M.

L. J. Martínez, B. Alén, I. Prieto, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, P. Viktorovitch, and P. A. Postigo, “Two-dimensional surface emitting photonic crystal laser with hybrid triangular-graphite structure,” Opt. Express 17(17), 15043–15051 (2009).
[CrossRef] [PubMed]

Hattori, H. T.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
[CrossRef]

Hwang, E. H.

L. Lu, A. Mock, E. H. Hwang, J. O’Brien, and P. D. Dapkus, “High-peak-power efficient edge-emitting photonic crystal nanocavity lasers,” Opt. Lett. 34(17), 2646–2648 (2009).
[CrossRef] [PubMed]

Ibanescu, M.

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31(20), 2972–2974 (2006).
[CrossRef] [PubMed]

Imada, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001).
[CrossRef] [PubMed]

Jang, D. H.

C.-O. Cho, J. Jeong, J. Lee, H. Jeon, I. Kim, D. H. Jang, Y. S. Park, and J. C. Woo, “Photonic crystal band edge laser array with a holographically generated square-lattice pattern,” Appl. Phys. Lett. 87(16), 161102 (2005).
[CrossRef]

Jeon, H.

S. Ahn, S. Kim, and H. Jeon, “Single-defect photonic crystal cavity laser fabricated by a combination of laser holography and focused ion beam lithography,” Appl. Phys. Lett. 96(13), 131101 (2010).
[CrossRef]

S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal bandedge laser for biochemical sensor applications,” Appl. Phys. Lett. 94(13), 133503 (2009).
[CrossRef]

C.-O. Cho, J. Jeong, J. Lee, H. Jeon, I. Kim, D. H. Jang, Y. S. Park, and J. C. Woo, “Photonic crystal band edge laser array with a holographically generated square-lattice pattern,” Appl. Phys. Lett. 87(16), 161102 (2005).
[CrossRef]

Jeong, J.

C.-O. Cho, J. Jeong, J. Lee, H. Jeon, I. Kim, D. H. Jang, Y. S. Park, and J. C. Woo, “Photonic crystal band edge laser array with a holographically generated square-lattice pattern,” Appl. Phys. Lett. 87(16), 161102 (2005).
[CrossRef]

Joannopoulos, J. D.

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31(20), 2972–2974 (2006).
[CrossRef] [PubMed]

John, R. A.

S. J. Koester, C. L. Schow, L. Schares, G. Dehlinger, J. D. Schaub, F. E. Doany, and R. A. John, “Ge-on-SOI-Detector/Si-CMOS-Amplifier Receivers for High-Performance Optical-Communication Applications,” J. Lightwave Technol. 25(1), 46–57 (2007).
[CrossRef]

Johnson, S. G.

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31(20), 2972–2974 (2006).
[CrossRef] [PubMed]

Kim, H. J.

S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal bandedge laser for biochemical sensor applications,” Appl. Phys. Lett. 94(13), 133503 (2009).
[CrossRef]

Kim, I.

C.-O. Cho, J. Jeong, J. Lee, H. Jeon, I. Kim, D. H. Jang, Y. S. Park, and J. C. Woo, “Photonic crystal band edge laser array with a holographically generated square-lattice pattern,” Appl. Phys. Lett. 87(16), 161102 (2005).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Kim, J. S.

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80(19), 3476 (2002).
[CrossRef]

Kim, S.

S. Ahn, S. Kim, and H. Jeon, “Single-defect photonic crystal cavity laser fabricated by a combination of laser holography and focused ion beam lithography,” Appl. Phys. Lett. 96(13), 131101 (2010).
[CrossRef]

S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal bandedge laser for biochemical sensor applications,” Appl. Phys. Lett. 94(13), 133503 (2009).
[CrossRef]

Koester, S. J.

S. J. Koester, C. L. Schow, L. Schares, G. Dehlinger, J. D. Schaub, F. E. Doany, and R. A. John, “Ge-on-SOI-Detector/Si-CMOS-Amplifier Receivers for High-Performance Optical-Communication Applications,” J. Lightwave Technol. 25(1), 46–57 (2007).
[CrossRef]

Kuang, W.

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. J. Wei, S. J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities,” IEEE Photon. Technol. Lett. 18(3), 535–537 (2006).
[CrossRef]

Kwon, S. H.

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80(19), 3476 (2002).
[CrossRef]

Leclercq, J.-L.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
[CrossRef]

Lee, J.

S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal bandedge laser for biochemical sensor applications,” Appl. Phys. Lett. 94(13), 133503 (2009).
[CrossRef]

C.-O. Cho, J. Jeong, J. Lee, H. Jeon, I. Kim, D. H. Jang, Y. S. Park, and J. C. Woo, “Photonic crystal band edge laser array with a holographically generated square-lattice pattern,” Appl. Phys. Lett. 87(16), 161102 (2005).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Lee, Y. H.

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80(19), 3476 (2002).
[CrossRef]

Lee, Y. J.

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80(19), 3476 (2002).
[CrossRef]

Letartre, X.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
[CrossRef]

Lu, L.

L. Lu, A. Mock, E. H. Hwang, J. O’Brien, and P. D. Dapkus, “High-peak-power efficient edge-emitting photonic crystal nanocavity lasers,” Opt. Lett. 34(17), 2646–2648 (2009).
[CrossRef] [PubMed]

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. J. Wei, S. J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities,” IEEE Photon. Technol. Lett. 18(3), 535–537 (2006).
[CrossRef]

Martínez, L. J.

L. J. Martínez, B. Alén, I. Prieto, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, P. Viktorovitch, and P. A. Postigo, “Two-dimensional surface emitting photonic crystal laser with hybrid triangular-graphite structure,” Opt. Express 17(17), 15043–15051 (2009).
[CrossRef] [PubMed]

Mochizuki, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001).
[CrossRef] [PubMed]

Mock, A.

L. Lu, A. Mock, E. H. Hwang, J. O’Brien, and P. D. Dapkus, “High-peak-power efficient edge-emitting photonic crystal nanocavity lasers,” Opt. Lett. 34(17), 2646–2648 (2009).
[CrossRef] [PubMed]

Monat, C.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
[CrossRef]

Mouette, J.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
[CrossRef]

Noda, S.

M. Yokoyama and S. Noda, “Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser,” Opt. Express 13(8), 2869–2880 (2005).
[CrossRef] [PubMed]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001).
[CrossRef] [PubMed]

O’Brien, J.

L. Lu, A. Mock, E. H. Hwang, J. O’Brien, and P. D. Dapkus, “High-peak-power efficient edge-emitting photonic crystal nanocavity lasers,” Opt. Lett. 34(17), 2646–2648 (2009).
[CrossRef] [PubMed]

O’Brien, J. D.

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. J. Wei, S. J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities,” IEEE Photon. Technol. Lett. 18(3), 535–537 (2006).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Park, Y. S.

C.-O. Cho, J. Jeong, J. Lee, H. Jeon, I. Kim, D. H. Jang, Y. S. Park, and J. C. Woo, “Photonic crystal band edge laser array with a holographically generated square-lattice pattern,” Appl. Phys. Lett. 87(16), 161102 (2005).
[CrossRef]

Postigo, P. A.

L. J. Martínez, B. Alén, I. Prieto, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, P. Viktorovitch, and P. A. Postigo, “Two-dimensional surface emitting photonic crystal laser with hybrid triangular-graphite structure,” Opt. Express 17(17), 15043–15051 (2009).
[CrossRef] [PubMed]

Prieto, I.

L. J. Martínez, B. Alén, I. Prieto, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, P. Viktorovitch, and P. A. Postigo, “Two-dimensional surface emitting photonic crystal laser with hybrid triangular-graphite structure,” Opt. Express 17(17), 15043–15051 (2009).
[CrossRef] [PubMed]

Rodriguez, A.

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31(20), 2972–2974 (2006).
[CrossRef] [PubMed]

Rojo-Romeo, P.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
[CrossRef]

Roundy, D.

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31(20), 2972–2974 (2006).
[CrossRef] [PubMed]

Ryu, H. Y.

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80(19), 3476 (2002).
[CrossRef]

Schares, L.

S. J. Koester, C. L. Schow, L. Schares, G. Dehlinger, J. D. Schaub, F. E. Doany, and R. A. John, “Ge-on-SOI-Detector/Si-CMOS-Amplifier Receivers for High-Performance Optical-Communication Applications,” J. Lightwave Technol. 25(1), 46–57 (2007).
[CrossRef]

Schaub, J. D.

S. J. Koester, C. L. Schow, L. Schares, G. Dehlinger, J. D. Schaub, F. E. Doany, and R. A. John, “Ge-on-SOI-Detector/Si-CMOS-Amplifier Receivers for High-Performance Optical-Communication Applications,” J. Lightwave Technol. 25(1), 46–57 (2007).
[CrossRef]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Schow, C. L.

S. J. Koester, C. L. Schow, L. Schares, G. Dehlinger, J. D. Schaub, F. E. Doany, and R. A. John, “Ge-on-SOI-Detector/Si-CMOS-Amplifier Receivers for High-Performance Optical-Communication Applications,” J. Lightwave Technol. 25(1), 46–57 (2007).
[CrossRef]

Seassal, C.

L. J. Martínez, B. Alén, I. Prieto, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, P. Viktorovitch, and P. A. Postigo, “Two-dimensional surface emitting photonic crystal laser with hybrid triangular-graphite structure,” Opt. Express 17(17), 15043–15051 (2009).
[CrossRef] [PubMed]

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
[CrossRef]

Shih, M. H.

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. J. Wei, S. J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities,” IEEE Photon. Technol. Lett. 18(3), 535–537 (2006).
[CrossRef]

Touraille, E.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
[CrossRef]

Viktorovitch, P.

L. J. Martínez, B. Alén, I. Prieto, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, P. Viktorovitch, and P. A. Postigo, “Two-dimensional surface emitting photonic crystal laser with hybrid triangular-graphite structure,” Opt. Express 17(17), 15043–15051 (2009).
[CrossRef] [PubMed]

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
[CrossRef]

Vuckovic, J.

H. Altug and J. Vucković, “Photonic crystal nanocavity array laser,” Opt. Express 13(22), 8819–8828 (2005).
[CrossRef] [PubMed]

Wei, Z. J.

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. J. Wei, S. J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities,” IEEE Photon. Technol. Lett. 18(3), 535–537 (2006).
[CrossRef]

Woo, J. C.

C.-O. Cho, J. Jeong, J. Lee, H. Jeon, I. Kim, D. H. Jang, Y. S. Park, and J. C. Woo, “Photonic crystal band edge laser array with a holographically generated square-lattice pattern,” Appl. Phys. Lett. 87(16), 161102 (2005).
[CrossRef]

Yang, T.

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. J. Wei, S. J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities,” IEEE Photon. Technol. Lett. 18(3), 535–537 (2006).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Yokoyama, M.

M. Yokoyama and S. Noda, “Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser,” Opt. Express 13(8), 2869–2880 (2005).
[CrossRef] [PubMed]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80(19), 3476 (2002).
[CrossRef]

S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal bandedge laser for biochemical sensor applications,” Appl. Phys. Lett. 94(13), 133503 (2009).
[CrossRef]

C.-O. Cho, J. Jeong, J. Lee, H. Jeon, I. Kim, D. H. Jang, Y. S. Park, and J. C. Woo, “Photonic crystal band edge laser array with a holographically generated square-lattice pattern,” Appl. Phys. Lett. 87(16), 161102 (2005).
[CrossRef]

S. Ahn, S. Kim, and H. Jeon, “Single-defect photonic crystal cavity laser fabricated by a combination of laser holography and focused ion beam lithography,” Appl. Phys. Lett. 96(13), 131101 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. J. Wei, S. J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities,” IEEE Photon. Technol. Lett. 18(3), 535–537 (2006).
[CrossRef]

J. Lightwave Technol. (1)

S. J. Koester, C. L. Schow, L. Schares, G. Dehlinger, J. D. Schaub, F. E. Doany, and R. A. John, “Ge-on-SOI-Detector/Si-CMOS-Amplifier Receivers for High-Performance Optical-Communication Applications,” J. Lightwave Technol. 25(1), 46–57 (2007).
[CrossRef]

Opt. Express (3)

H. Altug and J. Vucković, “Photonic crystal nanocavity array laser,” Opt. Express 13(22), 8819–8828 (2005).
[CrossRef] [PubMed]

M. Yokoyama and S. Noda, “Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser,” Opt. Express 13(8), 2869–2880 (2005).
[CrossRef] [PubMed]

L. J. Martínez, B. Alén, I. Prieto, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, P. Viktorovitch, and P. A. Postigo, “Two-dimensional surface emitting photonic crystal laser with hybrid triangular-graphite structure,” Opt. Express 17(17), 15043–15051 (2009).
[CrossRef] [PubMed]

Opt. Lett. (2)

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31(20), 2972–2974 (2006).
[CrossRef] [PubMed]

L. Lu, A. Mock, E. H. Hwang, J. O’Brien, and P. D. Dapkus, “High-peak-power efficient edge-emitting photonic crystal nanocavity lasers,” Opt. Lett. 34(17), 2646–2648 (2009).
[CrossRef] [PubMed]

Science (2)

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of the square-lattice PC BEL bonded onto fused silica substrate. (b) Photograph and (c) SEM image of the fabricated PC BEL. The blue-color features in the photograph are due to diffraction by the square-lattice PC pattern of the BEL structure.

Fig. 2
Fig. 2

Photonic band structure diagram of the wafer-bonded square-lattice PC structure. Insets are the magnetic-field profiles for three Γ-point band-edge modes.

Fig. 3
Fig. 3

(a) Schematic diagram of the butt-end fiber coupling setup with a 1 × 2 multimode WDM fiber coupler. (b) Lasing spectrum of the PC BEL. L-L curves of the PC BEL for (c) the low excitation level and (d) the entire excitation range.

Fig. 4
Fig. 4

Intensity profiles of the vertical magnetic field at the center of the slab, calculated by the 3D FDTD method over (a) the xy-plane and (b) the xz-plane. (c) Quality factors (Qv, Qt) and their ratio Qt/Qv plotted as a function of the lateral size of PC pattern.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η D Q E = Δ N o u t Δ N i n = Δ P o u t / ω B E L Δ P i n / ω p = Δ P o u t Δ P i n λ B E L λ p ,
η D Q E = Q v 1 Q t 1 1 ( n S i O 2 / n a i r ) 3 + 1 η i η c .

Metrics