Abstract

We present a ‘hybrid’ imaging approach which can image both light absorption properties and acoustic transmission properties of an object in a two-dimensional slice using a computed tomography (CT) photoacoustic imager. The ultrasound transmission measurement method uses a strong optical absorber of small cross-section placed in the path of the light illuminating the sample. This absorber, which we call a passive element acts as a source of ultrasound. The interaction of ultrasound with the sample can be measured in transmission, using the same ultrasound detector used for photoacoustics. Such measurements are made at various angles around the sample in a CT approach. Images of the ultrasound propagation parameters, attenuation and speed of sound, can be reconstructed by inversion of a measurement model. We validate the method on specially designed phantoms and biological specimens. The obtained images are quantitative in terms of the shape, size, location, and acoustic properties of the examined heterogeneities.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
    [CrossRef]
  2. S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-12277 .
    [CrossRef] [PubMed]
  3. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
    [CrossRef] [PubMed]
  4. T. D. Khokhlova, I. M. Pelivanov, V. V. Kozhushko, A. N. Zharinov, V. S. Solomatin, and A. A. Karabutov, “Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics,” Appl. Opt. 46(2), 262–272 (2007).
    [CrossRef] [PubMed]
  5. J. Jose, S. Manohar, R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” J Biophoton. 2(12), 701–717 (2009).
    [CrossRef]
  6. J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
    [CrossRef] [PubMed]
  7. R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
    [CrossRef] [PubMed]
  8. J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt. 48(10), D299–D306 (2009).
    [CrossRef] [PubMed]
  9. H. P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
    [CrossRef]
  10. R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, “Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging,” Opt. Express 17(24), 21414–21426 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21414 .
    [CrossRef] [PubMed]
  11. M. H. Xu and L. H. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrumn. 77, (2006).
  12. X. Jin and L. V. Wang, “Thermoacoustic tomography with correction for acoustic speed variations,” Phys. Med. Biol. 51(24), 6437–6448 (2006).
    [CrossRef] [PubMed]
  13. J. F. Greenleaf and R. C. Bahn, “Clinical imaging with transmissive ultrasonic computerized tomography,” IEEE Trans. Biomed. Eng. 28(2), 177–185 (1981).
    [CrossRef] [PubMed]
  14. N. Duric, P. Littrup, L. Poulo, A. Babkin, R. Pevzner, E. Holsapple, O. Rama, and C. Glide, “Detection of breast cancer with ultrasound tomography: first results with the Computed Ultrasound Risk Evaluation (CURE) prototype,” Med. Phys. 34(2), 773–785 (2007).
    [CrossRef] [PubMed]
  15. S. Manohar, R. G. H. Willemink, and T. G. van Leeuwen, “Speed-of-sound imaging in a photoacoustic imager,” SPIE (2007), 64370R.
    [CrossRef]
  16. S. Manohar, R. G. H. Willemink, F. van der Heijden, C. H. Slump, and T. G. van Leeuwen, “Concomitant speed-of-sound tomography in photoacoustic imaging,” Appl. Phys. Lett. 91 (2007).
  17. R. G. H. Willemink, S. Manohar, Y. Purwar, C. H. Slump, F. d. Heijden, and T. G. v. Leeuwen, “Imaging of acoustic attenuation and speed of sound maps using photoacoustic measurements,” in (SPIE, 2008), 692013.
  18. P. M. Joseph and R. A. Schulz, “View sampling requirements in fan beam computed tomography,” Med. Phys. 7(6), 692–702 (1980).
    [CrossRef] [PubMed]
  19. F. Marinozzi, D. Piras, and F. Bini, “Spectral analysis of backscattered ultrasound field from hydroxyapatite granules,” in Advances in Medical, Signal and Information Processing, 2008. MEDSIP 2008. 4th IET International Conference on, 2008), 1–4.
  20. J. C. Bamber, Acoustical characteristics of biological media (Encyclopedia of acoustics, Wiley, 1997), Vol. 4.
  21. R. G. H. Willemink, S. Manohar, T. G. van Leeuwen, and C. H. Slump, “Estimation of integrated ultrasound transmission parameters I,” Speed of Sound under review.
  22. R. G. H. Willemink, S. Manohar, C. H. Slump, F. van der Heijden, and T. G. van Leeuwen, “A maximum likelihood method for obtaining integrated attenuation from ultrasound transmission mode measurement,” J. Acoust. Soc. Am. 123(5), 3641 (2008).
    [CrossRef]
  23. R. G. H. Willemink, S. Manohar, T. G. van Leeuwen, and C. H. Slump, “Estimation of integrated ultrasound transmission parameters II: Acoustic attenuation,” in preparation.
  24. R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)--reconstruction tomography,” Med. Phys. 22(10), 1605–1609 (1995).
    [CrossRef] [PubMed]
  25. C. R. Crawford and A. C. Kak, “Multipath artifact corrections in ultrasonic transmission tomography,” Ultrason. Imaging 4(3), 234–266 (1982).
    [CrossRef] [PubMed]
  26. R. G. H. Willemink, S. Manohar, J. Jose, C. H. Slump, F. van der Heijden, and T. G. van Leeuwen, Simultaneous imaging of ultrasound attenuation, speed of sound, and optical absorption in a photoacoustic setup,” A. M. Stephen and D. h. Jan, eds. (SPIE, 2009), p. 72650J.

2010

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[CrossRef] [PubMed]

2009

J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt. 48(10), D299–D306 (2009).
[CrossRef] [PubMed]

H. P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
[CrossRef]

R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, “Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging,” Opt. Express 17(24), 21414–21426 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21414 .
[CrossRef] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

J. Jose, S. Manohar, R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” J Biophoton. 2(12), 701–717 (2009).
[CrossRef]

2008

R. G. H. Willemink, S. Manohar, C. H. Slump, F. van der Heijden, and T. G. van Leeuwen, “A maximum likelihood method for obtaining integrated attenuation from ultrasound transmission mode measurement,” J. Acoust. Soc. Am. 123(5), 3641 (2008).
[CrossRef]

2007

N. Duric, P. Littrup, L. Poulo, A. Babkin, R. Pevzner, E. Holsapple, O. Rama, and C. Glide, “Detection of breast cancer with ultrasound tomography: first results with the Computed Ultrasound Risk Evaluation (CURE) prototype,” Med. Phys. 34(2), 773–785 (2007).
[CrossRef] [PubMed]

S. Manohar, R. G. H. Willemink, and T. G. van Leeuwen, “Speed-of-sound imaging in a photoacoustic imager,” SPIE (2007), 64370R.
[CrossRef]

S. Manohar, R. G. H. Willemink, F. van der Heijden, C. H. Slump, and T. G. van Leeuwen, “Concomitant speed-of-sound tomography in photoacoustic imaging,” Appl. Phys. Lett. 91 (2007).

T. D. Khokhlova, I. M. Pelivanov, V. V. Kozhushko, A. N. Zharinov, V. S. Solomatin, and A. A. Karabutov, “Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics,” Appl. Opt. 46(2), 262–272 (2007).
[CrossRef] [PubMed]

S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-12277 .
[CrossRef] [PubMed]

2006

M. H. Xu and L. H. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrumn. 77, (2006).

X. Jin and L. V. Wang, “Thermoacoustic tomography with correction for acoustic speed variations,” Phys. Med. Biol. 51(24), 6437–6448 (2006).
[CrossRef] [PubMed]

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
[CrossRef] [PubMed]

1995

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)--reconstruction tomography,” Med. Phys. 22(10), 1605–1609 (1995).
[CrossRef] [PubMed]

1982

C. R. Crawford and A. C. Kak, “Multipath artifact corrections in ultrasonic transmission tomography,” Ultrason. Imaging 4(3), 234–266 (1982).
[CrossRef] [PubMed]

1981

J. F. Greenleaf and R. C. Bahn, “Clinical imaging with transmissive ultrasonic computerized tomography,” IEEE Trans. Biomed. Eng. 28(2), 177–185 (1981).
[CrossRef] [PubMed]

1980

P. M. Joseph and R. A. Schulz, “View sampling requirements in fan beam computed tomography,” Med. Phys. 7(6), 692–702 (1980).
[CrossRef] [PubMed]

Appledorn, C. R.

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)--reconstruction tomography,” Med. Phys. 22(10), 1605–1609 (1995).
[CrossRef] [PubMed]

Babkin, A.

N. Duric, P. Littrup, L. Poulo, A. Babkin, R. Pevzner, E. Holsapple, O. Rama, and C. Glide, “Detection of breast cancer with ultrasound tomography: first results with the Computed Ultrasound Risk Evaluation (CURE) prototype,” Med. Phys. 34(2), 773–785 (2007).
[CrossRef] [PubMed]

Bahn, R. C.

J. F. Greenleaf and R. C. Bahn, “Clinical imaging with transmissive ultrasonic computerized tomography,” IEEE Trans. Biomed. Eng. 28(2), 177–185 (1981).
[CrossRef] [PubMed]

Beard, P.

J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt. 48(10), D299–D306 (2009).
[CrossRef] [PubMed]

Brecht, H. P.

H. P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
[CrossRef]

Burgholzer, P.

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[CrossRef] [PubMed]

Conjusteau, A.

H. P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Crawford, C. R.

C. R. Crawford and A. C. Kak, “Multipath artifact corrections in ultrasonic transmission tomography,” Ultrason. Imaging 4(3), 234–266 (1982).
[CrossRef] [PubMed]

Duric, N.

N. Duric, P. Littrup, L. Poulo, A. Babkin, R. Pevzner, E. Holsapple, O. Rama, and C. Glide, “Detection of breast cancer with ultrasound tomography: first results with the Computed Ultrasound Risk Evaluation (CURE) prototype,” Med. Phys. 34(2), 773–785 (2007).
[CrossRef] [PubMed]

Ermilov, S. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

H. P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
[CrossRef]

Fang, Y. R.

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)--reconstruction tomography,” Med. Phys. 22(10), 1605–1609 (1995).
[CrossRef] [PubMed]

Fronheiser, M.

H. P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
[CrossRef]

Glide, C.

N. Duric, P. Littrup, L. Poulo, A. Babkin, R. Pevzner, E. Holsapple, O. Rama, and C. Glide, “Detection of breast cancer with ultrasound tomography: first results with the Computed Ultrasound Risk Evaluation (CURE) prototype,” Med. Phys. 34(2), 773–785 (2007).
[CrossRef] [PubMed]

Greenleaf, J. F.

J. F. Greenleaf and R. C. Bahn, “Clinical imaging with transmissive ultrasonic computerized tomography,” IEEE Trans. Biomed. Eng. 28(2), 177–185 (1981).
[CrossRef] [PubMed]

Grossauer, H.

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[CrossRef] [PubMed]

Holotta, M.

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[CrossRef] [PubMed]

Holsapple, E.

N. Duric, P. Littrup, L. Poulo, A. Babkin, R. Pevzner, E. Holsapple, O. Rama, and C. Glide, “Detection of breast cancer with ultrasound tomography: first results with the Computed Ultrasound Risk Evaluation (CURE) prototype,” Med. Phys. 34(2), 773–785 (2007).
[CrossRef] [PubMed]

Jin, X.

X. Jin and L. V. Wang, “Thermoacoustic tomography with correction for acoustic speed variations,” Phys. Med. Biol. 51(24), 6437–6448 (2006).
[CrossRef] [PubMed]

Jose, J.

J. Jose, S. Manohar, R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” J Biophoton. 2(12), 701–717 (2009).
[CrossRef]

Joseph, P. M.

P. M. Joseph and R. A. Schulz, “View sampling requirements in fan beam computed tomography,” Med. Phys. 7(6), 692–702 (1980).
[CrossRef] [PubMed]

Kak, A. C.

C. R. Crawford and A. C. Kak, “Multipath artifact corrections in ultrasonic transmission tomography,” Ultrason. Imaging 4(3), 234–266 (1982).
[CrossRef] [PubMed]

Karabutov, A. A.

T. D. Khokhlova, I. M. Pelivanov, V. V. Kozhushko, A. N. Zharinov, V. S. Solomatin, and A. A. Karabutov, “Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics,” Appl. Opt. 46(2), 262–272 (2007).
[CrossRef] [PubMed]

Khamapirad, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Khokhlova, T. D.

T. D. Khokhlova, I. M. Pelivanov, V. V. Kozhushko, A. N. Zharinov, V. S. Solomatin, and A. A. Karabutov, “Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics,” Appl. Opt. 46(2), 262–272 (2007).
[CrossRef] [PubMed]

Klaase, J. M.

S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-12277 .
[CrossRef] [PubMed]

Kolkman, R. G. M.

J. Jose, S. Manohar, R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” J Biophoton. 2(12), 701–717 (2009).
[CrossRef]

Kozhushko, V. V.

T. D. Khokhlova, I. M. Pelivanov, V. V. Kozhushko, A. N. Zharinov, V. S. Solomatin, and A. A. Karabutov, “Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics,” Appl. Opt. 46(2), 262–272 (2007).
[CrossRef] [PubMed]

Kremser, C.

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[CrossRef] [PubMed]

Kruger, R. A.

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)--reconstruction tomography,” Med. Phys. 22(10), 1605–1609 (1995).
[CrossRef] [PubMed]

Lacewell, R.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Laufer, J.

J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt. 48(10), D299–D306 (2009).
[CrossRef] [PubMed]

Leonard, M. H.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Li, M. L.

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
[CrossRef] [PubMed]

Littrup, P.

N. Duric, P. Littrup, L. Poulo, A. Babkin, R. Pevzner, E. Holsapple, O. Rama, and C. Glide, “Detection of breast cancer with ultrasound tomography: first results with the Computed Ultrasound Risk Evaluation (CURE) prototype,” Med. Phys. 34(2), 773–785 (2007).
[CrossRef] [PubMed]

Liu, P.

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)--reconstruction tomography,” Med. Phys. 22(10), 1605–1609 (1995).
[CrossRef] [PubMed]

Ma, R.

R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, “Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging,” Opt. Express 17(24), 21414–21426 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21414 .
[CrossRef] [PubMed]

Manohar, S.

J. Jose, S. Manohar, R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” J Biophoton. 2(12), 701–717 (2009).
[CrossRef]

R. G. H. Willemink, S. Manohar, C. H. Slump, F. van der Heijden, and T. G. van Leeuwen, “A maximum likelihood method for obtaining integrated attenuation from ultrasound transmission mode measurement,” J. Acoust. Soc. Am. 123(5), 3641 (2008).
[CrossRef]

S. Manohar, R. G. H. Willemink, and T. G. van Leeuwen, “Speed-of-sound imaging in a photoacoustic imager,” SPIE (2007), 64370R.
[CrossRef]

S. Manohar, R. G. H. Willemink, F. van der Heijden, C. H. Slump, and T. G. van Leeuwen, “Concomitant speed-of-sound tomography in photoacoustic imaging,” Appl. Phys. Lett. 91 (2007).

S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-12277 .
[CrossRef] [PubMed]

R. G. H. Willemink, S. Manohar, T. G. van Leeuwen, and C. H. Slump, “Estimation of integrated ultrasound transmission parameters I,” Speed of Sound under review.

R. G. H. Willemink, S. Manohar, T. G. van Leeuwen, and C. H. Slump, “Estimation of integrated ultrasound transmission parameters II: Acoustic attenuation,” in preparation.

Maslov, K.

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
[CrossRef] [PubMed]

Mehta, K.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Miller, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Ntziachristos, V.

R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, “Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging,” Opt. Express 17(24), 21414–21426 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21414 .
[CrossRef] [PubMed]

Nuster, R.

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[CrossRef] [PubMed]

Oh, J. T.

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
[CrossRef] [PubMed]

Oraevsky, A. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

H. P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
[CrossRef]

Paltauf, G.

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[CrossRef] [PubMed]

Pelivanov, I. M.

T. D. Khokhlova, I. M. Pelivanov, V. V. Kozhushko, A. N. Zharinov, V. S. Solomatin, and A. A. Karabutov, “Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics,” Appl. Opt. 46(2), 262–272 (2007).
[CrossRef] [PubMed]

Pevzner, R.

N. Duric, P. Littrup, L. Poulo, A. Babkin, R. Pevzner, E. Holsapple, O. Rama, and C. Glide, “Detection of breast cancer with ultrasound tomography: first results with the Computed Ultrasound Risk Evaluation (CURE) prototype,” Med. Phys. 34(2), 773–785 (2007).
[CrossRef] [PubMed]

Poulo, L.

N. Duric, P. Littrup, L. Poulo, A. Babkin, R. Pevzner, E. Holsapple, O. Rama, and C. Glide, “Detection of breast cancer with ultrasound tomography: first results with the Computed Ultrasound Risk Evaluation (CURE) prototype,” Med. Phys. 34(2), 773–785 (2007).
[CrossRef] [PubMed]

Raivich, G.

J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt. 48(10), D299–D306 (2009).
[CrossRef] [PubMed]

Rama, O.

N. Duric, P. Littrup, L. Poulo, A. Babkin, R. Pevzner, E. Holsapple, O. Rama, and C. Glide, “Detection of breast cancer with ultrasound tomography: first results with the Computed Ultrasound Risk Evaluation (CURE) prototype,” Med. Phys. 34(2), 773–785 (2007).
[CrossRef] [PubMed]

Razansky, D.

R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, “Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging,” Opt. Express 17(24), 21414–21426 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21414 .
[CrossRef] [PubMed]

Schulz, R. A.

P. M. Joseph and R. A. Schulz, “View sampling requirements in fan beam computed tomography,” Med. Phys. 7(6), 692–702 (1980).
[CrossRef] [PubMed]

Slump, C. H.

R. G. H. Willemink, S. Manohar, C. H. Slump, F. van der Heijden, and T. G. van Leeuwen, “A maximum likelihood method for obtaining integrated attenuation from ultrasound transmission mode measurement,” J. Acoust. Soc. Am. 123(5), 3641 (2008).
[CrossRef]

S. Manohar, R. G. H. Willemink, F. van der Heijden, C. H. Slump, and T. G. van Leeuwen, “Concomitant speed-of-sound tomography in photoacoustic imaging,” Appl. Phys. Lett. 91 (2007).

R. G. H. Willemink, S. Manohar, T. G. van Leeuwen, and C. H. Slump, “Estimation of integrated ultrasound transmission parameters II: Acoustic attenuation,” in preparation.

R. G. H. Willemink, S. Manohar, T. G. van Leeuwen, and C. H. Slump, “Estimation of integrated ultrasound transmission parameters I,” Speed of Sound under review.

Solomatin, V. S.

T. D. Khokhlova, I. M. Pelivanov, V. V. Kozhushko, A. N. Zharinov, V. S. Solomatin, and A. A. Karabutov, “Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics,” Appl. Opt. 46(2), 262–272 (2007).
[CrossRef] [PubMed]

Steenbergen, W.

J. Jose, S. Manohar, R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” J Biophoton. 2(12), 701–717 (2009).
[CrossRef]

S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-12277 .
[CrossRef] [PubMed]

Stoica, G.

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
[CrossRef] [PubMed]

Su, R.

H. P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
[CrossRef]

Taruttis, A.

R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, “Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging,” Opt. Express 17(24), 21414–21426 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21414 .
[CrossRef] [PubMed]

Vaartjes, S. E.

S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-12277 .
[CrossRef] [PubMed]

van den Engh, F. M.

S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-12277 .
[CrossRef] [PubMed]

van der Heijden, F.

R. G. H. Willemink, S. Manohar, C. H. Slump, F. van der Heijden, and T. G. van Leeuwen, “A maximum likelihood method for obtaining integrated attenuation from ultrasound transmission mode measurement,” J. Acoust. Soc. Am. 123(5), 3641 (2008).
[CrossRef]

S. Manohar, R. G. H. Willemink, F. van der Heijden, C. H. Slump, and T. G. van Leeuwen, “Concomitant speed-of-sound tomography in photoacoustic imaging,” Appl. Phys. Lett. 91 (2007).

van Hespen, J. C. G.

S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-12277 .
[CrossRef] [PubMed]

van Leeuwen, T. G.

J. Jose, S. Manohar, R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” J Biophoton. 2(12), 701–717 (2009).
[CrossRef]

R. G. H. Willemink, S. Manohar, C. H. Slump, F. van der Heijden, and T. G. van Leeuwen, “A maximum likelihood method for obtaining integrated attenuation from ultrasound transmission mode measurement,” J. Acoust. Soc. Am. 123(5), 3641 (2008).
[CrossRef]

S. Manohar, R. G. H. Willemink, and T. G. van Leeuwen, “Speed-of-sound imaging in a photoacoustic imager,” SPIE (2007), 64370R.
[CrossRef]

S. Manohar, R. G. H. Willemink, F. van der Heijden, C. H. Slump, and T. G. van Leeuwen, “Concomitant speed-of-sound tomography in photoacoustic imaging,” Appl. Phys. Lett. 91 (2007).

S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-12277 .
[CrossRef] [PubMed]

R. G. H. Willemink, S. Manohar, T. G. van Leeuwen, and C. H. Slump, “Estimation of integrated ultrasound transmission parameters I,” Speed of Sound under review.

R. G. H. Willemink, S. Manohar, T. G. van Leeuwen, and C. H. Slump, “Estimation of integrated ultrasound transmission parameters II: Acoustic attenuation,” in preparation.

Wang, L. H. V.

M. H. Xu and L. H. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrumn. 77, (2006).

Wang, L. V.

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[CrossRef]

X. Jin and L. V. Wang, “Thermoacoustic tomography with correction for acoustic speed variations,” Phys. Med. Biol. 51(24), 6437–6448 (2006).
[CrossRef] [PubMed]

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
[CrossRef] [PubMed]

Willemink, R. G. H.

R. G. H. Willemink, S. Manohar, C. H. Slump, F. van der Heijden, and T. G. van Leeuwen, “A maximum likelihood method for obtaining integrated attenuation from ultrasound transmission mode measurement,” J. Acoust. Soc. Am. 123(5), 3641 (2008).
[CrossRef]

S. Manohar, R. G. H. Willemink, and T. G. van Leeuwen, “Speed-of-sound imaging in a photoacoustic imager,” SPIE (2007), 64370R.
[CrossRef]

S. Manohar, R. G. H. Willemink, F. van der Heijden, C. H. Slump, and T. G. van Leeuwen, “Concomitant speed-of-sound tomography in photoacoustic imaging,” Appl. Phys. Lett. 91 (2007).

R. G. H. Willemink, S. Manohar, T. G. van Leeuwen, and C. H. Slump, “Estimation of integrated ultrasound transmission parameters II: Acoustic attenuation,” in preparation.

R. G. H. Willemink, S. Manohar, T. G. van Leeuwen, and C. H. Slump, “Estimation of integrated ultrasound transmission parameters I,” Speed of Sound under review.

Xu, M. H.

M. H. Xu and L. H. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrumn. 77, (2006).

Zhang, E.

J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt. 48(10), D299–D306 (2009).
[CrossRef] [PubMed]

Zhang, H. F.

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
[CrossRef] [PubMed]

Zharinov, A. N.

T. D. Khokhlova, I. M. Pelivanov, V. V. Kozhushko, A. N. Zharinov, V. S. Solomatin, and A. A. Karabutov, “Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics,” Appl. Opt. 46(2), 262–272 (2007).
[CrossRef] [PubMed]

Appl. Opt.

T. D. Khokhlova, I. M. Pelivanov, V. V. Kozhushko, A. N. Zharinov, V. S. Solomatin, and A. A. Karabutov, “Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics,” Appl. Opt. 46(2), 262–272 (2007).
[CrossRef] [PubMed]

J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt. 48(10), D299–D306 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett.

S. Manohar, R. G. H. Willemink, F. van der Heijden, C. H. Slump, and T. G. van Leeuwen, “Concomitant speed-of-sound tomography in photoacoustic imaging,” Appl. Phys. Lett. 91 (2007).

IEEE Trans. Biomed. Eng.

J. F. Greenleaf and R. C. Bahn, “Clinical imaging with transmissive ultrasonic computerized tomography,” IEEE Trans. Biomed. Eng. 28(2), 177–185 (1981).
[CrossRef] [PubMed]

J Biophoton.

J. Jose, S. Manohar, R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” J Biophoton. 2(12), 701–717 (2009).
[CrossRef]

J. Acoust. Soc. Am.

R. G. H. Willemink, S. Manohar, C. H. Slump, F. van der Heijden, and T. G. van Leeuwen, “A maximum likelihood method for obtaining integrated attenuation from ultrasound transmission mode measurement,” J. Acoust. Soc. Am. 123(5), 3641 (2008).
[CrossRef]

J. Biomed. Opt.

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
[CrossRef] [PubMed]

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[CrossRef] [PubMed]

H. P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Med. Phys.

N. Duric, P. Littrup, L. Poulo, A. Babkin, R. Pevzner, E. Holsapple, O. Rama, and C. Glide, “Detection of breast cancer with ultrasound tomography: first results with the Computed Ultrasound Risk Evaluation (CURE) prototype,” Med. Phys. 34(2), 773–785 (2007).
[CrossRef] [PubMed]

P. M. Joseph and R. A. Schulz, “View sampling requirements in fan beam computed tomography,” Med. Phys. 7(6), 692–702 (1980).
[CrossRef] [PubMed]

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)--reconstruction tomography,” Med. Phys. 22(10), 1605–1609 (1995).
[CrossRef] [PubMed]

Nat. Photonics

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[CrossRef]

Opt. Express

S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-12277 .
[CrossRef] [PubMed]

R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, “Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging,” Opt. Express 17(24), 21414–21426 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21414 .
[CrossRef] [PubMed]

Phys. Med. Biol.

X. Jin and L. V. Wang, “Thermoacoustic tomography with correction for acoustic speed variations,” Phys. Med. Biol. 51(24), 6437–6448 (2006).
[CrossRef] [PubMed]

Rev. Sci. Instrumn.

M. H. Xu and L. H. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrumn. 77, (2006).

Speed of Sound

R. G. H. Willemink, S. Manohar, T. G. van Leeuwen, and C. H. Slump, “Estimation of integrated ultrasound transmission parameters I,” Speed of Sound under review.

SPIE

S. Manohar, R. G. H. Willemink, and T. G. van Leeuwen, “Speed-of-sound imaging in a photoacoustic imager,” SPIE (2007), 64370R.
[CrossRef]

Ultrason. Imaging

C. R. Crawford and A. C. Kak, “Multipath artifact corrections in ultrasonic transmission tomography,” Ultrason. Imaging 4(3), 234–266 (1982).
[CrossRef] [PubMed]

Other

R. G. H. Willemink, S. Manohar, J. Jose, C. H. Slump, F. van der Heijden, and T. G. van Leeuwen, Simultaneous imaging of ultrasound attenuation, speed of sound, and optical absorption in a photoacoustic setup,” A. M. Stephen and D. h. Jan, eds. (SPIE, 2009), p. 72650J.

F. Marinozzi, D. Piras, and F. Bini, “Spectral analysis of backscattered ultrasound field from hydroxyapatite granules,” in Advances in Medical, Signal and Information Processing, 2008. MEDSIP 2008. 4th IET International Conference on, 2008), 1–4.

J. C. Bamber, Acoustical characteristics of biological media (Encyclopedia of acoustics, Wiley, 1997), Vol. 4.

R. G. H. Willemink, S. Manohar, T. G. van Leeuwen, and C. H. Slump, “Estimation of integrated ultrasound transmission parameters II: Acoustic attenuation,” in preparation.

R. G. H. Willemink, S. Manohar, Y. Purwar, C. H. Slump, F. d. Heijden, and T. G. v. Leeuwen, “Imaging of acoustic attenuation and speed of sound maps using photoacoustic measurements,” in (SPIE, 2008), 692013.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the passive element-enriched photoacoustic computed tomographic (PER-PACT) imaging setup

Fig. 2
Fig. 2

Schematics of phantoms used for ascertaining (a) imaging plane resolution, and (b) elevation plane resolution.

Fig. 3
Fig. 3

(a) Photograph of the phantom during preparation showing the gel inserts in the mould, (see also Fig. 2(a)) (b) speed of sound (SOS) image of the finished phantom, and (c) corresponding frequency dependent acoustic attenuation image.

Fig. 4
Fig. 4

Average values of speed-of-sound tomograms obtained by imaging the phantom (see Fig. 2(b)) at various heights.

Fig. 5
Fig. 5

(a) Photograph of the top-view of the biological specimen. Inset shows the side-view. Three layers are identified: from left-to-right muscle, fat, muscle. A fourth layer composed of muscle mixed with fat is barely distinguishable, (b) the photoacoustic image shows only the surface of muscle tissue, (c) the speed of sound image shows three layers, while in the (d) acoustic attenuation image the fat and mixed muscle-fat layers are visible.

Tables (1)

Tables Icon

Table 1 Acoustic properties of the phantoms and biological specimen measured using the insertion method at 22°C

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

N min = 4 π ν m R 1 sin ( ξ 2 )
c s = c w 1 + c w Δ t d
f ( t ) = A h ( t + τ )
z = h z ( X ) + n z = A h ( t i + τ ) + n z
x ^ ML = arg x min z- h z (x) 2
c s ( ω ) = c w 1 + c w Δ ψ ( ω ) l ( φ , n )
Y S ( ω ) = H ( ω ) Y w ( ω )
H ( ω ) = exp [ ( α 0 | ω | y d α r ) j ω c ( ω ) d ]
x = [ α 0 α r τ 0 ] where τ 0 = 1 c ( ω 0 ) 1 c w
Y S ( ω ) = Y w ( ω ) exp [ h att ( x ) + j h ph ( x ) ]
h t ( x ) = Re { FT -1 [ Y w ( ω 2 ) exp [ h att,2 ( x ) + j h ph,2 ( x ) ] : Y w ( ω m ) exp [ h att,m ( x ) + j h ph,m ( x ) ] ]
x c,k = 1 c ( r k ) 1 c w
z = H x
x = arg min x ( | | z - H x | | 2 + λ | | H G x x | | 2 + λ | | H G y x | | 2 )
2 p ( r , t ) t 2 c 2 2 p ( r , t ) = β c 2 C p s ( r , t ) t
p ( r , t ) = β 4 π C p t ( 1 t r ' r = c t A ( r ' ) d r ' )

Metrics