Abstract

A 32 mW fiber laser is stabilized to the 13C2H2 P(16) (ν 1 + ν3) transition at 1542 nm using saturated absorption. The short-term shot-noise limited fractional frequency instability is 5.0 × 10−13(τ/s)−½ for averaging times τ up to about 100 s. The relative lock-point repeatability over 2½ month is 4.3 × 10−13 corresponding to 83 Hz. The simple setup includes a 21 cm long gas cell, but it does not require an enhancement cavity or external modulators. The spectroscopic lineshape is analyzed with respect to optical power and acetylene pressure. Narrow linewidths of 300 kHz FWHM are observed with a signal to noise ratio of 35 dB in a 9 Hz bandwidth.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nakazawa, “Recent progress on ultrafast/ultrashort/frequency-stabilized erbium-doped fiber lasers and their applications,” Front. Optoelectron. China 3(1), 38–44 (2010).
    [CrossRef]
  2. Mise en pratique for the definition of the metre, www.bipm.org/en/publications/mep.html , R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42, 323–325 (2005)
  3. D. J. E. Knight, P. S. Hansell, H. C. Leeson, G. Duxbury, J. Meldau, and M. Lawrence, “Review of user requirements and practical possibilities for frequency standards for the optical fiber communication bands,” Proc. SPIE 1837, 106–114 (1993).
    [CrossRef]
  4. V. Leonhardt, J. H. Chow, and J. B. Camp, “Laser frequency stabilization to molecular resonances for TPF-C, LISA and MAXIM,” Proc. SPIE 6265, 62652M, 62652M-8 (2006).
    [CrossRef]
  5. J. F. Cliche, C. Latrasse, M. Têtu, A. Babin, S. Tremblay, S. Tranchart, and D. Poulin, “Turnkey compact frequency standard at 1556 nm based on Rb two-photon transitions,” Conference on Precision Electromagnetic Measurements (CPEM), Digest, 674–675 (2004).
  6. M. Labachelerie, K. Nakagawa, Y. Awaji, and M. Ohtsu, “High-frequency-stability laser at 15 µm using Doppler-free molecular lines,” Opt. Lett. 20(6), 572–574 (1995).
    [CrossRef] [PubMed]
  7. A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (ν1+ ν3) overtone band of 13C2H2,” Opt. Commun. 234(1-6), 259–268 (2004).
    [CrossRef]
  8. C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 μm region,” Appl. Phys. B 80(8), 977–983 (2005).
    [CrossRef]
  9. P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser,” Opt. Express 13(23), 9196–9201 (2005).
    [CrossRef] [PubMed]
  10. P. Pineda-Vadillo, M. Lynch, C. Charlton, J. F. Donegan, and V. Weldon, “Non-resonant wavelength modulation saturation spectroscopy in acetylene-filled hollow-core photonic bandgap fibres applied to modulation-free laser diode stabilisation,” Opt. Express 17(25), 23309–23315 (2009).
    [CrossRef]
  11. K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on (12)C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17(18), 16017–16026 (2009).
    [CrossRef] [PubMed]
  12. K. Koheras Basi, TM Module datasheet at www.nktphotonics.com
  13. S. L. Gilbert, “Frequency stabilization of a tunable erbium-doped fiber laser,” Opt. Lett. 16(3), 150–152 (1991).
    [PubMed]
  14. S. N. Bagayev, V. P. Chebotayev, and E. A. Titov, “Saturated absorption lineshape under transit-time conditions,” Laser Phys. 4, 224–292 (1994).
  15. C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturated absorption line shape. Calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A 14(1), 236–263 (1976).
    [CrossRef]
  16. M. Kusaba and J. Henningsen, “The ν1 + ν3 and the ν1 + ν2 + ν41 + ν5−1 Combination Bands of 13C2H2. Linestrengths, Broadening Parameters, and Pressure Shifts,” J. Mol. Spectrosc. 209(2), 216–227 (2001).
    [CrossRef]
  17. U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
    [CrossRef]
  18. V. Ahtee, M. Merimaa, and K. Nyholm, “Precision spectroscopy of acetylene transitions using an optical frequency synthesizer,” Opt. Lett. 34(17), 2619–2621 (2009).
    [CrossRef] [PubMed]
  19. M. H. Wappelhorst, M. Mürtz, P. Palm, and W. Urban, “Very high resolution CO laser spectrometer and first sub-Doppler line-shape studies near 60 THz (5 μm),” Appl. Phys. B 65(1), 25–32 (1997).
    [CrossRef]
  20. M. Ikram and R. J. Butcher, “Saturation dip measurements of pressure broadening in CH3F,” J. Phys. At. Mol. Opt. Phys. 24(5), 943–949 (1991).
    [CrossRef]
  21. L.-S. Ma, J. Ye, P. Dubé, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16(12), 2255–2268 (1999).
    [CrossRef]
  22. J. Henningsen, J. Hald, and J. C. Peterson, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13(26), 10475–10482 (2005).
    [CrossRef] [PubMed]

2010 (1)

M. Nakazawa, “Recent progress on ultrafast/ultrashort/frequency-stabilized erbium-doped fiber lasers and their applications,” Front. Optoelectron. China 3(1), 38–44 (2010).
[CrossRef]

2009 (3)

P. Pineda-Vadillo, M. Lynch, C. Charlton, J. F. Donegan, and V. Weldon, “Non-resonant wavelength modulation saturation spectroscopy in acetylene-filled hollow-core photonic bandgap fibres applied to modulation-free laser diode stabilisation,” Opt. Express 17(25), 23309–23315 (2009).
[CrossRef]

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on (12)C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17(18), 16017–16026 (2009).
[CrossRef] [PubMed]

V. Ahtee, M. Merimaa, and K. Nyholm, “Precision spectroscopy of acetylene transitions using an optical frequency synthesizer,” Opt. Lett. 34(17), 2619–2621 (2009).
[CrossRef] [PubMed]

2006 (1)

V. Leonhardt, J. H. Chow, and J. B. Camp, “Laser frequency stabilization to molecular resonances for TPF-C, LISA and MAXIM,” Proc. SPIE 6265, 62652M, 62652M-8 (2006).
[CrossRef]

2005 (3)

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 μm region,” Appl. Phys. B 80(8), 977–983 (2005).
[CrossRef]

P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser,” Opt. Express 13(23), 9196–9201 (2005).
[CrossRef] [PubMed]

J. Henningsen, J. Hald, and J. C. Peterson, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13(26), 10475–10482 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (ν1+ ν3) overtone band of 13C2H2,” Opt. Commun. 234(1-6), 259–268 (2004).
[CrossRef]

2001 (1)

M. Kusaba and J. Henningsen, “The ν1 + ν3 and the ν1 + ν2 + ν41 + ν5−1 Combination Bands of 13C2H2. Linestrengths, Broadening Parameters, and Pressure Shifts,” J. Mol. Spectrosc. 209(2), 216–227 (2001).
[CrossRef]

1999 (2)

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[CrossRef]

L.-S. Ma, J. Ye, P. Dubé, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16(12), 2255–2268 (1999).
[CrossRef]

1997 (1)

M. H. Wappelhorst, M. Mürtz, P. Palm, and W. Urban, “Very high resolution CO laser spectrometer and first sub-Doppler line-shape studies near 60 THz (5 μm),” Appl. Phys. B 65(1), 25–32 (1997).
[CrossRef]

1995 (1)

M. Labachelerie, K. Nakagawa, Y. Awaji, and M. Ohtsu, “High-frequency-stability laser at 15 µm using Doppler-free molecular lines,” Opt. Lett. 20(6), 572–574 (1995).
[CrossRef] [PubMed]

1994 (1)

S. N. Bagayev, V. P. Chebotayev, and E. A. Titov, “Saturated absorption lineshape under transit-time conditions,” Laser Phys. 4, 224–292 (1994).

1993 (1)

D. J. E. Knight, P. S. Hansell, H. C. Leeson, G. Duxbury, J. Meldau, and M. Lawrence, “Review of user requirements and practical possibilities for frequency standards for the optical fiber communication bands,” Proc. SPIE 1837, 106–114 (1993).
[CrossRef]

1991 (2)

S. L. Gilbert, “Frequency stabilization of a tunable erbium-doped fiber laser,” Opt. Lett. 16(3), 150–152 (1991).
[PubMed]

M. Ikram and R. J. Butcher, “Saturation dip measurements of pressure broadening in CH3F,” J. Phys. At. Mol. Opt. Phys. 24(5), 943–949 (1991).
[CrossRef]

1976 (1)

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturated absorption line shape. Calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A 14(1), 236–263 (1976).
[CrossRef]

Ahtee, V.

V. Ahtee, M. Merimaa, and K. Nyholm, “Precision spectroscopy of acetylene transitions using an optical frequency synthesizer,” Opt. Lett. 34(17), 2619–2621 (2009).
[CrossRef] [PubMed]

Awaji, Y.

M. Labachelerie, K. Nakagawa, Y. Awaji, and M. Ohtsu, “High-frequency-stability laser at 15 µm using Doppler-free molecular lines,” Opt. Lett. 20(6), 572–574 (1995).
[CrossRef] [PubMed]

Bagayev, S. N.

S. N. Bagayev, V. P. Chebotayev, and E. A. Titov, “Saturated absorption lineshape under transit-time conditions,” Laser Phys. 4, 224–292 (1994).

Balling, P.

P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser,” Opt. Express 13(23), 9196–9201 (2005).
[CrossRef] [PubMed]

Barwood, G. P.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 μm region,” Appl. Phys. B 80(8), 977–983 (2005).
[CrossRef]

Benabid, F.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on (12)C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17(18), 16017–16026 (2009).
[CrossRef] [PubMed]

Bordé, C. J.

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturated absorption line shape. Calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A 14(1), 236–263 (1976).
[CrossRef]

Butcher, R. J.

M. Ikram and R. J. Butcher, “Saturation dip measurements of pressure broadening in CH3F,” J. Phys. At. Mol. Opt. Phys. 24(5), 943–949 (1991).
[CrossRef]

Camp, J. B.

V. Leonhardt, J. H. Chow, and J. B. Camp, “Laser frequency stabilization to molecular resonances for TPF-C, LISA and MAXIM,” Proc. SPIE 6265, 62652M, 62652M-8 (2006).
[CrossRef]

Charlton, C.

P. Pineda-Vadillo, M. Lynch, C. Charlton, J. F. Donegan, and V. Weldon, “Non-resonant wavelength modulation saturation spectroscopy in acetylene-filled hollow-core photonic bandgap fibres applied to modulation-free laser diode stabilisation,” Opt. Express 17(25), 23309–23315 (2009).
[CrossRef]

Chebotayev, V. P.

S. N. Bagayev, V. P. Chebotayev, and E. A. Titov, “Saturated absorption lineshape under transit-time conditions,” Laser Phys. 4, 224–292 (1994).

Chow, J. H.

V. Leonhardt, J. H. Chow, and J. B. Camp, “Laser frequency stabilization to molecular resonances for TPF-C, LISA and MAXIM,” Proc. SPIE 6265, 62652M, 62652M-8 (2006).
[CrossRef]

Corwin, K. L.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on (12)C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17(18), 16017–16026 (2009).
[CrossRef] [PubMed]

Couny, F.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on (12)C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17(18), 16017–16026 (2009).
[CrossRef] [PubMed]

Czajkowski, A.

A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (ν1+ ν3) overtone band of 13C2H2,” Opt. Commun. 234(1-6), 259–268 (2004).
[CrossRef]

Donegan, J. F.

P. Pineda-Vadillo, M. Lynch, C. Charlton, J. F. Donegan, and V. Weldon, “Non-resonant wavelength modulation saturation spectroscopy in acetylene-filled hollow-core photonic bandgap fibres applied to modulation-free laser diode stabilisation,” Opt. Express 17(25), 23309–23315 (2009).
[CrossRef]

Dubé, P.

A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (ν1+ ν3) overtone band of 13C2H2,” Opt. Commun. 234(1-6), 259–268 (2004).
[CrossRef]

L.-S. Ma, J. Ye, P. Dubé, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16(12), 2255–2268 (1999).
[CrossRef]

Duxbury, G.

D. J. E. Knight, P. S. Hansell, H. C. Leeson, G. Duxbury, J. Meldau, and M. Lawrence, “Review of user requirements and practical possibilities for frequency standards for the optical fiber communication bands,” Proc. SPIE 1837, 106–114 (1993).
[CrossRef]

Edwards, C. S.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 μm region,” Appl. Phys. B 80(8), 977–983 (2005).
[CrossRef]

Engler, H.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[CrossRef]

Fischer, M.

P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser,” Opt. Express 13(23), 9196–9201 (2005).
[CrossRef] [PubMed]

Gilbert, S. L.

S. L. Gilbert, “Frequency stabilization of a tunable erbium-doped fiber laser,” Opt. Lett. 16(3), 150–152 (1991).
[PubMed]

Gill, P.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 μm region,” Appl. Phys. B 80(8), 977–983 (2005).
[CrossRef]

Grimm, R.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[CrossRef]

Hald, J.

J. Henningsen, J. Hald, and J. C. Peterson, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13(26), 10475–10482 (2005).
[CrossRef] [PubMed]

Hall, J. L.

L.-S. Ma, J. Ye, P. Dubé, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16(12), 2255–2268 (1999).
[CrossRef]

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturated absorption line shape. Calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A 14(1), 236–263 (1976).
[CrossRef]

Hansell, P. S.

D. J. E. Knight, P. S. Hansell, H. C. Leeson, G. Duxbury, J. Meldau, and M. Lawrence, “Review of user requirements and practical possibilities for frequency standards for the optical fiber communication bands,” Proc. SPIE 1837, 106–114 (1993).
[CrossRef]

Henningsen, J.

J. Henningsen, J. Hald, and J. C. Peterson, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13(26), 10475–10482 (2005).
[CrossRef] [PubMed]

M. Kusaba and J. Henningsen, “The ν1 + ν3 and the ν1 + ν2 + ν41 + ν5−1 Combination Bands of 13C2H2. Linestrengths, Broadening Parameters, and Pressure Shifts,” J. Mol. Spectrosc. 209(2), 216–227 (2001).
[CrossRef]

Holzwarth, R.

P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser,” Opt. Express 13(23), 9196–9201 (2005).
[CrossRef] [PubMed]

Hummer, D. G.

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturated absorption line shape. Calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A 14(1), 236–263 (1976).
[CrossRef]

Ikram, M.

M. Ikram and R. J. Butcher, “Saturation dip measurements of pressure broadening in CH3F,” J. Phys. At. Mol. Opt. Phys. 24(5), 943–949 (1991).
[CrossRef]

Jones, A. M.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on (12)C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17(18), 16017–16026 (2009).
[CrossRef] [PubMed]

Knabe, K.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on (12)C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17(18), 16017–16026 (2009).
[CrossRef] [PubMed]

Knight, D. J. E.

D. J. E. Knight, P. S. Hansell, H. C. Leeson, G. Duxbury, J. Meldau, and M. Lawrence, “Review of user requirements and practical possibilities for frequency standards for the optical fiber communication bands,” Proc. SPIE 1837, 106–114 (1993).
[CrossRef]

Kubina, P.

P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser,” Opt. Express 13(23), 9196–9201 (2005).
[CrossRef] [PubMed]

Kunasz, C. V.

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturated absorption line shape. Calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A 14(1), 236–263 (1976).
[CrossRef]

Kusaba, M.

M. Kusaba and J. Henningsen, “The ν1 + ν3 and the ν1 + ν2 + ν41 + ν5−1 Combination Bands of 13C2H2. Linestrengths, Broadening Parameters, and Pressure Shifts,” J. Mol. Spectrosc. 209(2), 216–227 (2001).
[CrossRef]

Labachelerie, M.

M. Labachelerie, K. Nakagawa, Y. Awaji, and M. Ohtsu, “High-frequency-stability laser at 15 µm using Doppler-free molecular lines,” Opt. Lett. 20(6), 572–574 (1995).
[CrossRef] [PubMed]

Lawrence, M.

D. J. E. Knight, P. S. Hansell, H. C. Leeson, G. Duxbury, J. Meldau, and M. Lawrence, “Review of user requirements and practical possibilities for frequency standards for the optical fiber communication bands,” Proc. SPIE 1837, 106–114 (1993).
[CrossRef]

Lea, S. N.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 μm region,” Appl. Phys. B 80(8), 977–983 (2005).
[CrossRef]

Leeson, H. C.

D. J. E. Knight, P. S. Hansell, H. C. Leeson, G. Duxbury, J. Meldau, and M. Lawrence, “Review of user requirements and practical possibilities for frequency standards for the optical fiber communication bands,” Proc. SPIE 1837, 106–114 (1993).
[CrossRef]

Leonhardt, V.

V. Leonhardt, J. H. Chow, and J. B. Camp, “Laser frequency stabilization to molecular resonances for TPF-C, LISA and MAXIM,” Proc. SPIE 6265, 62652M, 62652M-8 (2006).
[CrossRef]

Light, P. S.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on (12)C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17(18), 16017–16026 (2009).
[CrossRef] [PubMed]

Lim, J.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on (12)C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17(18), 16017–16026 (2009).
[CrossRef] [PubMed]

Lynch, M.

P. Pineda-Vadillo, M. Lynch, C. Charlton, J. F. Donegan, and V. Weldon, “Non-resonant wavelength modulation saturation spectroscopy in acetylene-filled hollow-core photonic bandgap fibres applied to modulation-free laser diode stabilisation,” Opt. Express 17(25), 23309–23315 (2009).
[CrossRef]

Ma, L.-S.

L.-S. Ma, J. Ye, P. Dubé, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16(12), 2255–2268 (1999).
[CrossRef]

Madej, A. A.

A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (ν1+ ν3) overtone band of 13C2H2,” Opt. Commun. 234(1-6), 259–268 (2004).
[CrossRef]

Margolis, H. S.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 μm region,” Appl. Phys. B 80(8), 977–983 (2005).
[CrossRef]

Meldau, J.

D. J. E. Knight, P. S. Hansell, H. C. Leeson, G. Duxbury, J. Meldau, and M. Lawrence, “Review of user requirements and practical possibilities for frequency standards for the optical fiber communication bands,” Proc. SPIE 1837, 106–114 (1993).
[CrossRef]

Merimaa, M.

V. Ahtee, M. Merimaa, and K. Nyholm, “Precision spectroscopy of acetylene transitions using an optical frequency synthesizer,” Opt. Lett. 34(17), 2619–2621 (2009).
[CrossRef] [PubMed]

Mürtz, M.

M. H. Wappelhorst, M. Mürtz, P. Palm, and W. Urban, “Very high resolution CO laser spectrometer and first sub-Doppler line-shape studies near 60 THz (5 μm),” Appl. Phys. B 65(1), 25–32 (1997).
[CrossRef]

Nakagawa, K.

M. Labachelerie, K. Nakagawa, Y. Awaji, and M. Ohtsu, “High-frequency-stability laser at 15 µm using Doppler-free molecular lines,” Opt. Lett. 20(6), 572–574 (1995).
[CrossRef] [PubMed]

Nakazawa, M.

M. Nakazawa, “Recent progress on ultrafast/ultrashort/frequency-stabilized erbium-doped fiber lasers and their applications,” Front. Optoelectron. China 3(1), 38–44 (2010).
[CrossRef]

Nicholson, J. W.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on (12)C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17(18), 16017–16026 (2009).
[CrossRef] [PubMed]

Nyholm, K.

V. Ahtee, M. Merimaa, and K. Nyholm, “Precision spectroscopy of acetylene transitions using an optical frequency synthesizer,” Opt. Lett. 34(17), 2619–2621 (2009).
[CrossRef] [PubMed]

Ohtsu, M.

M. Labachelerie, K. Nakagawa, Y. Awaji, and M. Ohtsu, “High-frequency-stability laser at 15 µm using Doppler-free molecular lines,” Opt. Lett. 20(6), 572–574 (1995).
[CrossRef] [PubMed]

Palm, P.

M. H. Wappelhorst, M. Mürtz, P. Palm, and W. Urban, “Very high resolution CO laser spectrometer and first sub-Doppler line-shape studies near 60 THz (5 μm),” Appl. Phys. B 65(1), 25–32 (1997).
[CrossRef]

Peterson, J. C.

J. Henningsen, J. Hald, and J. C. Peterson, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13(26), 10475–10482 (2005).
[CrossRef] [PubMed]

Pineda-Vadillo, P.

P. Pineda-Vadillo, M. Lynch, C. Charlton, J. F. Donegan, and V. Weldon, “Non-resonant wavelength modulation saturation spectroscopy in acetylene-filled hollow-core photonic bandgap fibres applied to modulation-free laser diode stabilisation,” Opt. Express 17(25), 23309–23315 (2009).
[CrossRef]

Rowley, W. R. C.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 μm region,” Appl. Phys. B 80(8), 977–983 (2005).
[CrossRef]

Schünemann, U.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[CrossRef]

Thapa, R.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on (12)C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17(18), 16017–16026 (2009).
[CrossRef] [PubMed]

Tillman, K. A.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on (12)C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17(18), 16017–16026 (2009).
[CrossRef] [PubMed]

Titov, E. A.

S. N. Bagayev, V. P. Chebotayev, and E. A. Titov, “Saturated absorption lineshape under transit-time conditions,” Laser Phys. 4, 224–292 (1994).

Urban, W.

M. H. Wappelhorst, M. Mürtz, P. Palm, and W. Urban, “Very high resolution CO laser spectrometer and first sub-Doppler line-shape studies near 60 THz (5 μm),” Appl. Phys. B 65(1), 25–32 (1997).
[CrossRef]

Wappelhorst, M. H.

M. H. Wappelhorst, M. Mürtz, P. Palm, and W. Urban, “Very high resolution CO laser spectrometer and first sub-Doppler line-shape studies near 60 THz (5 μm),” Appl. Phys. B 65(1), 25–32 (1997).
[CrossRef]

Washburn, B. R.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on (12)C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17(18), 16017–16026 (2009).
[CrossRef] [PubMed]

Weidemüller, M.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[CrossRef]

Weldon, V.

P. Pineda-Vadillo, M. Lynch, C. Charlton, J. F. Donegan, and V. Weldon, “Non-resonant wavelength modulation saturation spectroscopy in acetylene-filled hollow-core photonic bandgap fibres applied to modulation-free laser diode stabilisation,” Opt. Express 17(25), 23309–23315 (2009).
[CrossRef]

Wheeler, N.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on (12)C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17(18), 16017–16026 (2009).
[CrossRef] [PubMed]

Wu, S.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on (12)C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17(18), 16017–16026 (2009).
[CrossRef] [PubMed]

Ye, J.

L.-S. Ma, J. Ye, P. Dubé, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16(12), 2255–2268 (1999).
[CrossRef]

Zielonkowski, M.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[CrossRef]

Appl. Phys. B (2)

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 μm region,” Appl. Phys. B 80(8), 977–983 (2005).
[CrossRef]

M. H. Wappelhorst, M. Mürtz, P. Palm, and W. Urban, “Very high resolution CO laser spectrometer and first sub-Doppler line-shape studies near 60 THz (5 μm),” Appl. Phys. B 65(1), 25–32 (1997).
[CrossRef]

Front. Optoelectron. China (1)

M. Nakazawa, “Recent progress on ultrafast/ultrashort/frequency-stabilized erbium-doped fiber lasers and their applications,” Front. Optoelectron. China 3(1), 38–44 (2010).
[CrossRef]

J. Mol. Spectrosc. (1)

M. Kusaba and J. Henningsen, “The ν1 + ν3 and the ν1 + ν2 + ν41 + ν5−1 Combination Bands of 13C2H2. Linestrengths, Broadening Parameters, and Pressure Shifts,” J. Mol. Spectrosc. 209(2), 216–227 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

L.-S. Ma, J. Ye, P. Dubé, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16(12), 2255–2268 (1999).
[CrossRef]

J. Phys. At. Mol. Opt. Phys. (1)

M. Ikram and R. J. Butcher, “Saturation dip measurements of pressure broadening in CH3F,” J. Phys. At. Mol. Opt. Phys. 24(5), 943–949 (1991).
[CrossRef]

Laser Phys. (1)

S. N. Bagayev, V. P. Chebotayev, and E. A. Titov, “Saturated absorption lineshape under transit-time conditions,” Laser Phys. 4, 224–292 (1994).

Opt. Commun. (1)

A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (ν1+ ν3) overtone band of 13C2H2,” Opt. Commun. 234(1-6), 259–268 (2004).
[CrossRef]

Opt. Express (4)

P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser,” Opt. Express 13(23), 9196–9201 (2005).
[CrossRef] [PubMed]

P. Pineda-Vadillo, M. Lynch, C. Charlton, J. F. Donegan, and V. Weldon, “Non-resonant wavelength modulation saturation spectroscopy in acetylene-filled hollow-core photonic bandgap fibres applied to modulation-free laser diode stabilisation,” Opt. Express 17(25), 23309–23315 (2009).
[CrossRef]

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on (12)C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17(18), 16017–16026 (2009).
[CrossRef] [PubMed]

J. Henningsen, J. Hald, and J. C. Peterson, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13(26), 10475–10482 (2005).
[CrossRef] [PubMed]

Opt. Lett. (3)

M. Labachelerie, K. Nakagawa, Y. Awaji, and M. Ohtsu, “High-frequency-stability laser at 15 µm using Doppler-free molecular lines,” Opt. Lett. 20(6), 572–574 (1995).
[CrossRef] [PubMed]

S. L. Gilbert, “Frequency stabilization of a tunable erbium-doped fiber laser,” Opt. Lett. 16(3), 150–152 (1991).
[PubMed]

V. Ahtee, M. Merimaa, and K. Nyholm, “Precision spectroscopy of acetylene transitions using an optical frequency synthesizer,” Opt. Lett. 34(17), 2619–2621 (2009).
[CrossRef] [PubMed]

Phys. Rev. A (1)

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturated absorption line shape. Calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A 14(1), 236–263 (1976).
[CrossRef]

Proc. SPIE (2)

D. J. E. Knight, P. S. Hansell, H. C. Leeson, G. Duxbury, J. Meldau, and M. Lawrence, “Review of user requirements and practical possibilities for frequency standards for the optical fiber communication bands,” Proc. SPIE 1837, 106–114 (1993).
[CrossRef]

V. Leonhardt, J. H. Chow, and J. B. Camp, “Laser frequency stabilization to molecular resonances for TPF-C, LISA and MAXIM,” Proc. SPIE 6265, 62652M, 62652M-8 (2006).
[CrossRef]

Rev. Sci. Instrum. (1)

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[CrossRef]

Other (3)

J. F. Cliche, C. Latrasse, M. Têtu, A. Babin, S. Tremblay, S. Tranchart, and D. Poulin, “Turnkey compact frequency standard at 1556 nm based on Rb two-photon transitions,” Conference on Precision Electromagnetic Measurements (CPEM), Digest, 674–675 (2004).

Mise en pratique for the definition of the metre, www.bipm.org/en/publications/mep.html , R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42, 323–325 (2005)

K. Koheras Basi, TM Module datasheet at www.nktphotonics.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic layout of the primary (P) laser system. OI: Optical isolator. BS: Beamsplitter. L1-L4: Lenses. M1-M5: Mirrors.

Fig. 2
Fig. 2

Third harmonic saturated absorption signals at two experimental conditions. Pressure: 0.90 Pa (0.13 Pa). Optical power: 30 mW (15 mW). Modulation amplitude: 400 kHz (300 kHz). Lock-in amplifier bandwidth: 9.4 Hz (9.4 Hz). Parameters listed in brackets are related to the blue curve. The red curve is the residual between the 0.90 Pa measurements and a fit to Eq. (1), multiplied by 10 and displaced for clarity.

Fig. 3
Fig. 3

The fitted parameter s as a function of P/P sat = s 0 for data acquired at various pressure levels. Data at identical pressure levels are plotted with the same symbol type. The solid line with unity slope is included as a reference.

Fig. 4
Fig. 4

Saturated absorption linewidth (Γ, Γ0), signal amplitude (s), and saturation parameter (s 0) as a function of acetylene pressure. Filled circles: Linewidth Γ at maximum available power (30 mW). Open circles: Linewidth extrapolated to zero optical power, Γ0. Filled triangles: Signal amplitude s at 30 mW. Open triangles: Saturation parameter s 0 at 30 mW.

Fig. 5
Fig. 5

Filled circles: The ratio between the 3f signal slope at zero detuning and the off-resonant rms-noise in a 9.4 Hz bandwidth as a function of pressure. Open circles: The ratio between the 3f signal amplitude and the off-resonant rms-noise in a 9.4 Hz bandwidth. Data are acquired at maximum optical power and optimal modulation amplitudes. Solid lines are spline interpolations between measurements.

Fig. 6
Fig. 6

Off-resonant relative intensity noise (RIN) as a function of power on the photoreceiver measured in a 31 Hz bandwidth at the frequency 3f = 3.6 kHz. The solid line is a linear least squares fit. The dashed line is the calculated shot-noise limited RIN.

Fig. 7
Fig. 7

Average frequency difference between laser P and laser S for 11 runs each with a duration of 48 hours. Red triangle: a measurement with piezo-modulation of laser S. Open symbols: Measurements with unusually large Allan deviation at short times. All error bars have the same size and represent the average Allan deviation for an averaging time of 18 hours (see Fig. 8).

Fig. 8
Fig. 8

Relative Allan deviation for the laser frequency difference. Solid circles: average over 8 runs (solid symbols in Fig. 7). Open circles: Overall smallest Allan deviation from a single run. Triangles: Allan deviation with piezo-modulation of laser S. Error bars represent the sample standard deviation of the Allan deviation over 8 runs.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V 3 ( Δ ) = 1 2 π 0 2 π α l s V 0 2 Γ 2 Γ 2 + 4 ( Δ + m sin t ) 2 2 sin ( 3 t ) d t
RIN (dBc) = 10 log ( V 3 , rms 2 V 3 , rms,dark 2 V 0 2 )
RIN shot noise  (dBc) = 10 log ( 2 h ν B η P )

Metrics