Abstract

We propose an efficient scheme in which the Deutsch-Jozsa algorithm can be realized via Rydberg blockade interaction. Deutsch-Jozsa algorithm can fast determine whether function is constant or balanced, but this algorithm does not give the concrete value of function. Using the Rydberg blockade, value of function may be determined in our scheme. According to the quantitative calculation of Rydberg blockade, we discuss the experimental feasibility of our scheme.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput. 26(5), 1484–1509 (1997).
    [CrossRef]
  2. L. K. Grover, “Quantum Computers Can Search Rapidly by Using Almost Any Transformation,” Phys. Rev. Lett. 80(19), 4329–4332 (1998).
    [CrossRef]
  3. D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proc. R. Soc. Lond. A 439(1907), 553–558 (1992).
    [CrossRef]
  4. I. L. Chuang, I. M. K. Vandersypen, X. Zhou, D. W. Leung, and S. Lloyd, “Experimental realization of a quantum algorithm,” Nature 393(6681), 143–146 (1998).
    [CrossRef]
  5. J. A. Jones and M. Mosca, “Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer,” J. Chem. Phys. 109(5), 1648–1653 (1998).
    [CrossRef]
  6. M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Steinberg, “Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm,” Phys. Rev. Lett. 91(18), 187903 (2003).
    [CrossRef] [PubMed]
  7. F. Shi, X. Rong, N. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. S. Schoenfeld, W. Harneit, M. Feng, and J. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett. 105(4), 040504 (2010).
    [CrossRef] [PubMed]
  8. S.-B. Zheng, “Scheme for implementing the Deutsch-Jozsa algorithm in cavity QED,” Phys. Rev. A 70(3), 034301 (2004).
    [CrossRef]
  9. L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104(1), 010503 (2010).
    [CrossRef] [PubMed]
  10. T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104(1), 010502 (2010).
    [CrossRef] [PubMed]
  11. M. Saffman and K. Mølmer, “Efficient multiparticle entanglement via asymmetric Rydberg blockade,” Phys. Rev. Lett. 102(24), 240502 (2009).
    [CrossRef] [PubMed]
  12. H.-Z. Wu, Z.-B. Yang, and S.-B. Zheng, “Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade,” Phys. Rev. A 82(3), 034307 (2010).
    [CrossRef]
  13. B. Zhao, M. Müller, K. Hammerer, and P. Zoller, “Efficient quantum repeater based on deterministic Rydberg gates,” Phys. Rev. Lett. 81, 052329 (2010).
  14. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85(10), 2208–2211 (2000).
    [CrossRef] [PubMed]
  15. M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102(17), 170502 (2009).
    [CrossRef] [PubMed]
  16. Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69(6), 063803 (2004).
    [CrossRef]
  17. E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5(2), 110–114 (2009).
    [CrossRef]
  18. M. O. Scully, and M. S. Zubairy, Quantum Optics (Cambridge: Cambridge University Press,1997), Chap.5.
  19. C. Ates, T. Pohl, T. Pattard, and J. M. Rost, “Many-body theory of excitation dynamics in an ultracold Rydberg gas,” Phys. Rev. A 76(1), 013413 (2007).
    [CrossRef]
  20. T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions,” Phys. Rev. Lett. 100(11), 113003 (2008).
    [CrossRef] [PubMed]

2010

F. Shi, X. Rong, N. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. S. Schoenfeld, W. Harneit, M. Feng, and J. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett. 105(4), 040504 (2010).
[CrossRef] [PubMed]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104(1), 010503 (2010).
[CrossRef] [PubMed]

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104(1), 010502 (2010).
[CrossRef] [PubMed]

H.-Z. Wu, Z.-B. Yang, and S.-B. Zheng, “Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade,” Phys. Rev. A 82(3), 034307 (2010).
[CrossRef]

B. Zhao, M. Müller, K. Hammerer, and P. Zoller, “Efficient quantum repeater based on deterministic Rydberg gates,” Phys. Rev. Lett. 81, 052329 (2010).

2009

M. Saffman and K. Mølmer, “Efficient multiparticle entanglement via asymmetric Rydberg blockade,” Phys. Rev. Lett. 102(24), 240502 (2009).
[CrossRef] [PubMed]

M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102(17), 170502 (2009).
[CrossRef] [PubMed]

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5(2), 110–114 (2009).
[CrossRef]

2008

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions,” Phys. Rev. Lett. 100(11), 113003 (2008).
[CrossRef] [PubMed]

2007

C. Ates, T. Pohl, T. Pattard, and J. M. Rost, “Many-body theory of excitation dynamics in an ultracold Rydberg gas,” Phys. Rev. A 76(1), 013413 (2007).
[CrossRef]

2004

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69(6), 063803 (2004).
[CrossRef]

S.-B. Zheng, “Scheme for implementing the Deutsch-Jozsa algorithm in cavity QED,” Phys. Rev. A 70(3), 034301 (2004).
[CrossRef]

2003

M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Steinberg, “Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm,” Phys. Rev. Lett. 91(18), 187903 (2003).
[CrossRef] [PubMed]

2000

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85(10), 2208–2211 (2000).
[CrossRef] [PubMed]

1998

L. K. Grover, “Quantum Computers Can Search Rapidly by Using Almost Any Transformation,” Phys. Rev. Lett. 80(19), 4329–4332 (1998).
[CrossRef]

I. L. Chuang, I. M. K. Vandersypen, X. Zhou, D. W. Leung, and S. Lloyd, “Experimental realization of a quantum algorithm,” Nature 393(6681), 143–146 (1998).
[CrossRef]

J. A. Jones and M. Mosca, “Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer,” J. Chem. Phys. 109(5), 1648–1653 (1998).
[CrossRef]

1997

P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput. 26(5), 1484–1509 (1997).
[CrossRef]

1992

D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proc. R. Soc. Lond. A 439(1907), 553–558 (1992).
[CrossRef]

Ates, C.

C. Ates, T. Pohl, T. Pattard, and J. M. Rost, “Many-body theory of excitation dynamics in an ultracold Rydberg gas,” Phys. Rev. A 76(1), 013413 (2007).
[CrossRef]

Browaeys, A.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104(1), 010502 (2010).
[CrossRef] [PubMed]

Büchler, H. P.

M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102(17), 170502 (2009).
[CrossRef] [PubMed]

Chong, B.

F. Shi, X. Rong, N. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. S. Schoenfeld, W. Harneit, M. Feng, and J. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett. 105(4), 040504 (2010).
[CrossRef] [PubMed]

Chuang, I. L.

I. L. Chuang, I. M. K. Vandersypen, X. Zhou, D. W. Leung, and S. Lloyd, “Experimental realization of a quantum algorithm,” Nature 393(6681), 143–146 (1998).
[CrossRef]

Cirac, J. I.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85(10), 2208–2211 (2000).
[CrossRef] [PubMed]

Côté, R.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85(10), 2208–2211 (2000).
[CrossRef] [PubMed]

Deng, L.

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69(6), 063803 (2004).
[CrossRef]

Deutsch, D.

D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proc. R. Soc. Lond. A 439(1907), 553–558 (1992).
[CrossRef]

Du, J.

F. Shi, X. Rong, N. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. S. Schoenfeld, W. Harneit, M. Feng, and J. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett. 105(4), 040504 (2010).
[CrossRef] [PubMed]

Evellin, C.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104(1), 010502 (2010).
[CrossRef] [PubMed]

Feng, M.

F. Shi, X. Rong, N. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. S. Schoenfeld, W. Harneit, M. Feng, and J. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett. 105(4), 040504 (2010).
[CrossRef] [PubMed]

Gaëtan, A.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104(1), 010502 (2010).
[CrossRef] [PubMed]

Gill, A. T.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104(1), 010503 (2010).
[CrossRef] [PubMed]

Grangier, P.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104(1), 010502 (2010).
[CrossRef] [PubMed]

Grover, L. K.

L. K. Grover, “Quantum Computers Can Search Rapidly by Using Almost Any Transformation,” Phys. Rev. Lett. 80(19), 4329–4332 (1998).
[CrossRef]

Hagley, E. W.

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69(6), 063803 (2004).
[CrossRef]

Hammerer, K.

B. Zhao, M. Müller, K. Hammerer, and P. Zoller, “Efficient quantum repeater based on deterministic Rydberg gates,” Phys. Rev. Lett. 81, 052329 (2010).

Harneit, W.

F. Shi, X. Rong, N. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. S. Schoenfeld, W. Harneit, M. Feng, and J. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett. 105(4), 040504 (2010).
[CrossRef] [PubMed]

Henage, T.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104(1), 010503 (2010).
[CrossRef] [PubMed]

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5(2), 110–114 (2009).
[CrossRef]

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions,” Phys. Rev. Lett. 100(11), 113003 (2008).
[CrossRef] [PubMed]

Isenhower, L.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104(1), 010503 (2010).
[CrossRef] [PubMed]

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5(2), 110–114 (2009).
[CrossRef]

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions,” Phys. Rev. Lett. 100(11), 113003 (2008).
[CrossRef] [PubMed]

Jaksch, D.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85(10), 2208–2211 (2000).
[CrossRef] [PubMed]

Johnson, T. A.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104(1), 010503 (2010).
[CrossRef] [PubMed]

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5(2), 110–114 (2009).
[CrossRef]

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions,” Phys. Rev. Lett. 100(11), 113003 (2008).
[CrossRef] [PubMed]

Jones, J. A.

J. A. Jones and M. Mosca, “Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer,” J. Chem. Phys. 109(5), 1648–1653 (1998).
[CrossRef]

Jozsa, R.

D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proc. R. Soc. Lond. A 439(1907), 553–558 (1992).
[CrossRef]

Kniepert, J.

F. Shi, X. Rong, N. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. S. Schoenfeld, W. Harneit, M. Feng, and J. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett. 105(4), 040504 (2010).
[CrossRef] [PubMed]

Lesanovsky, I.

M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102(17), 170502 (2009).
[CrossRef] [PubMed]

Leung, D. W.

I. L. Chuang, I. M. K. Vandersypen, X. Zhou, D. W. Leung, and S. Lloyd, “Experimental realization of a quantum algorithm,” Nature 393(6681), 143–146 (1998).
[CrossRef]

Lloyd, S.

I. L. Chuang, I. M. K. Vandersypen, X. Zhou, D. W. Leung, and S. Lloyd, “Experimental realization of a quantum algorithm,” Nature 393(6681), 143–146 (1998).
[CrossRef]

Lukin, M. D.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85(10), 2208–2211 (2000).
[CrossRef] [PubMed]

Lundeen, J. S.

M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Steinberg, “Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm,” Phys. Rev. Lett. 91(18), 187903 (2003).
[CrossRef] [PubMed]

Miroshnychenko, Y.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104(1), 010502 (2010).
[CrossRef] [PubMed]

Mohseni, M.

M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Steinberg, “Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm,” Phys. Rev. Lett. 91(18), 187903 (2003).
[CrossRef] [PubMed]

Mølmer, K.

M. Saffman and K. Mølmer, “Efficient multiparticle entanglement via asymmetric Rydberg blockade,” Phys. Rev. Lett. 102(24), 240502 (2009).
[CrossRef] [PubMed]

Mosca, M.

J. A. Jones and M. Mosca, “Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer,” J. Chem. Phys. 109(5), 1648–1653 (1998).
[CrossRef]

Müller, M.

B. Zhao, M. Müller, K. Hammerer, and P. Zoller, “Efficient quantum repeater based on deterministic Rydberg gates,” Phys. Rev. Lett. 81, 052329 (2010).

M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102(17), 170502 (2009).
[CrossRef] [PubMed]

Pattard, T.

C. Ates, T. Pohl, T. Pattard, and J. M. Rost, “Many-body theory of excitation dynamics in an ultracold Rydberg gas,” Phys. Rev. A 76(1), 013413 (2007).
[CrossRef]

Payne, M. G.

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69(6), 063803 (2004).
[CrossRef]

Peng, X.

F. Shi, X. Rong, N. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. S. Schoenfeld, W. Harneit, M. Feng, and J. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett. 105(4), 040504 (2010).
[CrossRef] [PubMed]

Pohl, T.

C. Ates, T. Pohl, T. Pattard, and J. M. Rost, “Many-body theory of excitation dynamics in an ultracold Rydberg gas,” Phys. Rev. A 76(1), 013413 (2007).
[CrossRef]

Resch, K. J.

M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Steinberg, “Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm,” Phys. Rev. Lett. 91(18), 187903 (2003).
[CrossRef] [PubMed]

Rolston, S. L.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85(10), 2208–2211 (2000).
[CrossRef] [PubMed]

Rong, X.

F. Shi, X. Rong, N. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. S. Schoenfeld, W. Harneit, M. Feng, and J. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett. 105(4), 040504 (2010).
[CrossRef] [PubMed]

Rost, J. M.

C. Ates, T. Pohl, T. Pattard, and J. M. Rost, “Many-body theory of excitation dynamics in an ultracold Rydberg gas,” Phys. Rev. A 76(1), 013413 (2007).
[CrossRef]

Saffman, M.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104(1), 010503 (2010).
[CrossRef] [PubMed]

M. Saffman and K. Mølmer, “Efficient multiparticle entanglement via asymmetric Rydberg blockade,” Phys. Rev. Lett. 102(24), 240502 (2009).
[CrossRef] [PubMed]

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5(2), 110–114 (2009).
[CrossRef]

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions,” Phys. Rev. Lett. 100(11), 113003 (2008).
[CrossRef] [PubMed]

Schoenfeld, R. S.

F. Shi, X. Rong, N. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. S. Schoenfeld, W. Harneit, M. Feng, and J. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett. 105(4), 040504 (2010).
[CrossRef] [PubMed]

Shi, F.

F. Shi, X. Rong, N. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. S. Schoenfeld, W. Harneit, M. Feng, and J. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett. 105(4), 040504 (2010).
[CrossRef] [PubMed]

Shor, P. W.

P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput. 26(5), 1484–1509 (1997).
[CrossRef]

Steinberg, A. M.

M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Steinberg, “Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm,” Phys. Rev. Lett. 91(18), 187903 (2003).
[CrossRef] [PubMed]

Urban, E.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104(1), 010503 (2010).
[CrossRef] [PubMed]

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5(2), 110–114 (2009).
[CrossRef]

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions,” Phys. Rev. Lett. 100(11), 113003 (2008).
[CrossRef] [PubMed]

Vandersypen, I. M. K.

I. L. Chuang, I. M. K. Vandersypen, X. Zhou, D. W. Leung, and S. Lloyd, “Experimental realization of a quantum algorithm,” Nature 393(6681), 143–146 (1998).
[CrossRef]

Walker, T. G.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104(1), 010503 (2010).
[CrossRef] [PubMed]

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5(2), 110–114 (2009).
[CrossRef]

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions,” Phys. Rev. Lett. 100(11), 113003 (2008).
[CrossRef] [PubMed]

Wang, Y.

F. Shi, X. Rong, N. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. S. Schoenfeld, W. Harneit, M. Feng, and J. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett. 105(4), 040504 (2010).
[CrossRef] [PubMed]

Weimer, H.

M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102(17), 170502 (2009).
[CrossRef] [PubMed]

Wilk, T.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104(1), 010502 (2010).
[CrossRef] [PubMed]

Wolters, J.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104(1), 010502 (2010).
[CrossRef] [PubMed]

Wu, H.-Z.

H.-Z. Wu, Z.-B. Yang, and S.-B. Zheng, “Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade,” Phys. Rev. A 82(3), 034307 (2010).
[CrossRef]

Wu, J.

F. Shi, X. Rong, N. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. S. Schoenfeld, W. Harneit, M. Feng, and J. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett. 105(4), 040504 (2010).
[CrossRef] [PubMed]

Wu, Y.

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69(6), 063803 (2004).
[CrossRef]

Xu, N.

F. Shi, X. Rong, N. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. S. Schoenfeld, W. Harneit, M. Feng, and J. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett. 105(4), 040504 (2010).
[CrossRef] [PubMed]

Yang, Z.-B.

H.-Z. Wu, Z.-B. Yang, and S.-B. Zheng, “Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade,” Phys. Rev. A 82(3), 034307 (2010).
[CrossRef]

Yavuz, D. D.

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5(2), 110–114 (2009).
[CrossRef]

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions,” Phys. Rev. Lett. 100(11), 113003 (2008).
[CrossRef] [PubMed]

Zhang, X. L.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104(1), 010503 (2010).
[CrossRef] [PubMed]

Zhao, B.

B. Zhao, M. Müller, K. Hammerer, and P. Zoller, “Efficient quantum repeater based on deterministic Rydberg gates,” Phys. Rev. Lett. 81, 052329 (2010).

Zheng, S.-B.

H.-Z. Wu, Z.-B. Yang, and S.-B. Zheng, “Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade,” Phys. Rev. A 82(3), 034307 (2010).
[CrossRef]

S.-B. Zheng, “Scheme for implementing the Deutsch-Jozsa algorithm in cavity QED,” Phys. Rev. A 70(3), 034301 (2004).
[CrossRef]

Zhou, X.

I. L. Chuang, I. M. K. Vandersypen, X. Zhou, D. W. Leung, and S. Lloyd, “Experimental realization of a quantum algorithm,” Nature 393(6681), 143–146 (1998).
[CrossRef]

Zoller, P.

B. Zhao, M. Müller, K. Hammerer, and P. Zoller, “Efficient quantum repeater based on deterministic Rydberg gates,” Phys. Rev. Lett. 81, 052329 (2010).

M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102(17), 170502 (2009).
[CrossRef] [PubMed]

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85(10), 2208–2211 (2000).
[CrossRef] [PubMed]

J. Chem. Phys.

J. A. Jones and M. Mosca, “Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer,” J. Chem. Phys. 109(5), 1648–1653 (1998).
[CrossRef]

Nat. Phys.

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5(2), 110–114 (2009).
[CrossRef]

Nature

I. L. Chuang, I. M. K. Vandersypen, X. Zhou, D. W. Leung, and S. Lloyd, “Experimental realization of a quantum algorithm,” Nature 393(6681), 143–146 (1998).
[CrossRef]

Phys. Rev. A

S.-B. Zheng, “Scheme for implementing the Deutsch-Jozsa algorithm in cavity QED,” Phys. Rev. A 70(3), 034301 (2004).
[CrossRef]

H.-Z. Wu, Z.-B. Yang, and S.-B. Zheng, “Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade,” Phys. Rev. A 82(3), 034307 (2010).
[CrossRef]

C. Ates, T. Pohl, T. Pattard, and J. M. Rost, “Many-body theory of excitation dynamics in an ultracold Rydberg gas,” Phys. Rev. A 76(1), 013413 (2007).
[CrossRef]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69(6), 063803 (2004).
[CrossRef]

Phys. Rev. Lett.

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions,” Phys. Rev. Lett. 100(11), 113003 (2008).
[CrossRef] [PubMed]

B. Zhao, M. Müller, K. Hammerer, and P. Zoller, “Efficient quantum repeater based on deterministic Rydberg gates,” Phys. Rev. Lett. 81, 052329 (2010).

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85(10), 2208–2211 (2000).
[CrossRef] [PubMed]

M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102(17), 170502 (2009).
[CrossRef] [PubMed]

M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Steinberg, “Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm,” Phys. Rev. Lett. 91(18), 187903 (2003).
[CrossRef] [PubMed]

F. Shi, X. Rong, N. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. S. Schoenfeld, W. Harneit, M. Feng, and J. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett. 105(4), 040504 (2010).
[CrossRef] [PubMed]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104(1), 010503 (2010).
[CrossRef] [PubMed]

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104(1), 010502 (2010).
[CrossRef] [PubMed]

M. Saffman and K. Mølmer, “Efficient multiparticle entanglement via asymmetric Rydberg blockade,” Phys. Rev. Lett. 102(24), 240502 (2009).
[CrossRef] [PubMed]

L. K. Grover, “Quantum Computers Can Search Rapidly by Using Almost Any Transformation,” Phys. Rev. Lett. 80(19), 4329–4332 (1998).
[CrossRef]

Proc. R. Soc. Lond. A

D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proc. R. Soc. Lond. A 439(1907), 553–558 (1992).
[CrossRef]

SIAM J. Comput.

P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput. 26(5), 1484–1509 (1997).
[CrossRef]

Other

M. O. Scully, and M. S. Zubairy, Quantum Optics (Cambridge: Cambridge University Press,1997), Chap.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Level scheme and transitions between levels.

Fig. 2
Fig. 2

Level scheme and sequence of operations for U f 2 .

Fig. 3
Fig. 3

Level scheme and sequence of operations for U f 3 .

Fig. 4
Fig. 4

Time evolution of the double-excitation probability P r r . Where Rabi frequency Ω R = 2 × 10 6 s 1 , the dissipation rate γ = 1.5 × 10 6 s 1 , and the Rydberg-Rydberg interaction energy Δ r r = 4.5 × 10 6 s 1 (for dashed curve), Δ r r = 7.5 × 10 6 s 1 (for solid curve), and Δ r r = 15 × 10 6 s 1 (for dotted curve).

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

U f : | x i | y a | x i | y f ( x ) a ,
| Ψ 1 = 1 2 ( | 0 i + | 1 i ) ( | 0 a | 1 a ) .
| Ψ 1 U f 1 | Ψ 2 = 1 2 ( | 0 i + | 1 i ) ( | 0 a | 1 a ) ,
| Ψ 1 U f 2 | Ψ 2 = 1 2 ( | 0 i + | 1 i ) ( | 0 a | 1 a ) ,
| Ψ 1 U f 3 | Ψ 2 = 1 2 ( | 0 i | 1 i ) ( | 0 a | 1 a ) ,
| Ψ 1 U f 4 | Ψ 2 = 1 2 ( | 0 i | 1 i ) ( | 0 a | 1 a ) .
| Ψ 1 U f 2 | Ψ 2 = 1 2 ( | 0 i + | 1 i ) ( | 0 a | 1 a ) .
| Ψ 1 U f 3 | Ψ 2 = 1 2 ( | 0 i | 1 i ) ( | 0 a | 1 a ) .
| Ψ 1 U f 4 | Ψ 2 = 1 2 ( | 0 i | 1 i ) ( | 0 a | 1 a ) .
| Ψ 2 = 1 2 ( ( 1 ) f ( 0 ) | 0 i + ( 1 ) f ( 1 ) | 1 i ) 1 2 ( | 0 a | 1 a ) .
| Ψ i a 1 = 1 2 ( | 0 i | 0 a + | 1 i | 1 a ) ,
| Ψ i a 1 U f 1 | Ψ i a 2 = | Ψ i a 1 .
| Ψ i a 1 U f 2 | Ψ i a 2 = 1 2 ( | 0 i | 1 a + | 1 i | 0 a ) .
1 2 ( | 0 i 1 + | 1 i 1 ) 1 2 ( | 0 i 2 + | 1 i 2 ) 1 2 ( | 0 a | 1 a ) .
1 2 ( | 0 i 1 | 0 i 2 | 0 a + | 1 i 1 | 1 i 2 | 1 a ) U f 1 1 2 ( | 0 i 1 | 0 i 2 | 0 a + | 1 i 1 | 1 i 2 | 1 a ) .
1 2 ( | 0 i 1 | 0 i 2 | 0 a + | 1 i 1 | 1 i 2 | 1 a ) U f 2 1 2 ( | 0 i 1 | 0 i 2 | 1 a + | 1 i 1 | 1 i 2 | 0 a ) .
1 2 ( | 0 i 1 | 0 i 2 | 0 a + | 1 i 1 | 1 i 2 | 1 a ) U f 3 1 2 ( | 0 i 1 | 0 i 2 + | 1 i 1 | 1 i 2 ) | 1 a .
1 2 ( | 0 i 1 | 0 i 2 | 0 a + | 1 i 1 | 1 i 2 | 1 a ) U f 4 1 2 ( | 0 i 1 | 0 i 2 + | 1 i 1 | 1 i 2 ) | 0 a .
1 2 ( | 0 i 1 | 0 i 2 | 0 a + | 1 i 1 | 1 i 2 | 1 a ) U f 5 1 2 ( | 0 i 1 | 0 i 2 + | 1 i 1 | 1 i 2 ) | 0 a .
1 2 ( | 0 i 1 | 0 i 2 | 0 a + | 1 i 1 | 1 i 2 | 1 a ) U f 6 1 2 ( | 0 i 1 | 0 i 2 + | 1 i 1 | 1 i 2 ) | 1 a .
1 2 ( | 0 i 1 | 0 i 2 | 0 a + | 1 i 1 | 1 i 2 | 1 a ) U f 7 1 2 ( | 0 i 1 | 0 i 2 | 0 a + | 1 i 1 | 1 i 2 | 1 a ) .
1 2 ( | 0 i 1 | 0 i 2 | 0 a + | 1 i 1 | 1 i 2 | 1 a ) U f 8 1 2 ( | 0 i 1 | 0 i 2 | 1 a + | 1 i 1 | 1 i 2 | 0 a ) .

Metrics