Abstract

We demonstrated a novel optical switch with a reconfigurable dielectric liquid droplet. The device consists of a clear liquid droplet (glycerol) surrounded by a black liquid (dye-doped liquid crystal). In the voltage-off state, the incident light passing through the clear liquid droplet is absorbed by the black liquid, resulting in a dark state. In the voltage-on state, the dome of the clear liquid droplet is uplifted by the dielectric force to form a light pipe which in turn transmits the incident light. Upon removing the voltage, the droplet recovers to its original shape and the switch is closed. We also demonstrated a red color light switch with ~10:1 contrast ratio and ~300 ms response time. Devices based on such an operation mechanism will find attractive applications in light shutter, tunable iris, variable optical attenuators, and displays

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
    [Crossref]
  2. S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16(11), 8084–8093 (2008).
    [Crossref] [PubMed]
  3. D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
    [Crossref]
  4. K.-H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” Opt. Express 12(11), 2494–2500 (2004).
    [Crossref] [PubMed]
  5. D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on cured surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
    [Crossref]
  6. C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
    [Crossref] [PubMed]
  7. H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
    [Crossref] [PubMed]
  8. S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
    [Crossref]
  9. Y. J. Lin, K. M. Chen, and S. T. Wu, “Broadband and polarization-independent beam steering using dielectrophoresis-tilted prism,” Opt. Express 17(10), 8651–8656 (2009).
    [Crossref] [PubMed]
  10. N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
    [Crossref] [PubMed]
  11. R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
    [Crossref] [PubMed]
  12. Y. H. Lin, J. K. Li, T. Y. Chu, and H. K. Hsu, “A bistable polarizer-free electro-optical switch using a droplet manipulation on a liquid crystal and polymer composite film,” Opt. Express 18(10), 10104–10111 (2010).
    [Crossref] [PubMed]
  13. S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
    [Crossref] [PubMed]
  14. H. Ren, S. Xu, and S. T. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express 18(11), 11904–11910 (2010).
    [Crossref] [PubMed]
  15. H. Ren and S. T. Wu, “Optical switch using a deformable liquid droplet,” Opt. Lett. 35(22), 3826–3828 (2010).
    [Crossref] [PubMed]
  16. H. A. Pohl, Dielectrophoresis (Cambridge University, 1978).
  17. R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
    [Crossref]
  18. S. T. Wu, and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).

2010 (4)

2009 (3)

2008 (2)

2007 (1)

2006 (1)

2004 (1)

2003 (3)

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[Crossref] [PubMed]

1999 (1)

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[Crossref]

Abeysinghe, D. C.

Berdichevsky, Y.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Chen, K. M.

Cheng, C. C.

Choi, J.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Chronis, N.

Chu, T. Y.

De Nicola, S.

Feenstra, B. J.

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[Crossref] [PubMed]

Ferraro, P.

Finizio, A.

Grilli, S.

Haus, J. W.

Hayes, R. A.

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[Crossref] [PubMed]

Heikenfeld, J.

Hsu, H. K.

Jeong, K.-H.

Jiang, H.

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on cured surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[Crossref]

Krupenkin, T.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]

Lee, L. P.

Li, C.

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on cured surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[Crossref]

Li, J. K.

Lien, V.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Lin, Y. H.

Lin, Y. J.

Liu, G. L.

Lo, Y.-H.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Mach, P.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]

Miccio, L.

Ren, H.

Reza, S. A.

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[Crossref]

Riza, N. A.

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[Crossref]

Sabnis, R. W.

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[Crossref]

Smith, N. R.

Vespini, V.

Wu, S. T.

Xianyu, H.

Xu, S.

Yang, S.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]

Yeh, J. A.

Zeng, X.

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on cured surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[Crossref]

Zhang, D.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Zhu, D.

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on cured surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[Crossref]

Appl. Phys. Lett. (3)

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on cured surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[Crossref]

Displays (1)

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[Crossref]

Nature (1)

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[Crossref]

Opt. Express (9)

Y. J. Lin, K. M. Chen, and S. T. Wu, “Broadband and polarization-independent beam steering using dielectrophoresis-tilted prism,” Opt. Express 17(10), 8651–8656 (2009).
[Crossref] [PubMed]

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[Crossref] [PubMed]

C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
[Crossref] [PubMed]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[Crossref] [PubMed]

K.-H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” Opt. Express 12(11), 2494–2500 (2004).
[Crossref] [PubMed]

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16(11), 8084–8093 (2008).
[Crossref] [PubMed]

Y. H. Lin, J. K. Li, T. Y. Chu, and H. K. Hsu, “A bistable polarizer-free electro-optical switch using a droplet manipulation on a liquid crystal and polymer composite film,” Opt. Express 18(10), 10104–10111 (2010).
[Crossref] [PubMed]

S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
[Crossref] [PubMed]

H. Ren, S. Xu, and S. T. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express 18(11), 11904–11910 (2010).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (2)

H. A. Pohl, Dielectrophoresis (Cambridge University, 1978).

S. T. Wu, and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).

Supplementary Material (2)

» Media 1: MPG (1114 KB)     
» Media 2: MPG (1101 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Droplet cell fabrication procedure and the droplet operation mechanism.

Fig. 2
Fig. 2

A droplet cell for proving the proposed operation mechanism at (a) V = 0, (b) V = 25 Volts, and (c) V = 40 Volts. (d) (Media 1) The dynamic response of the droplet with a pulsed voltage (40 Volts) applied to the cell. The droplet aperture is ~340 µm and cell gap is ~200 µm.

Fig. 3
Fig. 3

A droplet cell for red color light switch at voltages of (a) V = 0, (b) V = 60, (c) 38, (d) 33, and (e) V = 22 Volts. (f) (Media 2) Shows the dynamic response of the red droplet with a pulsed voltage (55 Volts) applied to the cell. The red droplet aperture ~260 µm and cell gap ~200 µm.

Fig. 4
Fig. 4

Measured voltage dependent light transmittance. The red arrow indicates voltage increasing or decreasing direction. The aperture of the red droplet is ~260 µm and the cell gap is ~200 µm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

V = 1 12 π d ( D 2 + D b + b 2 )
D = 4 π V d

Metrics