Abstract

This article demonstrates theoretical design of ultracompact all-optical AND, NAND, OR, and NOR gates with two-dimensional nonlinear photonic crystal slabs. Compound Ag-polymer film with a low refractive index and large third-order nonlinearity is adopted as our nonlinear material and photonic crystal cavities with a relatively high quality factor of about 2000 is designed on this polymer slab. Numerical simulations show that all-optical logic gates with low pump-power in the order of tens of MW/cm2 can be achieved. These design results may provide very useful schemes and approaches for the realization of all-optical logic gates with low-cost, low-pump-power, high-contrast and ultrafast response-time.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. H. Li and G. F. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(12), 1341–1343 (2006).
    [CrossRef]
  2. Y. A. Zaghloul and A. R. M. Zaghloul, “Complete all-optical processing polarization-based binary logic gates and optical processors,” Opt. Express 14(21), 9879–9895 (2006).
    [CrossRef] [PubMed]
  3. J. I. Cirac and P. Zoller, “A scalable quantum computer with ions in an array of microtraps,” Nature 404(6778), 579–581 (2000).
    [CrossRef] [PubMed]
  4. Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett. 94(3), 030501 (2005).
    [CrossRef] [PubMed]
  5. J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “10 Gbit/s all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures,” Electron. Lett. 42(5), 303–304 (2006).
    [CrossRef]
  6. L. A. Wang, S. H. Chang, and Y. F. Lin, “Novel implementation method to realize all-optical logic gates,” Opt. Eng. 37(3), 1011–1018 (1998).
    [CrossRef]
  7. Z. J. Li, Z. W. Chen, and B. J. Li, “Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference,” Opt. Express 13(3), 1033–1038 (2005).
    [CrossRef] [PubMed]
  8. T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
    [CrossRef]
  9. V. M. N. Passaro and F. De Leonardis, “All-optical AND gate based on Raman effect in silicon-on-insulator waveguide,” Opt. Quantum Electron. 38(9-11), 877–888 (2007).
    [CrossRef]
  10. T. Fujisawa and M. Koshiba, “All-optical logic gates based on nonlinear slot-waveguide couplers,” J. Opt. Soc. Am. B 23(4), 684–691 (2006).
    [CrossRef]
  11. D. O. Guney and D. A. Meyer, “Creation of entanglement and implementation of quantum logic gate operations using a three-dimensional photonic crystal single-mode cavity,” J. Opt. Soc. Am. B 24(2), 283–294 (2007).
    [CrossRef]
  12. D. V. Novitsky, “Effect of frequency detuning on pulse propagation in one-dimensional photonic crystal with a dense resonant medium: application to optical logic,” J. Opt. Soc. Am. B 26(10), 1918–1923 (2009).
    [CrossRef]
  13. D. V. Novitsky and S. Y. Mikhnevich, “Logic Gate Based on a One-Dimensional Photonic Crystal Containing Quantum Dots,” J. Appl. Spectrosc. 77(2), 232–237 (2010).
    [CrossRef]
  14. I. V. Dzedolik, S. N. Lapayeva, and A. F. Rubass, “All-optical logic gates based on nonlinear dielectric films,” Ukr. J. Phys. Opt. 9(3), 187–196 (2008).
    [CrossRef]
  15. I. S. Nefedov, V. N. Gusyatnikov, P. K. Kashkarov, and A. M. Zheltikov, “Low-threshold photonic band-gap optical logic gates,” Laser Phys. 10(2), 640–643 (2000).
  16. Y. L. Zhang, Y. Zhang, and B. J. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express 15(15), 9287–9292 (2007).
    [CrossRef] [PubMed]
  17. P. Andalib and N. Granpayeh, “All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators,” J. Opt. Soc. Am. B 26(1), 10–16 (2009).
    [CrossRef]
  18. P. Andalib and N. Granpayeh, “All-optical ultra-compact photonic crystal NOR gate based on nonlinear ring resonators,” J. Opt. A, Pure Appl. Opt. 11(8), 085203 (2009).
    [CrossRef]
  19. J. B. Bai, J. Q. Wang, J. Z. Jiang, X. Y. Chen, H. Li, Y. S. Qiu, and Z. X. Qiang, “Photonic NOT and NOR gates based on a single compact photonic crystal ring resonator,” Appl. Opt. 48(36), 6923–6927 (2009).
    [CrossRef] [PubMed]
  20. A. de Rossi, M. Lauritano, S. Combrie, Q. V. Tran, and C. Husko, “Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity,” Phys. Rev. A 79(4), 043818 (2009).
    [CrossRef]
  21. A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17(2), 552–557 (2009).
    [CrossRef] [PubMed]
  22. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005).
    [CrossRef] [PubMed]
  23. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [CrossRef] [PubMed]
  24. F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880–1882 (2004).
    [CrossRef]
  25. M. W. McCutcheon, G. W. Rieger, J. F. Young, D. Dalacu, P. J. Poole, and R. L. Williams, “All-optical conditional logic with a nonlinear photonic crystal nanocavity,” Appl. Phys. Lett. 95(22), 221102 (2009).
    [CrossRef]
  26. Y. Wang, X. B. Xie, and T. Goodson, “Enhanced third-order nonlinear optical properties in dendrimer-metal nanocomposites,” Nano Lett. 5(12), 2379–2384 (2005).
    [CrossRef] [PubMed]
  27. X. Y. Hu, P. Jiang, C. Xin, H. Yang, and Q. H. Gong, “Nano-Ag:polymeric composite material for ultrafast photonic crystal all-optical switching,” Appl. Phys. Lett. 94(3), 031103 (2009).
    [CrossRef]
  28. X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
    [CrossRef]
  29. X. Y. Hu, Y. H. Liu, J. Tian, B. Y. Cheng, and D. Z. Zhang, “Ultrafast all-optical switching in two-dimensional organic photonic crystal,” Appl. Phys. Lett. 86(12), 121102 (2005).
    [CrossRef]
  30. Y. H. Liu, X. Y. Hu, D. X. Zhang, B. Y. Cheng, D. Z. Zhang, and Q. B. Meng, “Subpicosecond optical switching in polystyrene opal,” Appl. Phys. Lett. 86(15), 151102 (2005).
    [CrossRef]
  31. Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95(13), 131116 (2009).
    [CrossRef]
  32. Y. Liu, F. Qin, F. Zhou, and Z. Y. Li, “Ultrafast and low-power photonic crystal all-optical switching with resonant cavities,” J. Appl. Phys. 106(8), 083102 (2009).
    [CrossRef]
  33. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
    [CrossRef] [PubMed]
  34. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a Photonic Band-Gap in 2 Dimensions,” Appl. Phys. Lett. 61(4), 495–497 (1992).
    [CrossRef]
  35. S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Photonic band gaps in periodic dielectric structures: The scalar-wave approximation,” Phys. Rev. B Condens. Matter 46(17), 10650–10656 (1992).
    [CrossRef] [PubMed]
  36. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [CrossRef]
  37. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [CrossRef] [PubMed]

2010 (2)

D. V. Novitsky and S. Y. Mikhnevich, “Logic Gate Based on a One-Dimensional Photonic Crystal Containing Quantum Dots,” J. Appl. Spectrosc. 77(2), 232–237 (2010).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

2009 (10)

D. V. Novitsky, “Effect of frequency detuning on pulse propagation in one-dimensional photonic crystal with a dense resonant medium: application to optical logic,” J. Opt. Soc. Am. B 26(10), 1918–1923 (2009).
[CrossRef]

M. W. McCutcheon, G. W. Rieger, J. F. Young, D. Dalacu, P. J. Poole, and R. L. Williams, “All-optical conditional logic with a nonlinear photonic crystal nanocavity,” Appl. Phys. Lett. 95(22), 221102 (2009).
[CrossRef]

X. Y. Hu, P. Jiang, C. Xin, H. Yang, and Q. H. Gong, “Nano-Ag:polymeric composite material for ultrafast photonic crystal all-optical switching,” Appl. Phys. Lett. 94(3), 031103 (2009).
[CrossRef]

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95(13), 131116 (2009).
[CrossRef]

Y. Liu, F. Qin, F. Zhou, and Z. Y. Li, “Ultrafast and low-power photonic crystal all-optical switching with resonant cavities,” J. Appl. Phys. 106(8), 083102 (2009).
[CrossRef]

P. Andalib and N. Granpayeh, “All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators,” J. Opt. Soc. Am. B 26(1), 10–16 (2009).
[CrossRef]

P. Andalib and N. Granpayeh, “All-optical ultra-compact photonic crystal NOR gate based on nonlinear ring resonators,” J. Opt. A, Pure Appl. Opt. 11(8), 085203 (2009).
[CrossRef]

J. B. Bai, J. Q. Wang, J. Z. Jiang, X. Y. Chen, H. Li, Y. S. Qiu, and Z. X. Qiang, “Photonic NOT and NOR gates based on a single compact photonic crystal ring resonator,” Appl. Opt. 48(36), 6923–6927 (2009).
[CrossRef] [PubMed]

A. de Rossi, M. Lauritano, S. Combrie, Q. V. Tran, and C. Husko, “Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity,” Phys. Rev. A 79(4), 043818 (2009).
[CrossRef]

A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17(2), 552–557 (2009).
[CrossRef] [PubMed]

2008 (2)

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

I. V. Dzedolik, S. N. Lapayeva, and A. F. Rubass, “All-optical logic gates based on nonlinear dielectric films,” Ukr. J. Phys. Opt. 9(3), 187–196 (2008).
[CrossRef]

2007 (3)

D. O. Guney and D. A. Meyer, “Creation of entanglement and implementation of quantum logic gate operations using a three-dimensional photonic crystal single-mode cavity,” J. Opt. Soc. Am. B 24(2), 283–294 (2007).
[CrossRef]

Y. L. Zhang, Y. Zhang, and B. J. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express 15(15), 9287–9292 (2007).
[CrossRef] [PubMed]

V. M. N. Passaro and F. De Leonardis, “All-optical AND gate based on Raman effect in silicon-on-insulator waveguide,” Opt. Quantum Electron. 38(9-11), 877–888 (2007).
[CrossRef]

2006 (5)

T. Fujisawa and M. Koshiba, “All-optical logic gates based on nonlinear slot-waveguide couplers,” J. Opt. Soc. Am. B 23(4), 684–691 (2006).
[CrossRef]

Z. H. Li and G. F. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(12), 1341–1343 (2006).
[CrossRef]

Y. A. Zaghloul and A. R. M. Zaghloul, “Complete all-optical processing polarization-based binary logic gates and optical processors,” Opt. Express 14(21), 9879–9895 (2006).
[CrossRef] [PubMed]

J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “10 Gbit/s all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures,” Electron. Lett. 42(5), 303–304 (2006).
[CrossRef]

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
[CrossRef]

2005 (6)

Y. Wang, X. B. Xie, and T. Goodson, “Enhanced third-order nonlinear optical properties in dendrimer-metal nanocomposites,” Nano Lett. 5(12), 2379–2384 (2005).
[CrossRef] [PubMed]

X. Y. Hu, Y. H. Liu, J. Tian, B. Y. Cheng, and D. Z. Zhang, “Ultrafast all-optical switching in two-dimensional organic photonic crystal,” Appl. Phys. Lett. 86(12), 121102 (2005).
[CrossRef]

Y. H. Liu, X. Y. Hu, D. X. Zhang, B. Y. Cheng, D. Z. Zhang, and Q. B. Meng, “Subpicosecond optical switching in polystyrene opal,” Appl. Phys. Lett. 86(15), 151102 (2005).
[CrossRef]

Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett. 94(3), 030501 (2005).
[CrossRef] [PubMed]

Z. J. Li, Z. W. Chen, and B. J. Li, “Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference,” Opt. Express 13(3), 1033–1038 (2005).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005).
[CrossRef] [PubMed]

2004 (2)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880–1882 (2004).
[CrossRef]

2003 (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

2000 (2)

J. I. Cirac and P. Zoller, “A scalable quantum computer with ions in an array of microtraps,” Nature 404(6778), 579–581 (2000).
[CrossRef] [PubMed]

I. S. Nefedov, V. N. Gusyatnikov, P. K. Kashkarov, and A. M. Zheltikov, “Low-threshold photonic band-gap optical logic gates,” Laser Phys. 10(2), 640–643 (2000).

1998 (1)

L. A. Wang, S. H. Chang, and Y. F. Lin, “Novel implementation method to realize all-optical logic gates,” Opt. Eng. 37(3), 1011–1018 (1998).
[CrossRef]

1992 (2)

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a Photonic Band-Gap in 2 Dimensions,” Appl. Phys. Lett. 61(4), 495–497 (1992).
[CrossRef]

S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Photonic band gaps in periodic dielectric structures: The scalar-wave approximation,” Phys. Rev. B Condens. Matter 46(17), 10650–10656 (1992).
[CrossRef] [PubMed]

1990 (1)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Abedin, K. S.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Andalib, P.

P. Andalib and N. Granpayeh, “All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators,” J. Opt. Soc. Am. B 26(1), 10–16 (2009).
[CrossRef]

P. Andalib and N. Granpayeh, “All-optical ultra-compact photonic crystal NOR gate based on nonlinear ring resonators,” J. Opt. A, Pure Appl. Opt. 11(8), 085203 (2009).
[CrossRef]

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Baets, R.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
[CrossRef]

Bai, J. B.

J. B. Bai, J. Q. Wang, J. Z. Jiang, X. Y. Chen, H. Li, Y. S. Qiu, and Z. X. Qiang, “Photonic NOT and NOR gates based on a single compact photonic crystal ring resonator,” Appl. Opt. 48(36), 6923–6927 (2009).
[CrossRef] [PubMed]

Baron, A.

A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17(2), 552–557 (2009).
[CrossRef] [PubMed]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Bogaerts, W.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
[CrossRef]

Brommer, K. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a Photonic Band-Gap in 2 Dimensions,” Appl. Phys. Lett. 61(4), 495–497 (1992).
[CrossRef]

Chan, C. T.

S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Photonic band gaps in periodic dielectric structures: The scalar-wave approximation,” Phys. Rev. B Condens. Matter 46(17), 10650–10656 (1992).
[CrossRef] [PubMed]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Chang, S. H.

L. A. Wang, S. H. Chang, and Y. F. Lin, “Novel implementation method to realize all-optical logic gates,” Opt. Eng. 37(3), 1011–1018 (1998).
[CrossRef]

Chen, X. Y.

J. B. Bai, J. Q. Wang, J. Z. Jiang, X. Y. Chen, H. Li, Y. S. Qiu, and Z. X. Qiang, “Photonic NOT and NOR gates based on a single compact photonic crystal ring resonator,” Appl. Opt. 48(36), 6923–6927 (2009).
[CrossRef] [PubMed]

Chen, Y. A.

Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett. 94(3), 030501 (2005).
[CrossRef] [PubMed]

Chen, Z. W.

Z. J. Li, Z. W. Chen, and B. J. Li, “Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference,” Opt. Express 13(3), 1033–1038 (2005).
[CrossRef] [PubMed]

Cheng, B. Y.

X. Y. Hu, Y. H. Liu, J. Tian, B. Y. Cheng, and D. Z. Zhang, “Ultrafast all-optical switching in two-dimensional organic photonic crystal,” Appl. Phys. Lett. 86(12), 121102 (2005).
[CrossRef]

Y. H. Liu, X. Y. Hu, D. X. Zhang, B. Y. Cheng, D. Z. Zhang, and Q. B. Meng, “Subpicosecond optical switching in polystyrene opal,” Appl. Phys. Lett. 86(15), 151102 (2005).
[CrossRef]

Cirac, J. I.

J. I. Cirac and P. Zoller, “A scalable quantum computer with ions in an array of microtraps,” Nature 404(6778), 579–581 (2000).
[CrossRef] [PubMed]

Cojocaru, C.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880–1882 (2004).
[CrossRef]

Combrie, S.

A. de Rossi, M. Lauritano, S. Combrie, Q. V. Tran, and C. Husko, “Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity,” Phys. Rev. A 79(4), 043818 (2009).
[CrossRef]

Combrié, S.

A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17(2), 552–557 (2009).
[CrossRef] [PubMed]

Dalacu, D.

M. W. McCutcheon, G. W. Rieger, J. F. Young, D. Dalacu, P. J. Poole, and R. L. Williams, “All-optical conditional logic with a nonlinear photonic crystal nanocavity,” Appl. Phys. Lett. 95(22), 221102 (2009).
[CrossRef]

Datta, S.

S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Photonic band gaps in periodic dielectric structures: The scalar-wave approximation,” Phys. Rev. B Condens. Matter 46(17), 10650–10656 (1992).
[CrossRef] [PubMed]

De Leonardis, F.

V. M. N. Passaro and F. De Leonardis, “All-optical AND gate based on Raman effect in silicon-on-insulator waveguide,” Opt. Quantum Electron. 38(9-11), 877–888 (2007).
[CrossRef]

de Rossi, A.

A. de Rossi, M. Lauritano, S. Combrie, Q. V. Tran, and C. Husko, “Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity,” Phys. Rev. A 79(4), 043818 (2009).
[CrossRef]

A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17(2), 552–557 (2009).
[CrossRef] [PubMed]

Delaye, P.

A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17(2), 552–557 (2009).
[CrossRef] [PubMed]

Ding, C. Y.

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Du, J. F.

Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett. 94(3), 030501 (2005).
[CrossRef] [PubMed]

Dubreuil, N.

A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17(2), 552–557 (2009).
[CrossRef] [PubMed]

Dumon, P.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
[CrossRef]

Dzedolik, I. V.

I. V. Dzedolik, S. N. Lapayeva, and A. F. Rubass, “All-optical logic gates based on nonlinear dielectric films,” Ukr. J. Phys. Opt. 9(3), 187–196 (2008).
[CrossRef]

Frey, R.

A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17(2), 552–557 (2009).
[CrossRef] [PubMed]

Fujisawa, T.

T. Fujisawa and M. Koshiba, “All-optical logic gates based on nonlinear slot-waveguide couplers,” J. Opt. Soc. Am. B 23(4), 684–691 (2006).
[CrossRef]

Gong, Q. H.

X. Y. Hu, P. Jiang, C. Xin, H. Yang, and Q. H. Gong, “Nano-Ag:polymeric composite material for ultrafast photonic crystal all-optical switching,” Appl. Phys. Lett. 94(3), 031103 (2009).
[CrossRef]

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Goodson, T.

Y. Wang, X. B. Xie, and T. Goodson, “Enhanced third-order nonlinear optical properties in dendrimer-metal nanocomposites,” Nano Lett. 5(12), 2379–2384 (2005).
[CrossRef] [PubMed]

Granpayeh, N.

P. Andalib and N. Granpayeh, “All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators,” J. Opt. Soc. Am. B 26(1), 10–16 (2009).
[CrossRef]

P. Andalib and N. Granpayeh, “All-optical ultra-compact photonic crystal NOR gate based on nonlinear ring resonators,” J. Opt. A, Pure Appl. Opt. 11(8), 085203 (2009).
[CrossRef]

Guney, D. O.

D. O. Guney and D. A. Meyer, “Creation of entanglement and implementation of quantum logic gate operations using a three-dimensional photonic crystal single-mode cavity,” J. Opt. Soc. Am. B 24(2), 283–294 (2007).
[CrossRef]

Gusyatnikov, V. N.

I. S. Nefedov, V. N. Gusyatnikov, P. K. Kashkarov, and A. M. Zheltikov, “Low-threshold photonic band-gap optical logic gates,” Laser Phys. 10(2), 640–643 (2000).

Han, S. K.

J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “10 Gbit/s all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures,” Electron. Lett. 42(5), 303–304 (2006).
[CrossRef]

Ho, K. M.

S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Photonic band gaps in periodic dielectric structures: The scalar-wave approximation,” Phys. Rev. B Condens. Matter 46(17), 10650–10656 (1992).
[CrossRef] [PubMed]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Hu, X. Y.

X. Y. Hu, P. Jiang, C. Xin, H. Yang, and Q. H. Gong, “Nano-Ag:polymeric composite material for ultrafast photonic crystal all-optical switching,” Appl. Phys. Lett. 94(3), 031103 (2009).
[CrossRef]

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

X. Y. Hu, Y. H. Liu, J. Tian, B. Y. Cheng, and D. Z. Zhang, “Ultrafast all-optical switching in two-dimensional organic photonic crystal,” Appl. Phys. Lett. 86(12), 121102 (2005).
[CrossRef]

Y. H. Liu, X. Y. Hu, D. X. Zhang, B. Y. Cheng, D. Z. Zhang, and Q. B. Meng, “Subpicosecond optical switching in polystyrene opal,” Appl. Phys. Lett. 86(15), 151102 (2005).
[CrossRef]

Husko, C.

A. de Rossi, M. Lauritano, S. Combrie, Q. V. Tran, and C. Husko, “Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity,” Phys. Rev. A 79(4), 043818 (2009).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Jiang, J. Z.

J. B. Bai, J. Q. Wang, J. Z. Jiang, X. Y. Chen, H. Li, Y. S. Qiu, and Z. X. Qiang, “Photonic NOT and NOR gates based on a single compact photonic crystal ring resonator,” Appl. Opt. 48(36), 6923–6927 (2009).
[CrossRef] [PubMed]

Jiang, P.

X. Y. Hu, P. Jiang, C. Xin, H. Yang, and Q. H. Gong, “Nano-Ag:polymeric composite material for ultrafast photonic crystal all-optical switching,” Appl. Phys. Lett. 94(3), 031103 (2009).
[CrossRef]

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a Photonic Band-Gap in 2 Dimensions,” Appl. Phys. Lett. 61(4), 495–497 (1992).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Kang, J. M.

J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “10 Gbit/s all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures,” Electron. Lett. 42(5), 303–304 (2006).
[CrossRef]

Kashkarov, P. K.

I. S. Nefedov, V. N. Gusyatnikov, P. K. Kashkarov, and A. M. Zheltikov, “Low-threshold photonic band-gap optical logic gates,” Laser Phys. 10(2), 640–643 (2000).

Kim, J. Y.

J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “10 Gbit/s all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures,” Electron. Lett. 42(5), 303–304 (2006).
[CrossRef]

Kim, T. Y.

J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “10 Gbit/s all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures,” Electron. Lett. 42(5), 303–304 (2006).
[CrossRef]

Kira, G.

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005).
[CrossRef] [PubMed]

Koshiba, M.

T. Fujisawa and M. Koshiba, “All-optical logic gates based on nonlinear slot-waveguide couplers,” J. Opt. Soc. Am. B 23(4), 684–691 (2006).
[CrossRef]

Kuramochi, E.

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005).
[CrossRef] [PubMed]

Lapayeva, S. N.

I. V. Dzedolik, S. N. Lapayeva, and A. F. Rubass, “All-optical logic gates based on nonlinear dielectric films,” Ukr. J. Phys. Opt. 9(3), 187–196 (2008).
[CrossRef]

Lauritano, M.

A. de Rossi, M. Lauritano, S. Combrie, Q. V. Tran, and C. Husko, “Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity,” Phys. Rev. A 79(4), 043818 (2009).
[CrossRef]

Letartre, X.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880–1882 (2004).
[CrossRef]

Levenson, A.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880–1882 (2004).
[CrossRef]

Li, B. J.

Y. L. Zhang, Y. Zhang, and B. J. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express 15(15), 9287–9292 (2007).
[CrossRef] [PubMed]

Z. J. Li, Z. W. Chen, and B. J. Li, “Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference,” Opt. Express 13(3), 1033–1038 (2005).
[CrossRef] [PubMed]

Li, G. F.

Z. H. Li and G. F. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(12), 1341–1343 (2006).
[CrossRef]

Li, H.

J. B. Bai, J. Q. Wang, J. Z. Jiang, X. Y. Chen, H. Li, Y. S. Qiu, and Z. X. Qiang, “Photonic NOT and NOR gates based on a single compact photonic crystal ring resonator,” Appl. Opt. 48(36), 6923–6927 (2009).
[CrossRef] [PubMed]

Li, Z. H.

Z. H. Li and G. F. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(12), 1341–1343 (2006).
[CrossRef]

Li, Z. J.

Z. J. Li, Z. W. Chen, and B. J. Li, “Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference,” Opt. Express 13(3), 1033–1038 (2005).
[CrossRef] [PubMed]

Li, Z. Y.

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95(13), 131116 (2009).
[CrossRef]

Y. Liu, F. Qin, F. Zhou, and Z. Y. Li, “Ultrafast and low-power photonic crystal all-optical switching with resonant cavities,” J. Appl. Phys. 106(8), 083102 (2009).
[CrossRef]

Liang, T. K.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
[CrossRef]

Lin, Y. F.

L. A. Wang, S. H. Chang, and Y. F. Lin, “Novel implementation method to realize all-optical logic gates,” Opt. Eng. 37(3), 1011–1018 (1998).
[CrossRef]

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu, F. Qin, F. Zhou, and Z. Y. Li, “Ultrafast and low-power photonic crystal all-optical switching with resonant cavities,” J. Appl. Phys. 106(8), 083102 (2009).
[CrossRef]

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95(13), 131116 (2009).
[CrossRef]

Liu, Y. H.

Y. H. Liu, X. Y. Hu, D. X. Zhang, B. Y. Cheng, D. Z. Zhang, and Q. B. Meng, “Subpicosecond optical switching in polystyrene opal,” Appl. Phys. Lett. 86(15), 151102 (2005).
[CrossRef]

X. Y. Hu, Y. H. Liu, J. Tian, B. Y. Cheng, and D. Z. Zhang, “Ultrafast all-optical switching in two-dimensional organic photonic crystal,” Appl. Phys. Lett. 86(12), 121102 (2005).
[CrossRef]

McCutcheon, M. W.

M. W. McCutcheon, G. W. Rieger, J. F. Young, D. Dalacu, P. J. Poole, and R. L. Williams, “All-optical conditional logic with a nonlinear photonic crystal nanocavity,” Appl. Phys. Lett. 95(22), 221102 (2009).
[CrossRef]

Meade, R. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a Photonic Band-Gap in 2 Dimensions,” Appl. Phys. Lett. 61(4), 495–497 (1992).
[CrossRef]

Meng, Q. B.

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95(13), 131116 (2009).
[CrossRef]

Y. H. Liu, X. Y. Hu, D. X. Zhang, B. Y. Cheng, D. Z. Zhang, and Q. B. Meng, “Subpicosecond optical switching in polystyrene opal,” Appl. Phys. Lett. 86(15), 151102 (2005).
[CrossRef]

Meyer, D. A.

D. O. Guney and D. A. Meyer, “Creation of entanglement and implementation of quantum logic gate operations using a three-dimensional photonic crystal single-mode cavity,” J. Opt. Soc. Am. B 24(2), 283–294 (2007).
[CrossRef]

Mikhnevich, S. Y.

D. V. Novitsky and S. Y. Mikhnevich, “Logic Gate Based on a One-Dimensional Photonic Crystal Containing Quantum Dots,” J. Appl. Spectrosc. 77(2), 232–237 (2010).
[CrossRef]

Mitsugi, S.

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005).
[CrossRef] [PubMed]

Miyazaki, T.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
[CrossRef]

Monnier, P.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880–1882 (2004).
[CrossRef]

Nefedov, I. S.

I. S. Nefedov, V. N. Gusyatnikov, P. K. Kashkarov, and A. M. Zheltikov, “Low-threshold photonic band-gap optical logic gates,” Laser Phys. 10(2), 640–643 (2000).

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Notomi, M.

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005).
[CrossRef] [PubMed]

Novitsky, D. V.

D. V. Novitsky and S. Y. Mikhnevich, “Logic Gate Based on a One-Dimensional Photonic Crystal Containing Quantum Dots,” J. Appl. Spectrosc. 77(2), 232–237 (2010).
[CrossRef]

D. V. Novitsky, “Effect of frequency detuning on pulse propagation in one-dimensional photonic crystal with a dense resonant medium: application to optical logic,” J. Opt. Soc. Am. B 26(10), 1918–1923 (2009).
[CrossRef]

Nunes, L. R.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Pan, J. W.

Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett. 94(3), 030501 (2005).
[CrossRef] [PubMed]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Passaro, V. M. N.

V. M. N. Passaro and F. De Leonardis, “All-optical AND gate based on Raman effect in silicon-on-insulator waveguide,” Opt. Quantum Electron. 38(9-11), 877–888 (2007).
[CrossRef]

Poole, P. J.

M. W. McCutcheon, G. W. Rieger, J. F. Young, D. Dalacu, P. J. Poole, and R. L. Williams, “All-optical conditional logic with a nonlinear photonic crystal nanocavity,” Appl. Phys. Lett. 95(22), 221102 (2009).
[CrossRef]

Qiang, Z. X.

J. B. Bai, J. Q. Wang, J. Z. Jiang, X. Y. Chen, H. Li, Y. S. Qiu, and Z. X. Qiang, “Photonic NOT and NOR gates based on a single compact photonic crystal ring resonator,” Appl. Opt. 48(36), 6923–6927 (2009).
[CrossRef] [PubMed]

Qin, F.

Y. Liu, F. Qin, F. Zhou, and Z. Y. Li, “Ultrafast and low-power photonic crystal all-optical switching with resonant cavities,” J. Appl. Phys. 106(8), 083102 (2009).
[CrossRef]

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95(13), 131116 (2009).
[CrossRef]

Qiu, Y. S.

J. B. Bai, J. Q. Wang, J. Z. Jiang, X. Y. Chen, H. Li, Y. S. Qiu, and Z. X. Qiang, “Photonic NOT and NOR gates based on a single compact photonic crystal ring resonator,” Appl. Opt. 48(36), 6923–6927 (2009).
[CrossRef] [PubMed]

Raineri, F.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880–1882 (2004).
[CrossRef]

Raj, R.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880–1882 (2004).
[CrossRef]

Rappe, A. M.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a Photonic Band-Gap in 2 Dimensions,” Appl. Phys. Lett. 61(4), 495–497 (1992).
[CrossRef]

Rieger, G. W.

M. W. McCutcheon, G. W. Rieger, J. F. Young, D. Dalacu, P. J. Poole, and R. L. Williams, “All-optical conditional logic with a nonlinear photonic crystal nanocavity,” Appl. Phys. Lett. 95(22), 221102 (2009).
[CrossRef]

Roosen, G.

A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17(2), 552–557 (2009).
[CrossRef] [PubMed]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Rubass, A. F.

I. V. Dzedolik, S. N. Lapayeva, and A. F. Rubass, “All-optical logic gates based on nonlinear dielectric films,” Ukr. J. Phys. Opt. 9(3), 187–196 (2008).
[CrossRef]

Ryasnyanskiy, A.

A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17(2), 552–557 (2009).
[CrossRef] [PubMed]

Seassal, C.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880–1882 (2004).
[CrossRef]

Shinya, A.

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005).
[CrossRef] [PubMed]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Soukoulis, C. M.

S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Photonic band gaps in periodic dielectric structures: The scalar-wave approximation,” Phys. Rev. B Condens. Matter 46(17), 10650–10656 (1992).
[CrossRef] [PubMed]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Tanabe, T.

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005).
[CrossRef] [PubMed]

Tian, J.

X. Y. Hu, Y. H. Liu, J. Tian, B. Y. Cheng, and D. Z. Zhang, “Ultrafast all-optical switching in two-dimensional organic photonic crystal,” Appl. Phys. Lett. 86(12), 121102 (2005).
[CrossRef]

Tran, Q. V.

A. de Rossi, M. Lauritano, S. Combrie, Q. V. Tran, and C. Husko, “Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity,” Phys. Rev. A 79(4), 043818 (2009).
[CrossRef]

Tsang, H. K.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
[CrossRef]

Tsuchiya, M.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
[CrossRef]

Van Thourhout, D.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
[CrossRef]

Viktorovitch, P.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880–1882 (2004).
[CrossRef]

Vy Tran, Q.

A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17(2), 552–557 (2009).
[CrossRef] [PubMed]

Wang, J. Q.

J. B. Bai, J. Q. Wang, J. Z. Jiang, X. Y. Chen, H. Li, Y. S. Qiu, and Z. X. Qiang, “Photonic NOT and NOR gates based on a single compact photonic crystal ring resonator,” Appl. Opt. 48(36), 6923–6927 (2009).
[CrossRef] [PubMed]

Wang, L. A.

L. A. Wang, S. H. Chang, and Y. F. Lin, “Novel implementation method to realize all-optical logic gates,” Opt. Eng. 37(3), 1011–1018 (1998).
[CrossRef]

Wang, Y.

Y. Wang, X. B. Xie, and T. Goodson, “Enhanced third-order nonlinear optical properties in dendrimer-metal nanocomposites,” Nano Lett. 5(12), 2379–2384 (2005).
[CrossRef] [PubMed]

Wei, Z. Y.

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95(13), 131116 (2009).
[CrossRef]

Williams, R. L.

M. W. McCutcheon, G. W. Rieger, J. F. Young, D. Dalacu, P. J. Poole, and R. L. Williams, “All-optical conditional logic with a nonlinear photonic crystal nanocavity,” Appl. Phys. Lett. 95(22), 221102 (2009).
[CrossRef]

Xie, X. B.

Y. Wang, X. B. Xie, and T. Goodson, “Enhanced third-order nonlinear optical properties in dendrimer-metal nanocomposites,” Nano Lett. 5(12), 2379–2384 (2005).
[CrossRef] [PubMed]

Xin, C.

X. Y. Hu, P. Jiang, C. Xin, H. Yang, and Q. H. Gong, “Nano-Ag:polymeric composite material for ultrafast photonic crystal all-optical switching,” Appl. Phys. Lett. 94(3), 031103 (2009).
[CrossRef]

Yang, H.

X. Y. Hu, P. Jiang, C. Xin, H. Yang, and Q. H. Gong, “Nano-Ag:polymeric composite material for ultrafast photonic crystal all-optical switching,” Appl. Phys. Lett. 94(3), 031103 (2009).
[CrossRef]

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Yang, T.

Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett. 94(3), 030501 (2005).
[CrossRef] [PubMed]

Young, J. F.

M. W. McCutcheon, G. W. Rieger, J. F. Young, D. Dalacu, P. J. Poole, and R. L. Williams, “All-optical conditional logic with a nonlinear photonic crystal nanocavity,” Appl. Phys. Lett. 95(22), 221102 (2009).
[CrossRef]

Zaghloul, A. R. M.

Y. A. Zaghloul and A. R. M. Zaghloul, “Complete all-optical processing polarization-based binary logic gates and optical processors,” Opt. Express 14(21), 9879–9895 (2006).
[CrossRef] [PubMed]

Zaghloul, Y. A.

Y. A. Zaghloul and A. R. M. Zaghloul, “Complete all-optical processing polarization-based binary logic gates and optical processors,” Opt. Express 14(21), 9879–9895 (2006).
[CrossRef] [PubMed]

Zhang, A. N.

Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett. 94(3), 030501 (2005).
[CrossRef] [PubMed]

Zhang, D. X.

Y. H. Liu, X. Y. Hu, D. X. Zhang, B. Y. Cheng, D. Z. Zhang, and Q. B. Meng, “Subpicosecond optical switching in polystyrene opal,” Appl. Phys. Lett. 86(15), 151102 (2005).
[CrossRef]

Zhang, D. Z.

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95(13), 131116 (2009).
[CrossRef]

Y. H. Liu, X. Y. Hu, D. X. Zhang, B. Y. Cheng, D. Z. Zhang, and Q. B. Meng, “Subpicosecond optical switching in polystyrene opal,” Appl. Phys. Lett. 86(15), 151102 (2005).
[CrossRef]

X. Y. Hu, Y. H. Liu, J. Tian, B. Y. Cheng, and D. Z. Zhang, “Ultrafast all-optical switching in two-dimensional organic photonic crystal,” Appl. Phys. Lett. 86(12), 121102 (2005).
[CrossRef]

Zhang, H.

Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett. 94(3), 030501 (2005).
[CrossRef] [PubMed]

Zhang, Y.

Y. L. Zhang, Y. Zhang, and B. J. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express 15(15), 9287–9292 (2007).
[CrossRef] [PubMed]

Zhang, Y. L.

Y. L. Zhang, Y. Zhang, and B. J. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express 15(15), 9287–9292 (2007).
[CrossRef] [PubMed]

Zhao, Z.

Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett. 94(3), 030501 (2005).
[CrossRef] [PubMed]

Zheltikov, A. M.

I. S. Nefedov, V. N. Gusyatnikov, P. K. Kashkarov, and A. M. Zheltikov, “Low-threshold photonic band-gap optical logic gates,” Laser Phys. 10(2), 640–643 (2000).

Zhou, F.

Y. Liu, F. Qin, F. Zhou, and Z. Y. Li, “Ultrafast and low-power photonic crystal all-optical switching with resonant cavities,” J. Appl. Phys. 106(8), 083102 (2009).
[CrossRef]

Zoller, P.

J. I. Cirac and P. Zoller, “A scalable quantum computer with ions in an array of microtraps,” Nature 404(6778), 579–581 (2000).
[CrossRef] [PubMed]

Appl. Opt. (1)

J. B. Bai, J. Q. Wang, J. Z. Jiang, X. Y. Chen, H. Li, Y. S. Qiu, and Z. X. Qiang, “Photonic NOT and NOR gates based on a single compact photonic crystal ring resonator,” Appl. Opt. 48(36), 6923–6927 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (7)

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880–1882 (2004).
[CrossRef]

M. W. McCutcheon, G. W. Rieger, J. F. Young, D. Dalacu, P. J. Poole, and R. L. Williams, “All-optical conditional logic with a nonlinear photonic crystal nanocavity,” Appl. Phys. Lett. 95(22), 221102 (2009).
[CrossRef]

X. Y. Hu, P. Jiang, C. Xin, H. Yang, and Q. H. Gong, “Nano-Ag:polymeric composite material for ultrafast photonic crystal all-optical switching,” Appl. Phys. Lett. 94(3), 031103 (2009).
[CrossRef]

X. Y. Hu, Y. H. Liu, J. Tian, B. Y. Cheng, and D. Z. Zhang, “Ultrafast all-optical switching in two-dimensional organic photonic crystal,” Appl. Phys. Lett. 86(12), 121102 (2005).
[CrossRef]

Y. H. Liu, X. Y. Hu, D. X. Zhang, B. Y. Cheng, D. Z. Zhang, and Q. B. Meng, “Subpicosecond optical switching in polystyrene opal,” Appl. Phys. Lett. 86(15), 151102 (2005).
[CrossRef]

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95(13), 131116 (2009).
[CrossRef]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a Photonic Band-Gap in 2 Dimensions,” Appl. Phys. Lett. 61(4), 495–497 (1992).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Electron. Lett. (1)

J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “10 Gbit/s all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures,” Electron. Lett. 42(5), 303–304 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. H. Li and G. F. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(12), 1341–1343 (2006).
[CrossRef]

J. Appl. Phys. (1)

Y. Liu, F. Qin, F. Zhou, and Z. Y. Li, “Ultrafast and low-power photonic crystal all-optical switching with resonant cavities,” J. Appl. Phys. 106(8), 083102 (2009).
[CrossRef]

J. Appl. Spectrosc. (1)

D. V. Novitsky and S. Y. Mikhnevich, “Logic Gate Based on a One-Dimensional Photonic Crystal Containing Quantum Dots,” J. Appl. Spectrosc. 77(2), 232–237 (2010).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

P. Andalib and N. Granpayeh, “All-optical ultra-compact photonic crystal NOR gate based on nonlinear ring resonators,” J. Opt. A, Pure Appl. Opt. 11(8), 085203 (2009).
[CrossRef]

J. Opt. Soc. Am. B (4)

P. Andalib and N. Granpayeh, “All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators,” J. Opt. Soc. Am. B 26(1), 10–16 (2009).
[CrossRef]

T. Fujisawa and M. Koshiba, “All-optical logic gates based on nonlinear slot-waveguide couplers,” J. Opt. Soc. Am. B 23(4), 684–691 (2006).
[CrossRef]

D. O. Guney and D. A. Meyer, “Creation of entanglement and implementation of quantum logic gate operations using a three-dimensional photonic crystal single-mode cavity,” J. Opt. Soc. Am. B 24(2), 283–294 (2007).
[CrossRef]

D. V. Novitsky, “Effect of frequency detuning on pulse propagation in one-dimensional photonic crystal with a dense resonant medium: application to optical logic,” J. Opt. Soc. Am. B 26(10), 1918–1923 (2009).
[CrossRef]

Laser Phys. (1)

I. S. Nefedov, V. N. Gusyatnikov, P. K. Kashkarov, and A. M. Zheltikov, “Low-threshold photonic band-gap optical logic gates,” Laser Phys. 10(2), 640–643 (2000).

Nano Lett. (1)

Y. Wang, X. B. Xie, and T. Goodson, “Enhanced third-order nonlinear optical properties in dendrimer-metal nanocomposites,” Nano Lett. 5(12), 2379–2384 (2005).
[CrossRef] [PubMed]

Nat. Photonics (1)

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Nature (3)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

J. I. Cirac and P. Zoller, “A scalable quantum computer with ions in an array of microtraps,” Nature 404(6778), 579–581 (2000).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
[CrossRef]

Opt. Eng. (1)

L. A. Wang, S. H. Chang, and Y. F. Lin, “Novel implementation method to realize all-optical logic gates,” Opt. Eng. 37(3), 1011–1018 (1998).
[CrossRef]

Opt. Express (5)

Z. J. Li, Z. W. Chen, and B. J. Li, “Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference,” Opt. Express 13(3), 1033–1038 (2005).
[CrossRef] [PubMed]

Y. A. Zaghloul and A. R. M. Zaghloul, “Complete all-optical processing polarization-based binary logic gates and optical processors,” Opt. Express 14(21), 9879–9895 (2006).
[CrossRef] [PubMed]

Y. L. Zhang, Y. Zhang, and B. J. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express 15(15), 9287–9292 (2007).
[CrossRef] [PubMed]

A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17(2), 552–557 (2009).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005).
[CrossRef] [PubMed]

Opt. Quantum Electron. (1)

V. M. N. Passaro and F. De Leonardis, “All-optical AND gate based on Raman effect in silicon-on-insulator waveguide,” Opt. Quantum Electron. 38(9-11), 877–888 (2007).
[CrossRef]

Phys. Rev. A (1)

A. de Rossi, M. Lauritano, S. Combrie, Q. V. Tran, and C. Husko, “Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity,” Phys. Rev. A 79(4), 043818 (2009).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Photonic band gaps in periodic dielectric structures: The scalar-wave approximation,” Phys. Rev. B Condens. Matter 46(17), 10650–10656 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett. 94(3), 030501 (2005).
[CrossRef] [PubMed]

Ukr. J. Phys. Opt. (1)

I. V. Dzedolik, S. N. Lapayeva, and A. F. Rubass, “All-optical logic gates based on nonlinear dielectric films,” Ukr. J. Phys. Opt. 9(3), 187–196 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) The PhC “line defect” cavity on a 2D PhC slab; (b) The corresponding band gap along Γ X direction.

Fig. 2
Fig. 2

(a) The schematic structure of optimized PhC cavity. (b) The electric field distribution at the resonant frequency of the optimized PhC cavity. (c)The calculated transmission spectrum. (d) The optimized cavity mode. The normalized resonant frequency is 0.38008, and the quality factor is 1558.

Fig. 3
Fig. 3

The shift of defect mode under pump light. The black line corresponds to the linear case, and the red line represents the nonlinear case with the pump power of 45 MW/cm2. The transmission is normalized to its peak value.

Fig. 4
Fig. 4

Schematic structure of 2D PhC slab for all-optical logic gates.

Tables (6)

Tables Icon

Table 1 The influence on the frequency and quality factor with different lengths along the y-axis of cavities.

Tables Icon

Table 2 The principles of all-optical AND, NAND, OR, and NOR gates

Tables Icon

Table 3 Truth table of the AND gate

Tables Icon

Table 4 Truth table of NAND gate

Tables Icon

Table 5 Truth table of the OR gate

Tables Icon

Table 6 Truth table of the NOR gate

Metrics