Abstract

A new type of index-guided photonic crystal fiber is proposed to enhance chemical sensing capability by introducing a hollow high index ring defect that consists of the central air hole surrounded by a high index GeO2 doped SiO2 glass ring. Optical properties of the fundamental guided mode were numerically analyzed using the full-vector finite element method varying the design parameters of both the defects in the center and the hexagonal air-silica lattice in the cladding. Enhanced evanescent wave interaction in the holey region and lower confinement loss by an order of magnitude were achieved simultaneously, which shows a high potential in hyper sensitive fiber-optic chemical sensing applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [CrossRef] [PubMed]
  2. P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  3. G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B Chem. 38(1-3), 42–47 (1997).
    [CrossRef]
  4. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-11-1273 .
    [CrossRef] [PubMed]
  5. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 80(12), 4269–4283 (2008).
    [CrossRef] [PubMed]
  6. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
    [CrossRef]
  7. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-17-4080 .
    [CrossRef] [PubMed]
  8. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-18-3509 .
    [CrossRef] [PubMed]
  9. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
    [CrossRef]
  10. Z. Zhi-guo, Z. Fang-di, Z. Min, and Y. Pei-da, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol. 40(1), 167–174 (2008).
    [CrossRef]
  11. X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” Photon. Technol. Lett. 20(5), 336–338 (2008).
    [CrossRef]
  12. K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23(2), 524–532 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-23-2-524 .
    [CrossRef]
  13. S. Kim, Y. Jung, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, “Defect and lattice structure for air-silica index-guiding holey fibers,” Opt. Lett. 31(2), 164–166 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-2-164 .
    [CrossRef] [PubMed]
  14. S. Kim, U. Paek, and K. Oh, “New defect design in index guiding holey fiber for uniform birefringence and negative flat dispersion over a wide spectral range,” Opt. Express 13(16), 6039–6050 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6039 .
    [CrossRef] [PubMed]
  15. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” J. Quantum Electron. 38(7), 927–933 (2002).
    [CrossRef]
  16. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
    [CrossRef]
  17. P. Viale, S. Fevrier, F. Gerome, and H. Vilard, “Confinement loss computations in photonic crystal fibres using a novel perfectly matched layer design,” in Proceedings of the COMSOL Multiphysics User’s Conference, Paris, 15 Nov. 2005, http://www.comsol.com/papers/1083/
  18. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965), http://www.opticsinfobase.org/abstract.cfm?URI=josa-55-10-1205 .
    [CrossRef]
  19. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984), http://www.opticsinfobase.org/abstract.cfm?URI=ao-23-24-4486 .
    [CrossRef] [PubMed]
  20. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26(21), 1660–1662 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=ol-26-21-1660 .
    [CrossRef]
  21. K. Saitoh and M. Koshiba, “Confinement losses in air-guiding photonic bandgap fibers,” Photon. Technol. Lett. 15(2), 236–238 (2003).
    [CrossRef]
  22. D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, “Leakage properties of photonic crystal fibers,” Opt. Express 10(23), 1314–1319 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-23-1314 .
    [PubMed]
  23. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Perturbation Analysis of Dispersion Properties in Photonic Crystal Fibers Through the Finite Element Method,” J. Lightwave Technol. 20(8), 1433–1442 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-20-8-1433 .
    [CrossRef]
  24. K. T. V. Grattan, and B. T. Meggitt, Optical Fiber Sensor Technology, Vol. 4 (Kluwer Academic, Dordrecht, The Netherlands, 1999), Chap. 2.
  25. G. Stewart, J. Norris, D. F. Clark, and B. Culshaw, “Evanescent-wave chemical sensors—a theoretical evaluation,” Int. J. Optoelectron. 6, 227–238 (1991).
  26. S. L. Gilbert, and W. C. Swam, “Standard Reference Material: Acetylene 12C2H2 Absorption Reference for 1510 nm to 1540 nm Wavelength Calibration—SRM 2517a,” NIST Spec. Publ. 260–133 (National Institute of Standards and Technology, Gaithersburg, Md., 2001)
  27. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
    [CrossRef]
  28. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14(26), 13056–13066 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13056 .
    [CrossRef] [PubMed]
  29. Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun. 282(23), 4527–4531 (2009).
    [CrossRef]

2009 (2)

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
[CrossRef]

Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun. 282(23), 4527–4531 (2009).
[CrossRef]

2008 (3)

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 80(12), 4269–4283 (2008).
[CrossRef] [PubMed]

Z. Zhi-guo, Z. Fang-di, Z. Min, and Y. Pei-da, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol. 40(1), 167–174 (2008).
[CrossRef]

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” Photon. Technol. Lett. 20(5), 336–338 (2008).
[CrossRef]

2006 (2)

2005 (3)

2004 (2)

2003 (4)

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-18-3509 .
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, “Confinement losses in air-guiding photonic bandgap fibers,” Photon. Technol. Lett. 15(2), 236–238 (2003).
[CrossRef]

2002 (3)

2001 (2)

T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26(21), 1660–1662 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=ol-26-21-1660 .
[CrossRef]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

2000 (1)

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[CrossRef]

1997 (1)

G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B Chem. 38(1-3), 42–47 (1997).
[CrossRef]

1991 (1)

G. Stewart, J. Norris, D. F. Clark, and B. Culshaw, “Evanescent-wave chemical sensors—a theoretical evaluation,” Int. J. Optoelectron. 6, 227–238 (1991).

1984 (1)

1965 (1)

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Barbe, A.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
[CrossRef]

Barretto, E. C. S.

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Benner, D. C.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
[CrossRef]

Bernath, P. F.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
[CrossRef]

Birk, M.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
[CrossRef]

Botten, L. C.

Boudon, V.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
[CrossRef]

Brechet, F.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[CrossRef]

Brito Cruz, C. H.

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Brown, L. R.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
[CrossRef]

Campargue, A.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
[CrossRef]

Champion, J.-P.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
[CrossRef]

Chesini, G.

Choi, S.

Clark, D. F.

G. Stewart, J. Norris, D. F. Clark, and B. Culshaw, “Evanescent-wave chemical sensors—a theoretical evaluation,” Int. J. Optoelectron. 6, 227–238 (1991).

Cordeiro, C. M. B.

Cucinotta, A.

Culshaw, B.

G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B Chem. 38(1-3), 42–47 (1997).
[CrossRef]

G. Stewart, J. Norris, D. F. Clark, and B. Culshaw, “Evanescent-wave chemical sensors—a theoretical evaluation,” Int. J. Optoelectron. 6, 227–238 (1991).

de Sterke, C. M.

Duan, K.

Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun. 282(23), 4527–4531 (2009).
[CrossRef]

Fang-di, Z.

Z. Zhi-guo, Z. Fang-di, Z. Min, and Y. Pei-da, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol. 40(1), 167–174 (2008).
[CrossRef]

Ferrarini, D.

Fini, J. M.

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
[CrossRef]

Fleming, J. W.

Franco, M. A. R.

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Gordon, I. E.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
[CrossRef]

Hansen, T.

Ho, H. L.

Hoo, Y. L.

Jin, W.

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-18-3509 .
[CrossRef] [PubMed]

G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B Chem. 38(1-3), 42–47 (1997).
[CrossRef]

Jung, Y.

Kim, S.

Kirchhof, J.

Knight, J. C.

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Kobelke, J.

Koshiba, M.

K. Saitoh and M. Koshiba, “Confinement losses in air-guiding photonic bandgap fibers,” Photon. Technol. Lett. 15(2), 236–238 (2003).
[CrossRef]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

Kwok, Y. C.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” Photon. Technol. Lett. 20(5), 336–338 (2008).
[CrossRef]

Large, M. C. J.

Lee, J. W.

Liu, Z.

Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun. 282(23), 4527–4531 (2009).
[CrossRef]

Ludvigsen, H.

Lwin, R.

Malitson, I. H.

Mansuripur, M.

Marcou, J.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[CrossRef]

McPhedran, R. C.

Min, Z.

Z. Zhi-guo, Z. Fang-di, Z. Min, and Y. Pei-da, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol. 40(1), 167–174 (2008).
[CrossRef]

Monro, T. M.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Ngo, N. Q.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” Photon. Technol. Lett. 20(5), 336–338 (2008).
[CrossRef]

Norris, J.

G. Stewart, J. Norris, D. F. Clark, and B. Culshaw, “Evanescent-wave chemical sensors—a theoretical evaluation,” Int. J. Optoelectron. 6, 227–238 (1991).

Oh, K.

Paek, U.

Pagnoux, D.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[CrossRef]

Pei-da, Y.

Z. Zhi-guo, Z. Fang-di, Z. Min, and Y. Pei-da, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol. 40(1), 167–174 (2008).
[CrossRef]

Petersen, J.

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Ren, G. B.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” Photon. Technol. Lett. 20(5), 336–338 (2008).
[CrossRef]

Richardson, D. J.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Ritari, T.

Rothman, L. S.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
[CrossRef]

Roy, P.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[CrossRef]

Ruan, S. C.

Russell, P. St. J.

P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Saitoh, K.

K. Saitoh and M. Koshiba, “Confinement losses in air-guiding photonic bandgap fibers,” Photon. Technol. Lett. 15(2), 236–238 (2003).
[CrossRef]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

Schuster, K.

Selleri, S.

Shi, C.

Shum, P.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” Photon. Technol. Lett. 20(5), 336–338 (2008).
[CrossRef]

Simonsen, H.

Sørensen, T.

Steel, M. J.

Stewart, G.

G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B Chem. 38(1-3), 42–47 (1997).
[CrossRef]

G. Stewart, J. Norris, D. F. Clark, and B. Culshaw, “Evanescent-wave chemical sensors—a theoretical evaluation,” Int. J. Optoelectron. 6, 227–238 (1991).

Sun, Y.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” Photon. Technol. Lett. 20(5), 336–338 (2008).
[CrossRef]

Tuominen, J.

Vincetti, L.

Wang, D. N.

Wang, Y.

Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun. 282(23), 4527–4531 (2009).
[CrossRef]

White, T. P.

Wolfbeis, O. S.

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 80(12), 4269–4283 (2008).
[CrossRef] [PubMed]

Xu, Z.

Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun. 282(23), 4527–4531 (2009).
[CrossRef]

Yu, X.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” Photon. Technol. Lett. 20(5), 336–338 (2008).
[CrossRef]

Zhao, W.

Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun. 282(23), 4527–4531 (2009).
[CrossRef]

Zhi-guo, Z.

Z. Zhi-guo, Z. Fang-di, Z. Min, and Y. Pei-da, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol. 40(1), 167–174 (2008).
[CrossRef]

Zoboli, M.

Anal. Chem. (1)

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 80(12), 4269–4283 (2008).
[CrossRef] [PubMed]

Appl. Opt. (2)

Int. J. Optoelectron. (1)

G. Stewart, J. Norris, D. F. Clark, and B. Culshaw, “Evanescent-wave chemical sensors—a theoretical evaluation,” Int. J. Optoelectron. 6, 227–238 (1991).

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
[CrossRef]

J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

Meas. Sci. Technol. (2)

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
[CrossRef]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun. 282(23), 4527–4531 (2009).
[CrossRef]

Opt. Express (4)

Opt. Fiber Technol. (1)

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[CrossRef]

Opt. Laser Technol. (1)

Z. Zhi-guo, Z. Fang-di, Z. Min, and Y. Pei-da, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol. 40(1), 167–174 (2008).
[CrossRef]

Opt. Lett. (3)

Photon. Technol. Lett. (2)

K. Saitoh and M. Koshiba, “Confinement losses in air-guiding photonic bandgap fibers,” Photon. Technol. Lett. 15(2), 236–238 (2003).
[CrossRef]

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” Photon. Technol. Lett. 20(5), 336–338 (2008).
[CrossRef]

Science (1)

P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (1)

G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B Chem. 38(1-3), 42–47 (1997).
[CrossRef]

Other (3)

P. Viale, S. Fevrier, F. Gerome, and H. Vilard, “Confinement loss computations in photonic crystal fibres using a novel perfectly matched layer design,” in Proceedings of the COMSOL Multiphysics User’s Conference, Paris, 15 Nov. 2005, http://www.comsol.com/papers/1083/

K. T. V. Grattan, and B. T. Meggitt, Optical Fiber Sensor Technology, Vol. 4 (Kluwer Academic, Dordrecht, The Netherlands, 1999), Chap. 2.

S. L. Gilbert, and W. C. Swam, “Standard Reference Material: Acetylene 12C2H2 Absorption Reference for 1510 nm to 1540 nm Wavelength Calibration—SRM 2517a,” NIST Spec. Publ. 260–133 (National Institute of Standards and Technology, Gaithersburg, Md., 2001)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) prior PCF with a central air-hole defect with the diameter dc [9-11], (b) proposed PCF with a hollow high index ring defect, and (c) its enlarged view with structural parameters: central hole diameter dc , ring width wring, and the relative index difference of the ring Δring . PML is perfect matched layer used in numerical analysis. The cladding air holes are characterized by their diameter, d, and pitch, Λ. Here we assumed 5 layers of air holes.

Fig. 2
Fig. 2

Effective index (Re[neff ]) of the fundamental mode by (a) relative index difference (Δring ) and (b) doping width (wring ). Here we set Λ = 2.3μm, d = 1.4μm for the cladding, dc = 1.2μm for the central hole, and ns = 1.

Fig. 3
Fig. 3

Comparison of the modal intensity distribution (a)-(b), confinement loss (c) and relative sensitivity (d) between the proposed PCF and the prior PCF and with the same central hole diameter dc . We set the wavelength at λ = 1.5μm for modal distribution comparison, (a)-(d). The proposed PCF had Δring = 1.2% and wring = 0.6μm. Here we set Λ = 2.3μm, d = 1.4μm for the cladding, dc = 1.2μm for the central hole, and ns = 1.

Fig. 4
Fig. 4

Comparison of optical properties (a) confinement loss and (b) relative sensitivity of the proposed PCF (solid lines) with those of the prior PCF (dotted line). Here, we varied the relative index differences Δring of the proposed PCF with the fixed wring = 0.6μm and set the central hole size dc = 1.2μm along with Λ = 2.3μm, d = 1.4μm, and ns = 1.

Fig. 5
Fig. 5

Comparison of optical properties - (a) confinement loss and (b) relative sensitivity of the proposed PCF (solid lines) with those of the prior PCF (dotted line). Here, we varied the ring width wring of the proposed PCF and set the central hole size dc = 1.2μm along with Λ = 2.3μm, d = 1.4μm, ns = 1, and Δring = 1.2%.

Fig. 6
Fig. 6

Comparison of optical properties - (a) confinement loss and (b) relative sensitivity of the proposed PCF (solid lines) with those of the prior PCF (dotted line). Here, we further increased the central hole size to be the same as the cladding hole diameter, dc = d = 1.4μm (orange colored plot). We set Λ = 2.3μm, ns = 1, and wring = 0.6μm, Δring = 2.0%.

Fig. 7
Fig. 7

(a) The schematic diagram of splicing between conventional single mode fibers (SMF) and PCFs. The dark regions correspond to the GeO2 doped silica. The modal intensity distributions at the splice interface are shown in the inset. (b) Estimated splicing as a function of the collapsed hole diameter.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

× ( μ r 1 × E ) k 0 2 ( ε r j σ ω ε 0 ) E = 0.
confinement loss = 8.686 Im [ 2 π λ n e f f ] ,
A = log I 0 I T = r ε L C , r = n s Re [ n e f f ] f ,
f = s a m p l e Re ( E x H y * E y H x * ) d x d y / t o t a l Re ( E x H y * E y H x * ) d x d y ,

Metrics