Abstract

We demonstrated the operation of cw diode-pumped Yb:YAG laser in radial or azimuthal polarized (RP or AP) beams using a combination of birefringent uniaxial crystal (c-cut YVO4 or α-BBO) and lens as intra-cavity elements. RP and AP doughnut modes (M2 = 2-2.5, polarization extinction ratio 50-100:1) with output power up to 60mW were generated. Apart from doughnut modes, RP or AP ring-like off-axis oscillations and multi-ring beams with mixed RP and AP were also observed at the output of this laser scheme. Using intra-cavity short focus lenses with spherical aberrations AP or RP modes of higher orders was obtained. Mechanism of mode selection in the laser is discussed. The large variety of beams with axially symmetric polarizations from the output of the proposed laser scheme may find applications in different fields.

© 2011 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Use of phase corrector plates to increase the power of radially polarized oscillators

Yaakov Lumer, Inon Moshe, Steven Jackel, and Avi Meir
J. Opt. Soc. Am. B 27(7) 1337-1342 (2010)

Thermal lens shaping in Brewster gain media: A high-power, diode-pumped Nd:GdVO4 laser

N.W. Rimington, S.L. Schieffer, W. Andreas Schroeder, and Brian K. Brickeen
Opt. Express 12(7) 1426-1436 (2004)

Influences of spherical aberration on resonator’s stable zones and fundamental mode output power scaling of solid state laser oscillators

Zhigang Zhao, Sunqiang Pan, Zhen Xiang, Yantao Dong, Jianhong Ge, Chong Liu, and Jun Chen
Opt. Express 20(10) 10605-10616 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009).
    [Crossref]
  2. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
    [Crossref] [PubMed]
  3. Y. Q. Zhao, Q. Zhan, Y. L. Zhang, and Y. P. Li, “Creation of a three-dimensional optical chain for controllable particle delivery,” Opt. Lett. 30(8), 848–850 (2005).
    [Crossref] [PubMed]
  4. F. Peng, B. Yao, S. Yan, W. Zhao, and M. Lei, “Trapping of low-refractive-index particles with azimuthally polarized beam,” J. Opt. Soc. Am. B 26(12), 2242–2247 (2009).
    [Crossref]
  5. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
    [Crossref]
  6. A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33(15), 1817–1822 (2000).
    [Crossref]
  7. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
    [Crossref]
  8. Q. Zhan and J. R. Leger, “Microellipsometer with radial symmetry,” Appl. Opt. 41(22), 4630–4637 (2002).
    [Crossref] [PubMed]
  9. S. C. Tidwell, G. H. Kim, and W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32(27), 5222–5229 (1993).
    [Crossref] [PubMed]
  10. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21(23), 1948–1950 (1996).
    [Crossref] [PubMed]
  11. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” N. J. Phys. 9(3), 78–98 (2007).
    [Crossref]
  12. V. G. Niziev, R. S. Chang, and A. V. Nesterov, “Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer,” Appl. Opt. 45(33), 8393–8399 (2006).
    [Crossref] [PubMed]
  13. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
    [Crossref]
  14. T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and T. Graf, “Generation of radially polarized beams in Nd:YAG lasers with polarization selective mirrors,” Laser Phys. Lett. 1(5), 234–236 (2004).
    [Crossref]
  15. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32(22), 3272–3274 (2007).
    [Crossref] [PubMed]
  16. I. Moshe, S. Jackel, A. Meir, Y. Lumer, and E. Leibush, “2 kW, M2 < 10 radially polarized beams from aberration-compensated rod-based Nd:YAG lasers,” Opt. Lett. 32(1), 47–49 (2007).
    [Crossref]
  17. D. Pohl, “Operation of a ruby laser in purely transverse electric mode TE01,” Appl. Phys. Lett. 20(7), 266–267 (1972).
    [Crossref]
  18. J.-F. Bisson, J. Li, K. Ueda, and Yu. Senatsky, “Radially polarized ring and arc beams of a neodymium laser with an intra-cavity axicon,” Opt. Express 14(8), 3304–3311 (2006).
    [Crossref] [PubMed]
  19. K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31(14), 2151–2153 (2006).
    [Crossref] [PubMed]
  20. K. Yonezawa, Y. Kozawa, and S. Sato, “Compact Laser with Radial Polarization Using Birefringent Laser Medium,” Jpn. J. Appl. Phys. 46(No. 8A), 5160–5163 (2007).
    [Crossref]
  21. R. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, “Fiber laser generating switchable radially and azimuthally polarized beams with 140 mW output power at 1.6µm wavelength,” Appl. Phys. Lett. 95(19), 191111 (2009).
    [Crossref]
  22. J.-L. Li, K. Ueda, L.-X. Zhong, M. Musha, A. Shirakawa, and T. Sato, “Efficient excitations of radially and azimuthally polarized Nd3+:YAG ceramic microchip laser by use of subwavelength multilayer concentric gratings composed of Nb2O5/SiO2.,” Opt. Express 16(14), 10841–10848 (2008).
    [Crossref] [PubMed]
  23. W. Koechner, Solid-State Laser Engineering (Springer science + business media, Inc., sixth revised and updated edition, 2006), Chap. 5.
  24. N. Hodgson, and H. Weber, in Laser Resonators and Beam Propagation, (Springer science + business media, Inc., second edition, 2005).
  25. M. P. Thirugnanasambandam, Yu. Senatsky, and K. Ueda, “Generation of very-high order Laguerre-Gaussian modes in Yb:YAG ceramic laser,” Laser Phys. Lett. 7(9), 637–643 (2010).
    [Crossref]
  26. F. D. Vanderwerf, Applied Prismatic and Reflective Optics, (SPIE Press, 2010), Chap. 3.
  27. Yu. Senatsky, J.-F. Bisson, A. Shelobolin, A. Shirakawa, and K. Ueda, “Circular modes selection in Yb:YAG laser using an intracavity lens with spherical aberration,” Laser Phys. 19(5), 911–918 (2009).
    [Crossref]
  28. Y. Kozawa and S. Sato, “Single higher-order transverse mode operation of a radially polarized Nd:YAG laser using an annularly reflectivity-modulated photonic crystal coupler,” Opt. Lett. 33(19), 2278–2280 (2008).
    [Crossref] [PubMed]
  29. Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24(6), 1793–1798 (2007).
    [Crossref]

2010 (1)

M. P. Thirugnanasambandam, Yu. Senatsky, and K. Ueda, “Generation of very-high order Laguerre-Gaussian modes in Yb:YAG ceramic laser,” Laser Phys. Lett. 7(9), 637–643 (2010).
[Crossref]

2009 (4)

Yu. Senatsky, J.-F. Bisson, A. Shelobolin, A. Shirakawa, and K. Ueda, “Circular modes selection in Yb:YAG laser using an intracavity lens with spherical aberration,” Laser Phys. 19(5), 911–918 (2009).
[Crossref]

R. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, “Fiber laser generating switchable radially and azimuthally polarized beams with 140 mW output power at 1.6µm wavelength,” Appl. Phys. Lett. 95(19), 191111 (2009).
[Crossref]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009).
[Crossref]

F. Peng, B. Yao, S. Yan, W. Zhao, and M. Lei, “Trapping of low-refractive-index particles with azimuthally polarized beam,” J. Opt. Soc. Am. B 26(12), 2242–2247 (2009).
[Crossref]

2008 (2)

2007 (6)

Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24(6), 1793–1798 (2007).
[Crossref]

K. Yonezawa, Y. Kozawa, and S. Sato, “Compact Laser with Radial Polarization Using Birefringent Laser Medium,” Jpn. J. Appl. Phys. 46(No. 8A), 5160–5163 (2007).
[Crossref]

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” N. J. Phys. 9(3), 78–98 (2007).
[Crossref]

M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32(22), 3272–3274 (2007).
[Crossref] [PubMed]

I. Moshe, S. Jackel, A. Meir, Y. Lumer, and E. Leibush, “2 kW, M2 < 10 radially polarized beams from aberration-compensated rod-based Nd:YAG lasers,” Opt. Lett. 32(1), 47–49 (2007).
[Crossref]

2006 (3)

2005 (1)

2004 (2)

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[Crossref] [PubMed]

T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and T. Graf, “Generation of radially polarized beams in Nd:YAG lasers with polarization selective mirrors,” Laser Phys. Lett. 1(5), 234–236 (2004).
[Crossref]

2002 (1)

2000 (2)

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33(15), 1817–1822 (2000).
[Crossref]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[Crossref]

1999 (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[Crossref]

1996 (1)

1993 (1)

1972 (1)

D. Pohl, “Operation of a ruby laser in purely transverse electric mode TE01,” Appl. Phys. Lett. 20(7), 266–267 (1972).
[Crossref]

Ahmed, M. A.

M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32(22), 3272–3274 (2007).
[Crossref] [PubMed]

T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and T. Graf, “Generation of radially polarized beams in Nd:YAG lasers with polarization selective mirrors,” Laser Phys. Lett. 1(5), 234–236 (2004).
[Crossref]

Bernet, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” N. J. Phys. 9(3), 78–98 (2007).
[Crossref]

Bisson, J.-F.

Yu. Senatsky, J.-F. Bisson, A. Shelobolin, A. Shirakawa, and K. Ueda, “Circular modes selection in Yb:YAG laser using an intracavity lens with spherical aberration,” Laser Phys. 19(5), 911–918 (2009).
[Crossref]

J.-F. Bisson, J. Li, K. Ueda, and Yu. Senatsky, “Radially polarized ring and arc beams of a neodymium laser with an intra-cavity axicon,” Opt. Express 14(8), 3304–3311 (2006).
[Crossref] [PubMed]

Blit, S.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[Crossref]

Bomzon, Z.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[Crossref]

Chang, R. S.

Davidson, N.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[Crossref]

Feurer, T.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

Friesem, A. A.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[Crossref]

Fürhapter, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” N. J. Phys. 9(3), 78–98 (2007).
[Crossref]

Graf, T.

M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32(22), 3272–3274 (2007).
[Crossref] [PubMed]

T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and T. Graf, “Generation of radially polarized beams in Nd:YAG lasers with polarization selective mirrors,” Laser Phys. Lett. 1(5), 234–236 (2004).
[Crossref]

Hasman, E.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[Crossref]

Haus, J. W.

R. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, “Fiber laser generating switchable radially and azimuthally polarized beams with 140 mW output power at 1.6µm wavelength,” Appl. Phys. Lett. 95(19), 191111 (2009).
[Crossref]

Ibarra-Escamilla, B.

R. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, “Fiber laser generating switchable radially and azimuthally polarized beams with 140 mW output power at 1.6µm wavelength,” Appl. Phys. Lett. 95(19), 191111 (2009).
[Crossref]

Jackel, S.

Jesacher, A.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” N. J. Phys. 9(3), 78–98 (2007).
[Crossref]

Kim, G. H.

Kimura, W. D.

Kozawa, Y.

Leger, J. R.

Lei, M.

Leibush, E.

Li, J.

Li, J.-L.

Li, Y. P.

Lumer, Y.

Maurer, C.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” N. J. Phys. 9(3), 78–98 (2007).
[Crossref]

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

Meir, A.

Moser, T.

T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and T. Graf, “Generation of radially polarized beams in Nd:YAG lasers with polarization selective mirrors,” Laser Phys. Lett. 1(5), 234–236 (2004).
[Crossref]

Moshe, I.

Musha, M.

Nesterov, A. V.

V. G. Niziev, R. S. Chang, and A. V. Nesterov, “Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer,” Appl. Opt. 45(33), 8393–8399 (2006).
[Crossref] [PubMed]

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33(15), 1817–1822 (2000).
[Crossref]

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[Crossref]

Niziev, V. G.

V. G. Niziev, R. S. Chang, and A. V. Nesterov, “Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer,” Appl. Opt. 45(33), 8393–8399 (2006).
[Crossref] [PubMed]

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33(15), 1817–1822 (2000).
[Crossref]

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[Crossref]

Oron, R.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[Crossref]

Parriaux, O.

T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and T. Graf, “Generation of radially polarized beams in Nd:YAG lasers with polarization selective mirrors,” Laser Phys. Lett. 1(5), 234–236 (2004).
[Crossref]

Peng, F.

Pigeon, F.

T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and T. Graf, “Generation of radially polarized beams in Nd:YAG lasers with polarization selective mirrors,” Laser Phys. Lett. 1(5), 234–236 (2004).
[Crossref]

Pohl, D.

D. Pohl, “Operation of a ruby laser in purely transverse electric mode TE01,” Appl. Phys. Lett. 20(7), 266–267 (1972).
[Crossref]

Powers, P. E.

R. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, “Fiber laser generating switchable radially and azimuthally polarized beams with 140 mW output power at 1.6µm wavelength,” Appl. Phys. Lett. 95(19), 191111 (2009).
[Crossref]

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” N. J. Phys. 9(3), 78–98 (2007).
[Crossref]

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

Sato, S.

Sato, T.

Schadt, M.

Senatsky, Yu.

M. P. Thirugnanasambandam, Yu. Senatsky, and K. Ueda, “Generation of very-high order Laguerre-Gaussian modes in Yb:YAG ceramic laser,” Laser Phys. Lett. 7(9), 637–643 (2010).
[Crossref]

Yu. Senatsky, J.-F. Bisson, A. Shelobolin, A. Shirakawa, and K. Ueda, “Circular modes selection in Yb:YAG laser using an intracavity lens with spherical aberration,” Laser Phys. 19(5), 911–918 (2009).
[Crossref]

J.-F. Bisson, J. Li, K. Ueda, and Yu. Senatsky, “Radially polarized ring and arc beams of a neodymium laser with an intra-cavity axicon,” Opt. Express 14(8), 3304–3311 (2006).
[Crossref] [PubMed]

Shelobolin, A.

Yu. Senatsky, J.-F. Bisson, A. Shelobolin, A. Shirakawa, and K. Ueda, “Circular modes selection in Yb:YAG laser using an intracavity lens with spherical aberration,” Laser Phys. 19(5), 911–918 (2009).
[Crossref]

Shirakawa, A.

Stalder, M.

Thirugnanasambandam, M. P.

M. P. Thirugnanasambandam, Yu. Senatsky, and K. Ueda, “Generation of very-high order Laguerre-Gaussian modes in Yb:YAG ceramic laser,” Laser Phys. Lett. 7(9), 637–643 (2010).
[Crossref]

Tidwell, S. C.

Ueda, K.

M. P. Thirugnanasambandam, Yu. Senatsky, and K. Ueda, “Generation of very-high order Laguerre-Gaussian modes in Yb:YAG ceramic laser,” Laser Phys. Lett. 7(9), 637–643 (2010).
[Crossref]

Yu. Senatsky, J.-F. Bisson, A. Shelobolin, A. Shirakawa, and K. Ueda, “Circular modes selection in Yb:YAG laser using an intracavity lens with spherical aberration,” Laser Phys. 19(5), 911–918 (2009).
[Crossref]

J.-L. Li, K. Ueda, L.-X. Zhong, M. Musha, A. Shirakawa, and T. Sato, “Efficient excitations of radially and azimuthally polarized Nd3+:YAG ceramic microchip laser by use of subwavelength multilayer concentric gratings composed of Nb2O5/SiO2.,” Opt. Express 16(14), 10841–10848 (2008).
[Crossref] [PubMed]

J.-F. Bisson, J. Li, K. Ueda, and Yu. Senatsky, “Radially polarized ring and arc beams of a neodymium laser with an intra-cavity axicon,” Opt. Express 14(8), 3304–3311 (2006).
[Crossref] [PubMed]

Vogel, M. M.

Voss, A.

Wyss, E.

T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and T. Graf, “Generation of radially polarized beams in Nd:YAG lasers with polarization selective mirrors,” Laser Phys. Lett. 1(5), 234–236 (2004).
[Crossref]

Yan, S.

Yao, B.

Yonezawa, K.

K. Yonezawa, Y. Kozawa, and S. Sato, “Compact Laser with Radial Polarization Using Birefringent Laser Medium,” Jpn. J. Appl. Phys. 46(No. 8A), 5160–5163 (2007).
[Crossref]

K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31(14), 2151–2153 (2006).
[Crossref] [PubMed]

Zhan, Q.

Zhang, Y. L.

Zhao, W.

Zhao, Y. Q.

Zhong, L.-X.

Zhou, R.

R. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, “Fiber laser generating switchable radially and azimuthally polarized beams with 140 mW output power at 1.6µm wavelength,” Appl. Phys. Lett. 95(19), 191111 (2009).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (3)

Appl. Phys. Lett. (3)

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[Crossref]

R. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, “Fiber laser generating switchable radially and azimuthally polarized beams with 140 mW output power at 1.6µm wavelength,” Appl. Phys. Lett. 95(19), 191111 (2009).
[Crossref]

D. Pohl, “Operation of a ruby laser in purely transverse electric mode TE01,” Appl. Phys. Lett. 20(7), 266–267 (1972).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. D (2)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[Crossref]

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33(15), 1817–1822 (2000).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Yonezawa, Y. Kozawa, and S. Sato, “Compact Laser with Radial Polarization Using Birefringent Laser Medium,” Jpn. J. Appl. Phys. 46(No. 8A), 5160–5163 (2007).
[Crossref]

Laser Phys. (1)

Yu. Senatsky, J.-F. Bisson, A. Shelobolin, A. Shirakawa, and K. Ueda, “Circular modes selection in Yb:YAG laser using an intracavity lens with spherical aberration,” Laser Phys. 19(5), 911–918 (2009).
[Crossref]

Laser Phys. Lett. (2)

M. P. Thirugnanasambandam, Yu. Senatsky, and K. Ueda, “Generation of very-high order Laguerre-Gaussian modes in Yb:YAG ceramic laser,” Laser Phys. Lett. 7(9), 637–643 (2010).
[Crossref]

T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and T. Graf, “Generation of radially polarized beams in Nd:YAG lasers with polarization selective mirrors,” Laser Phys. Lett. 1(5), 234–236 (2004).
[Crossref]

N. J. Phys. (1)

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” N. J. Phys. 9(3), 78–98 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

Other (3)

W. Koechner, Solid-State Laser Engineering (Springer science + business media, Inc., sixth revised and updated edition, 2006), Chap. 5.

N. Hodgson, and H. Weber, in Laser Resonators and Beam Propagation, (Springer science + business media, Inc., second edition, 2005).

F. D. Vanderwerf, Applied Prismatic and Reflective Optics, (SPIE Press, 2010), Chap. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the laser set up.

Fig. 2
Fig. 2

CCD camera images in near-field of AP and RP doughnut modes generated from Yb:YAG laser cavity with birefringent (a,b) c-cut YVO4 or (c,d) α-BBO crystals and lens f = 10cm placed at distance d<fax or d> fax from HR surface. The transmission axis of linear polarizer placed before the camera is indicated by arrows in the corresponding frames wherever used.

Fig. 3
Fig. 3

Mode profiles and polarization change observed on shifting the lens f = 5cm in the Yb:YAG laser cavity between HR and OC regions.

Fig. 4
Fig. 4

Sequence of modes registered at the output of laser (L = 114cm) by shifting intra-cavity lens: (a) near field images with YVO4 and lens f = 10cm; (b) near field images and far field intensity profiles with α-BBO and lens f = 7.5cm; (c) far field images with YVO4 and lens f = 3.5cm.

Fig. 5
Fig. 5

Schematic of resonator with intra-cavity lens showing ‘imaging’ (Type-1 trajectory) and ‘focusing’ (Type-2 trajectory) positions of the lens.

Fig. 6
Fig. 6

Dependence of width of the resonator stability region, (I-F) on the cavity length, L for intra-cavity lenses with different foci (dotted curves, calculations; rhombs- experimental data).

Fig. 7
Fig. 7

Schemes of mode selection in the laser with intra-cavity c-cut YVO4 crystal and lens: (a) AP mode at “focusing” (d = (fe)ax) and (b) RP mode at “imaging” (d = io) lens positions.

Metrics