D. Yin, H. Schmidt, J. P. Barber, E. J. Lunt, and A. R. Hawkins, “Optical characterization of arch-shaped ARROW waveguides with liquid cores,” Opt. Express 13, 10564–10570 (2005).
[Crossref]
[PubMed]
D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Low-loss integrated optical sensors based on hollow-core ARROW waveguide,” Proc. SPIE 5730, 218–225, (2005).
[Crossref]
D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85, 3477–3479 (2004).
[Crossref]
J. He, “Homotopy perturbation technique,” Comput. Methods Appl. Mech. Eng. 178, 257–262 (1999).
[Crossref]
M. Balagangadhar, T. Sarkar, I. Rejeb, and R. Boix, “Solution of the general Helmholtz equation in homogeneously filled waveguides using a static Green’s function,” IEEE Trans. Microwave Theory Tech. 46, 302–307 (1998).
[Crossref]
C. Lee, M. Wu, and J. Hsu, “Beam propagation analysis for tapered waveguides: taking account of the curved phase-front effect in paraxial approximation,” J. Lightwave Technol. 15, 2183–2189 (1997).
[Crossref]
S. Liao, “An approximate solution technique not depending on small parameters: a special example,” Int. J. Non-Linear Mech. 30, 371–380 (1995).
[Crossref]
A. M. Young, C. L. Xu, W. Huang, and S. D. Senturia, “Design and analysis of an ARROW-waveguide-based silicon pressure transducer,” Proc. SPIE 1793, 42–53 (1993).
[Crossref]
J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11, 416–423 (1993).
[Crossref]
M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]
I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, Corrected and Enlarged Edition (Academic, 1980).
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972).
J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11, 416–423 (1993).
[Crossref]
T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides—Numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[Crossref]
M. Balagangadhar, T. Sarkar, I. Rejeb, and R. Boix, “Solution of the general Helmholtz equation in homogeneously filled waveguides using a static Green’s function,” IEEE Trans. Microwave Theory Tech. 46, 302–307 (1998).
[Crossref]
D. Yin, H. Schmidt, J. P. Barber, E. J. Lunt, and A. R. Hawkins, “Optical characterization of arch-shaped ARROW waveguides with liquid cores,” Opt. Express 13, 10564–10570 (2005).
[Crossref]
[PubMed]
D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Low-loss integrated optical sensors based on hollow-core ARROW waveguide,” Proc. SPIE 5730, 218–225, (2005).
[Crossref]
D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85, 3477–3479 (2004).
[Crossref]
J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11, 416–423 (1993).
[Crossref]
M. Balagangadhar, T. Sarkar, I. Rejeb, and R. Boix, “Solution of the general Helmholtz equation in homogeneously filled waveguides using a static Green’s function,” IEEE Trans. Microwave Theory Tech. 46, 302–307 (1998).
[Crossref]
J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11, 416–423 (1993).
[Crossref]
D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85, 3477–3479 (2004).
[Crossref]
M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]
W. J. Gibbs, Conformal Transformations in Electrical Engineering (Chapman & Hall, 1958).
I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, Corrected and Enlarged Edition (Academic, 1980).
D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Low-loss integrated optical sensors based on hollow-core ARROW waveguide,” Proc. SPIE 5730, 218–225, (2005).
[Crossref]
D. Yin, H. Schmidt, J. P. Barber, E. J. Lunt, and A. R. Hawkins, “Optical characterization of arch-shaped ARROW waveguides with liquid cores,” Opt. Express 13, 10564–10570 (2005).
[Crossref]
[PubMed]
D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85, 3477–3479 (2004).
[Crossref]
J. He, “Homotopy perturbation technique,” Comput. Methods Appl. Mech. Eng. 178, 257–262 (1999).
[Crossref]
C. Lee, M. Wu, and J. Hsu, “Beam propagation analysis for tapered waveguides: taking account of the curved phase-front effect in paraxial approximation,” J. Lightwave Technol. 15, 2183–2189 (1997).
[Crossref]
A. M. Young, C. L. Xu, W. Huang, and S. D. Senturia, “Design and analysis of an ARROW-waveguide-based silicon pressure transducer,” Proc. SPIE 1793, 42–53 (1993).
[Crossref]
M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]
T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides—Numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[Crossref]
M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]
J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11, 416–423 (1993).
[Crossref]
R. Schinzinger and P. A. A. Laura, Conformal Mapping: Methods and Applications (Elsevier, 1991).
C. Lee, M. Wu, and J. Hsu, “Beam propagation analysis for tapered waveguides: taking account of the curved phase-front effect in paraxial approximation,” J. Lightwave Technol. 15, 2183–2189 (1997).
[Crossref]
S. Liao, “An approximate solution technique not depending on small parameters: a special example,” Int. J. Non-Linear Mech. 30, 371–380 (1995).
[Crossref]
W. Ng and M. Stern, “Analysis of multiple-rib waveguide structures by the discrete-spectral-index method,” in Proceedings of IEEE Conference on Optoelectronics (IEEE, 1998), 365–371 (1998).
[Crossref]
M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]
M. Balagangadhar, T. Sarkar, I. Rejeb, and R. Boix, “Solution of the general Helmholtz equation in homogeneously filled waveguides using a static Green’s function,” IEEE Trans. Microwave Theory Tech. 46, 302–307 (1998).
[Crossref]
I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, Corrected and Enlarged Edition (Academic, 1980).
M. Balagangadhar, T. Sarkar, I. Rejeb, and R. Boix, “Solution of the general Helmholtz equation in homogeneously filled waveguides using a static Green’s function,” IEEE Trans. Microwave Theory Tech. 46, 302–307 (1998).
[Crossref]
R. Schinzinger and P. A. A. Laura, Conformal Mapping: Methods and Applications (Elsevier, 1991).
D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Low-loss integrated optical sensors based on hollow-core ARROW waveguide,” Proc. SPIE 5730, 218–225, (2005).
[Crossref]
D. Yin, H. Schmidt, J. P. Barber, E. J. Lunt, and A. R. Hawkins, “Optical characterization of arch-shaped ARROW waveguides with liquid cores,” Opt. Express 13, 10564–10570 (2005).
[Crossref]
[PubMed]
D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85, 3477–3479 (2004).
[Crossref]
A. M. Young, C. L. Xu, W. Huang, and S. D. Senturia, “Design and analysis of an ARROW-waveguide-based silicon pressure transducer,” Proc. SPIE 1793, 42–53 (1993).
[Crossref]
W. Ng and M. Stern, “Analysis of multiple-rib waveguide structures by the discrete-spectral-index method,” in Proceedings of IEEE Conference on Optoelectronics (IEEE, 1998), 365–371 (1998).
[Crossref]
C. Lee, M. Wu, and J. Hsu, “Beam propagation analysis for tapered waveguides: taking account of the curved phase-front effect in paraxial approximation,” J. Lightwave Technol. 15, 2183–2189 (1997).
[Crossref]
A. M. Young, C. L. Xu, W. Huang, and S. D. Senturia, “Design and analysis of an ARROW-waveguide-based silicon pressure transducer,” Proc. SPIE 1793, 42–53 (1993).
[Crossref]
D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Low-loss integrated optical sensors based on hollow-core ARROW waveguide,” Proc. SPIE 5730, 218–225, (2005).
[Crossref]
D. Yin, H. Schmidt, J. P. Barber, E. J. Lunt, and A. R. Hawkins, “Optical characterization of arch-shaped ARROW waveguides with liquid cores,” Opt. Express 13, 10564–10570 (2005).
[Crossref]
[PubMed]
D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85, 3477–3479 (2004).
[Crossref]
A. M. Young, C. L. Xu, W. Huang, and S. D. Senturia, “Design and analysis of an ARROW-waveguide-based silicon pressure transducer,” Proc. SPIE 1793, 42–53 (1993).
[Crossref]
M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]
D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85, 3477–3479 (2004).
[Crossref]
J. He, “Homotopy perturbation technique,” Comput. Methods Appl. Mech. Eng. 178, 257–262 (1999).
[Crossref]
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972).
T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides—Numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[Crossref]
M. Balagangadhar, T. Sarkar, I. Rejeb, and R. Boix, “Solution of the general Helmholtz equation in homogeneously filled waveguides using a static Green’s function,” IEEE Trans. Microwave Theory Tech. 46, 302–307 (1998).
[Crossref]
S. Liao, “An approximate solution technique not depending on small parameters: a special example,” Int. J. Non-Linear Mech. 30, 371–380 (1995).
[Crossref]
J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11, 416–423 (1993).
[Crossref]
C. Lee, M. Wu, and J. Hsu, “Beam propagation analysis for tapered waveguides: taking account of the curved phase-front effect in paraxial approximation,” J. Lightwave Technol. 15, 2183–2189 (1997).
[Crossref]
K. J. Rowland, S. V. Afshar, and T. M. Monro, “Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model,” Opt. Express 16, 17935–17951 (2008).
[Crossref]
[PubMed]
D. Yin, H. Schmidt, J. P. Barber, E. J. Lunt, and A. R. Hawkins, “Optical characterization of arch-shaped ARROW waveguides with liquid cores,” Opt. Express 13, 10564–10570 (2005).
[Crossref]
[PubMed]
A. M. Young, C. L. Xu, W. Huang, and S. D. Senturia, “Design and analysis of an ARROW-waveguide-based silicon pressure transducer,” Proc. SPIE 1793, 42–53 (1993).
[Crossref]
D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Low-loss integrated optical sensors based on hollow-core ARROW waveguide,” Proc. SPIE 5730, 218–225, (2005).
[Crossref]
I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, Corrected and Enlarged Edition (Academic, 1980).
M. Hazewinkel, ed., Encyclopaedia of Mathematics, Springer online Reference Works, http://eom.springer.de/default.htm .
NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/ .
W. Ng and M. Stern, “Analysis of multiple-rib waveguide structures by the discrete-spectral-index method,” in Proceedings of IEEE Conference on Optoelectronics (IEEE, 1998), 365–371 (1998).
[Crossref]
W. J. Gibbs, Conformal Transformations in Electrical Engineering (Chapman & Hall, 1958).
R. Schinzinger and P. A. A. Laura, Conformal Mapping: Methods and Applications (Elsevier, 1991).