Abstract

The photo-polymerized liquid crystal (LC) film aligned on a photo-alignment layer was investigated with varying polarizability of UV light exposing on the photo-alignment layer. Interestingly, the polarizability of UV light required to induce bulk LC alignment on the photo alignment layer was found to be very low down to 0.1, and UV light greater than 0.3 polarizability produced outstanding optical performance of the film. The films fabricated with low polarizability light exhibited comparable thermo-stability with one fabricated with high polarizability light. The results suggest that micro-patterned optical birefringence films (MP-OBFs) can be fabricated by using an incoherent multi beam mixing method, where the direction of polarization of UV light can be spatially modulated. A simple MP-OBF was fabricated by using a two beam mixing method, and it exhibited a quality 3D film performance. The method will be highly useful in various optical components such as the MP-OBF, optical retarders, polarization grating etc.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Pastoor and M. Wopking, “3D displays: a review of current technologies,” Displays 17(2), 100–110 (1997).
    [CrossRef]
  2. P. J. Shannon, W. M. Gibbons, and S. T. Sun, “Patterned optical properties in photopolymerized surface-aligned liquid-crystal films,” Nature 368(6471), 532–533 (1994).
    [CrossRef]
  3. W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
    [CrossRef]
  4. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
    [CrossRef]
  5. N. Kawatsuki, T. Kawakami, and T. Yamamoto, “A photoinduced birefringent film with a high orientational order obtained from a novel polymer liquid crystal,” Adv. Mater. (Deerfield Beach Fla.) 13(17), 1337–1339 (2001).
    [CrossRef]
  6. H. Yu and T. Ikeda, “Photocontrollable liquid-crystalline actuators,” Adv. Mater. (Deerfield Beach Fla.) 23(19), 2149–2180 (2011).
    [CrossRef] [PubMed]
  7. B. W. Lee and N. A. Clark, “Alignment of liquid crystals with patterned isotropic surfaces,” Science 291(5513), 2576–2580 (2001).
    [CrossRef] [PubMed]
  8. M. Cavallini, A. Calo, P. Stoliar, J. C. Kengne, S. Martins, F. C. Matacotta, F. Quist, G. Gbabode, N. Dumont, Y. H. Geerts, and F. Biscarini, “Lithographic alignment of discotic liquid crystals: a new time-temperature integrating framework,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4688–4691 (2009).
    [CrossRef]
  9. Y. Wu, T. Ikeda, and Q. Zhang, “Three-dimensional manipulation of an azo polymer liquid crystal with unpolarized light,” Adv. Mater. (Deerfield Beach Fla.) 11(4), 300–302 (1999).
    [CrossRef]
  10. N. Kawatsuki, H. Takatsuka, and T. Yamamoto, “Coplanar alignment of mesogenic moieties in a photocrosslinked liquid crystalline polymer film containing cinnamoyl groups,” Appl. Phys. Lett. 75(10), 1386–1388 (1999).
    [CrossRef]
  11. K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
    [CrossRef]
  12. S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
    [CrossRef] [PubMed]
  13. G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
    [CrossRef]

2011 (1)

H. Yu and T. Ikeda, “Photocontrollable liquid-crystalline actuators,” Adv. Mater. (Deerfield Beach Fla.) 23(19), 2149–2180 (2011).
[CrossRef] [PubMed]

2009 (2)

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[CrossRef] [PubMed]

M. Cavallini, A. Calo, P. Stoliar, J. C. Kengne, S. Martins, F. C. Matacotta, F. Quist, G. Gbabode, N. Dumont, Y. H. Geerts, and F. Biscarini, “Lithographic alignment of discotic liquid crystals: a new time-temperature integrating framework,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4688–4691 (2009).
[CrossRef]

2005 (1)

G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[CrossRef]

2001 (2)

B. W. Lee and N. A. Clark, “Alignment of liquid crystals with patterned isotropic surfaces,” Science 291(5513), 2576–2580 (2001).
[CrossRef] [PubMed]

N. Kawatsuki, T. Kawakami, and T. Yamamoto, “A photoinduced birefringent film with a high orientational order obtained from a novel polymer liquid crystal,” Adv. Mater. (Deerfield Beach Fla.) 13(17), 1337–1339 (2001).
[CrossRef]

1999 (2)

Y. Wu, T. Ikeda, and Q. Zhang, “Three-dimensional manipulation of an azo polymer liquid crystal with unpolarized light,” Adv. Mater. (Deerfield Beach Fla.) 11(4), 300–302 (1999).
[CrossRef]

N. Kawatsuki, H. Takatsuka, and T. Yamamoto, “Coplanar alignment of mesogenic moieties in a photocrosslinked liquid crystalline polymer film containing cinnamoyl groups,” Appl. Phys. Lett. 75(10), 1386–1388 (1999).
[CrossRef]

1997 (1)

S. Pastoor and M. Wopking, “3D displays: a review of current technologies,” Displays 17(2), 100–110 (1997).
[CrossRef]

1994 (1)

P. J. Shannon, W. M. Gibbons, and S. T. Sun, “Patterned optical properties in photopolymerized surface-aligned liquid-crystal films,” Nature 368(6471), 532–533 (1994).
[CrossRef]

1992 (1)

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
[CrossRef]

1991 (1)

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

1988 (1)

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[CrossRef]

Aoki, K.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[CrossRef]

Biscarini, F.

M. Cavallini, A. Calo, P. Stoliar, J. C. Kengne, S. Martins, F. C. Matacotta, F. Quist, G. Gbabode, N. Dumont, Y. H. Geerts, and F. Biscarini, “Lithographic alignment of discotic liquid crystals: a new time-temperature integrating framework,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4688–4691 (2009).
[CrossRef]

Callan-Jones, A.

G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[CrossRef]

Calo, A.

M. Cavallini, A. Calo, P. Stoliar, J. C. Kengne, S. Martins, F. C. Matacotta, F. Quist, G. Gbabode, N. Dumont, Y. H. Geerts, and F. Biscarini, “Lithographic alignment of discotic liquid crystals: a new time-temperature integrating framework,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4688–4691 (2009).
[CrossRef]

Cavallini, M.

M. Cavallini, A. Calo, P. Stoliar, J. C. Kengne, S. Martins, F. C. Matacotta, F. Quist, G. Gbabode, N. Dumont, Y. H. Geerts, and F. Biscarini, “Lithographic alignment of discotic liquid crystals: a new time-temperature integrating framework,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4688–4691 (2009).
[CrossRef]

Chigrinov, V.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
[CrossRef]

Clark, N. A.

B. W. Lee and N. A. Clark, “Alignment of liquid crystals with patterned isotropic surfaces,” Science 291(5513), 2576–2580 (2001).
[CrossRef] [PubMed]

Crawford, G.

G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[CrossRef]

Dumont, N.

M. Cavallini, A. Calo, P. Stoliar, J. C. Kengne, S. Martins, F. C. Matacotta, F. Quist, G. Gbabode, N. Dumont, Y. H. Geerts, and F. Biscarini, “Lithographic alignment of discotic liquid crystals: a new time-temperature integrating framework,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4688–4691 (2009).
[CrossRef]

Eakin, J.

G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[CrossRef]

Gbabode, G.

M. Cavallini, A. Calo, P. Stoliar, J. C. Kengne, S. Martins, F. C. Matacotta, F. Quist, G. Gbabode, N. Dumont, Y. H. Geerts, and F. Biscarini, “Lithographic alignment of discotic liquid crystals: a new time-temperature integrating framework,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4688–4691 (2009).
[CrossRef]

Geerts, Y. H.

M. Cavallini, A. Calo, P. Stoliar, J. C. Kengne, S. Martins, F. C. Matacotta, F. Quist, G. Gbabode, N. Dumont, Y. H. Geerts, and F. Biscarini, “Lithographic alignment of discotic liquid crystals: a new time-temperature integrating framework,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4688–4691 (2009).
[CrossRef]

Gibbons, W. M.

P. J. Shannon, W. M. Gibbons, and S. T. Sun, “Patterned optical properties in photopolymerized surface-aligned liquid-crystal films,” Nature 368(6471), 532–533 (1994).
[CrossRef]

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Hoke, L.

Hosoki, A.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[CrossRef]

Ichimura, K.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[CrossRef]

Ikeda, T.

H. Yu and T. Ikeda, “Photocontrollable liquid-crystalline actuators,” Adv. Mater. (Deerfield Beach Fla.) 23(19), 2149–2180 (2011).
[CrossRef] [PubMed]

Y. Wu, T. Ikeda, and Q. Zhang, “Three-dimensional manipulation of an azo polymer liquid crystal with unpolarized light,” Adv. Mater. (Deerfield Beach Fla.) 11(4), 300–302 (1999).
[CrossRef]

Kawakami, T.

N. Kawatsuki, T. Kawakami, and T. Yamamoto, “A photoinduced birefringent film with a high orientational order obtained from a novel polymer liquid crystal,” Adv. Mater. (Deerfield Beach Fla.) 13(17), 1337–1339 (2001).
[CrossRef]

Kawatsuki, N.

N. Kawatsuki, T. Kawakami, and T. Yamamoto, “A photoinduced birefringent film with a high orientational order obtained from a novel polymer liquid crystal,” Adv. Mater. (Deerfield Beach Fla.) 13(17), 1337–1339 (2001).
[CrossRef]

N. Kawatsuki, H. Takatsuka, and T. Yamamoto, “Coplanar alignment of mesogenic moieties in a photocrosslinked liquid crystalline polymer film containing cinnamoyl groups,” Appl. Phys. Lett. 75(10), 1386–1388 (1999).
[CrossRef]

Kengne, J. C.

M. Cavallini, A. Calo, P. Stoliar, J. C. Kengne, S. Martins, F. C. Matacotta, F. Quist, G. Gbabode, N. Dumont, Y. H. Geerts, and F. Biscarini, “Lithographic alignment of discotic liquid crystals: a new time-temperature integrating framework,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4688–4691 (2009).
[CrossRef]

Kimball, B. R.

Kozinkov, V.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
[CrossRef]

Lee, B. W.

B. W. Lee and N. A. Clark, “Alignment of liquid crystals with patterned isotropic surfaces,” Science 291(5513), 2576–2580 (2001).
[CrossRef] [PubMed]

Martins, S.

M. Cavallini, A. Calo, P. Stoliar, J. C. Kengne, S. Martins, F. C. Matacotta, F. Quist, G. Gbabode, N. Dumont, Y. H. Geerts, and F. Biscarini, “Lithographic alignment of discotic liquid crystals: a new time-temperature integrating framework,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4688–4691 (2009).
[CrossRef]

Matacotta, F. C.

M. Cavallini, A. Calo, P. Stoliar, J. C. Kengne, S. Martins, F. C. Matacotta, F. Quist, G. Gbabode, N. Dumont, Y. H. Geerts, and F. Biscarini, “Lithographic alignment of discotic liquid crystals: a new time-temperature integrating framework,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4688–4691 (2009).
[CrossRef]

Nersisyan, S. R.

Pastoor, S.

S. Pastoor and M. Wopking, “3D displays: a review of current technologies,” Displays 17(2), 100–110 (1997).
[CrossRef]

Pelcovits, R.

G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[CrossRef]

Quist, F.

M. Cavallini, A. Calo, P. Stoliar, J. C. Kengne, S. Martins, F. C. Matacotta, F. Quist, G. Gbabode, N. Dumont, Y. H. Geerts, and F. Biscarini, “Lithographic alignment of discotic liquid crystals: a new time-temperature integrating framework,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4688–4691 (2009).
[CrossRef]

Radcliffe, M. D.

G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[CrossRef]

Schadt, M.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
[CrossRef]

Schmitt, K.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
[CrossRef]

Seki, T.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[CrossRef]

Shannon, P. J.

P. J. Shannon, W. M. Gibbons, and S. T. Sun, “Patterned optical properties in photopolymerized surface-aligned liquid-crystal films,” Nature 368(6471), 532–533 (1994).
[CrossRef]

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Steeves, D. M.

Stoliar, P.

M. Cavallini, A. Calo, P. Stoliar, J. C. Kengne, S. Martins, F. C. Matacotta, F. Quist, G. Gbabode, N. Dumont, Y. H. Geerts, and F. Biscarini, “Lithographic alignment of discotic liquid crystals: a new time-temperature integrating framework,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4688–4691 (2009).
[CrossRef]

Sun, S. T.

P. J. Shannon, W. M. Gibbons, and S. T. Sun, “Patterned optical properties in photopolymerized surface-aligned liquid-crystal films,” Nature 368(6471), 532–533 (1994).
[CrossRef]

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Suzuki, Y.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[CrossRef]

Swetlin, B. J.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Tabiryan, N. V.

Takatsuka, H.

N. Kawatsuki, H. Takatsuka, and T. Yamamoto, “Coplanar alignment of mesogenic moieties in a photocrosslinked liquid crystalline polymer film containing cinnamoyl groups,” Appl. Phys. Lett. 75(10), 1386–1388 (1999).
[CrossRef]

Wopking, M.

S. Pastoor and M. Wopking, “3D displays: a review of current technologies,” Displays 17(2), 100–110 (1997).
[CrossRef]

Wu, Y.

Y. Wu, T. Ikeda, and Q. Zhang, “Three-dimensional manipulation of an azo polymer liquid crystal with unpolarized light,” Adv. Mater. (Deerfield Beach Fla.) 11(4), 300–302 (1999).
[CrossRef]

Yamamoto, T.

N. Kawatsuki, T. Kawakami, and T. Yamamoto, “A photoinduced birefringent film with a high orientational order obtained from a novel polymer liquid crystal,” Adv. Mater. (Deerfield Beach Fla.) 13(17), 1337–1339 (2001).
[CrossRef]

N. Kawatsuki, H. Takatsuka, and T. Yamamoto, “Coplanar alignment of mesogenic moieties in a photocrosslinked liquid crystalline polymer film containing cinnamoyl groups,” Appl. Phys. Lett. 75(10), 1386–1388 (1999).
[CrossRef]

Yu, H.

H. Yu and T. Ikeda, “Photocontrollable liquid-crystalline actuators,” Adv. Mater. (Deerfield Beach Fla.) 23(19), 2149–2180 (2011).
[CrossRef] [PubMed]

Zhang, Q.

Y. Wu, T. Ikeda, and Q. Zhang, “Three-dimensional manipulation of an azo polymer liquid crystal with unpolarized light,” Adv. Mater. (Deerfield Beach Fla.) 11(4), 300–302 (1999).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (4)

N. Kawatsuki, T. Kawakami, and T. Yamamoto, “A photoinduced birefringent film with a high orientational order obtained from a novel polymer liquid crystal,” Adv. Mater. (Deerfield Beach Fla.) 13(17), 1337–1339 (2001).
[CrossRef]

H. Yu and T. Ikeda, “Photocontrollable liquid-crystalline actuators,” Adv. Mater. (Deerfield Beach Fla.) 23(19), 2149–2180 (2011).
[CrossRef] [PubMed]

M. Cavallini, A. Calo, P. Stoliar, J. C. Kengne, S. Martins, F. C. Matacotta, F. Quist, G. Gbabode, N. Dumont, Y. H. Geerts, and F. Biscarini, “Lithographic alignment of discotic liquid crystals: a new time-temperature integrating framework,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4688–4691 (2009).
[CrossRef]

Y. Wu, T. Ikeda, and Q. Zhang, “Three-dimensional manipulation of an azo polymer liquid crystal with unpolarized light,” Adv. Mater. (Deerfield Beach Fla.) 11(4), 300–302 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

N. Kawatsuki, H. Takatsuka, and T. Yamamoto, “Coplanar alignment of mesogenic moieties in a photocrosslinked liquid crystalline polymer film containing cinnamoyl groups,” Appl. Phys. Lett. 75(10), 1386–1388 (1999).
[CrossRef]

Displays (1)

S. Pastoor and M. Wopking, “3D displays: a review of current technologies,” Displays 17(2), 100–110 (1997).
[CrossRef]

J. Appl. Phys. (1)

G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
[CrossRef]

Langmuir (1)

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[CrossRef]

Nature (2)

P. J. Shannon, W. M. Gibbons, and S. T. Sun, “Patterned optical properties in photopolymerized surface-aligned liquid-crystal films,” Nature 368(6471), 532–533 (1994).
[CrossRef]

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Opt. Express (1)

Science (1)

B. W. Lee and N. A. Clark, “Alignment of liquid crystals with patterned isotropic surfaces,” Science 291(5513), 2576–2580 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

UV illumination set-up; the sample can be replaced by a detector with a pivot-able polarizer in order to measure the polarizability of the UV light.

Fig. 2
Fig. 2

The polarized optical microscopic (POM) images of the film in a cross Nicole state. The optic axis of the film is parallel to the polarizer in images. The number in each image represents the polarizability of light exposed on the alignment layer.

Fig. 3
Fig. 3

(a) Retardation values (Ro and Rth) of films with the polarizability of exposed UV light on photo-alignment layer. The error bars are the standard deviation of data of 5 film samples. (b) The stability of retardation values under thermal shock. The numbers are the thermal cycling number, and ‘H’ and ‘L’ mean the high temperature (60°C) and the room temperature (25°C), respectively, in the labels of horizontal axis. High and low polarizability values are 0.554 and 0.208, respectively.

Fig. 4
Fig. 4

(a) Incoherent two beam mixing method, where ‘A’ and ‘B’ lights are simultaneously exposed on the film. (b) Polarizability profile near the slit edge, where the polarization direction is sharply changed near the edge. (c) 3D film observed with polarized microscopy without (c-1) and with a quarter wave plate (c-2).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P=( I V I H )/( I V + I H ),
E M // E A ,when I A > I B , E M // E B ,when I A < I B ,

Metrics