J. Xi, L. Huo, J. Li, and X. Li, “Generic real-time uniform K-space sampling method for high-speed swept-source optical coherence tomography,” Opt. Express 18(9), 9511–9517 (2010).
[Crossref]
[PubMed]
S. Vergnole, D. Lévesque, and G. Lamouche, “Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography,” Opt. Express 18(10), 10446–10461 (2010).
[Crossref]
[PubMed]
K. Zhang and J. U. Kang, “Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT,” Opt. Express 18(22), 23472–23487 (2010).
[Crossref]
[PubMed]
K. K. H. Chan and S. Tang, “High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform,” Biomed. Opt. Express 1(5), 1309–1319 (2010).
[Crossref]
[PubMed]
K. Wang, Z. Ding, T. Wu, C. Wang, J. Meng, M. Chen, and L. Xu, “Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system,” Opt. Express 17(14), 12121–12131 (2009).
[Crossref]
[PubMed]
G. Liu, J. Zhang, L. Yu, T. Xie, and Z. Chen, “Real-time polarization-sensitive optical coherence tomography data processing with parallel computing,” Appl. Opt. 48(32), 6365–6370 (2009).
[Crossref]
[PubMed]
D. Hillmann, G. Huttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. SPIE 7372, 73720R (2009).
[Crossref]
T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79(11), 114301 (2008).
[Crossref]
[PubMed]
T. S. Sorensen, T. Schaeffter, K. O. Noe, and M. S. Hansen, “Accelerating the nonequispaced fast Fourier transform on commodity graphics hardware,” IEEE Trans. Med. Imaging 27(4), 538–547 (2008).
[Crossref]
[PubMed]
C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008).
[Crossref]
[PubMed]
Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett. 32(24), 3525–3527 (2007).
[Crossref]
[PubMed]
D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]
M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Proc. IEEE 93(2), 216–231 (2005).
[Crossref]
P. J. Beatty, D. G. Nishimura, and J. M. Pauly, “Rapid gridding reconstruction with a minimal oversampling ratio,” IEEE Trans. Med. Imaging 24(6), 799–808 (2005).
[Crossref]
[PubMed]
L. Greengard and J. Lee, “Accelerating the nonuniform Fast Fourier Transform,” SIAM Rev. 46(3), 443–454 (2004).
[Crossref]
A. W. Schaefer, J. J. Reynolds, D. L. Marks, and S. A. Boppart, “Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography,” IEEE Trans. Biomed. Eng. 51(1), 186–190 (2004).
[Crossref]
[PubMed]
M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[Crossref]
[PubMed]
G. E. Sarty, R. Bennett, and R. W. Cox, “Direct reconstruction of non-Cartesian k-space data using a nonuniform fast Fourier transform,” Magn. Reson. Med. 45(5), 908–915 (2001).
[Crossref]
[PubMed]
A. J. W. Duijndam and M. A. Schonewille, “Nonuniform fast Fourier transform,” Geophysics 64(2), 539–551 (1999).
[Crossref]
A. Dutt and V. Rokhlin, “Fast Fourier transforms for nonequispaced data,” SIAM J. Sci. Comput. 14(6), 1368–1393 (1993).
[Crossref]
J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski, “Selection of a convolution function for Fourier inversion using gridding [computerised tomography application],” IEEE Trans. Med. Imaging 10(3), 473–478 (1991).
[Crossref]
[PubMed]
J. D. O’Sullivan, “A fast sinc function gridding algorithm for fourier inversion in computer tomography,” IEEE Trans. Med. Imaging 4(4), 200–207 (1985).
[Crossref]
[PubMed]
D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]
P. J. Beatty, D. G. Nishimura, and J. M. Pauly, “Rapid gridding reconstruction with a minimal oversampling ratio,” IEEE Trans. Med. Imaging 24(6), 799–808 (2005).
[Crossref]
[PubMed]
G. E. Sarty, R. Bennett, and R. W. Cox, “Direct reconstruction of non-Cartesian k-space data using a nonuniform fast Fourier transform,” Magn. Reson. Med. 45(5), 908–915 (2001).
[Crossref]
[PubMed]
A. W. Schaefer, J. J. Reynolds, D. L. Marks, and S. A. Boppart, “Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography,” IEEE Trans. Biomed. Eng. 51(1), 186–190 (2004).
[Crossref]
[PubMed]
D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]
D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]
G. E. Sarty, R. Bennett, and R. W. Cox, “Direct reconstruction of non-Cartesian k-space data using a nonuniform fast Fourier transform,” Magn. Reson. Med. 45(5), 908–915 (2001).
[Crossref]
[PubMed]
A. J. W. Duijndam and M. A. Schonewille, “Nonuniform fast Fourier transform,” Geophysics 64(2), 539–551 (1999).
[Crossref]
M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[Crossref]
[PubMed]
A. Dutt and V. Rokhlin, “Fast Fourier transforms for nonequispaced data,” SIAM J. Sci. Comput. 14(6), 1368–1393 (1993).
[Crossref]
T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79(11), 114301 (2008).
[Crossref]
[PubMed]
J. A. Fessler and B. P. Sutton, “Nonuniform fast Fourier transforms using min-max interpolation,” IEEE Trans. Signal Process. 51(2), 560–574 (2003).
[Crossref]
M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Proc. IEEE 93(2), 216–231 (2005).
[Crossref]
D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]
M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[Crossref]
[PubMed]
L. Greengard and J. Lee, “Accelerating the nonuniform Fast Fourier Transform,” SIAM Rev. 46(3), 443–454 (2004).
[Crossref]
T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79(11), 114301 (2008).
[Crossref]
[PubMed]
T. S. Sorensen, T. Schaeffter, K. O. Noe, and M. S. Hansen, “Accelerating the nonequispaced fast Fourier transform on commodity graphics hardware,” IEEE Trans. Med. Imaging 27(4), 538–547 (2008).
[Crossref]
[PubMed]
D. Hillmann, G. Huttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. SPIE 7372, 73720R (2009).
[Crossref]
C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008).
[Crossref]
[PubMed]
D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]
D. Hillmann, G. Huttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. SPIE 7372, 73720R (2009).
[Crossref]
T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79(11), 114301 (2008).
[Crossref]
[PubMed]
J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski, “Selection of a convolution function for Fourier inversion using gridding [computerised tomography application],” IEEE Trans. Med. Imaging 10(3), 473–478 (1991).
[Crossref]
[PubMed]
M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Proc. IEEE 93(2), 216–231 (2005).
[Crossref]
M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[Crossref]
[PubMed]
D. Hillmann, G. Huttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. SPIE 7372, 73720R (2009).
[Crossref]
M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[Crossref]
[PubMed]
L. Greengard and J. Lee, “Accelerating the nonuniform Fast Fourier Transform,” SIAM Rev. 46(3), 443–454 (2004).
[Crossref]
J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski, “Selection of a convolution function for Fourier inversion using gridding [computerised tomography application],” IEEE Trans. Med. Imaging 10(3), 473–478 (1991).
[Crossref]
[PubMed]
A. W. Schaefer, J. J. Reynolds, D. L. Marks, and S. A. Boppart, “Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography,” IEEE Trans. Biomed. Eng. 51(1), 186–190 (2004).
[Crossref]
[PubMed]
J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski, “Selection of a convolution function for Fourier inversion using gridding [computerised tomography application],” IEEE Trans. Med. Imaging 10(3), 473–478 (1991).
[Crossref]
[PubMed]
P. J. Beatty, D. G. Nishimura, and J. M. Pauly, “Rapid gridding reconstruction with a minimal oversampling ratio,” IEEE Trans. Med. Imaging 24(6), 799–808 (2005).
[Crossref]
[PubMed]
J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski, “Selection of a convolution function for Fourier inversion using gridding [computerised tomography application],” IEEE Trans. Med. Imaging 10(3), 473–478 (1991).
[Crossref]
[PubMed]
T. S. Sorensen, T. Schaeffter, K. O. Noe, and M. S. Hansen, “Accelerating the nonequispaced fast Fourier transform on commodity graphics hardware,” IEEE Trans. Med. Imaging 27(4), 538–547 (2008).
[Crossref]
[PubMed]
J. D. O’Sullivan, “A fast sinc function gridding algorithm for fourier inversion in computer tomography,” IEEE Trans. Med. Imaging 4(4), 200–207 (1985).
[Crossref]
[PubMed]
P. J. Beatty, D. G. Nishimura, and J. M. Pauly, “Rapid gridding reconstruction with a minimal oversampling ratio,” IEEE Trans. Med. Imaging 24(6), 799–808 (2005).
[Crossref]
[PubMed]
A. W. Schaefer, J. J. Reynolds, D. L. Marks, and S. A. Boppart, “Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography,” IEEE Trans. Biomed. Eng. 51(1), 186–190 (2004).
[Crossref]
[PubMed]
A. Dutt and V. Rokhlin, “Fast Fourier transforms for nonequispaced data,” SIAM J. Sci. Comput. 14(6), 1368–1393 (1993).
[Crossref]
G. E. Sarty, R. Bennett, and R. W. Cox, “Direct reconstruction of non-Cartesian k-space data using a nonuniform fast Fourier transform,” Magn. Reson. Med. 45(5), 908–915 (2001).
[Crossref]
[PubMed]
A. W. Schaefer, J. J. Reynolds, D. L. Marks, and S. A. Boppart, “Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography,” IEEE Trans. Biomed. Eng. 51(1), 186–190 (2004).
[Crossref]
[PubMed]
T. S. Sorensen, T. Schaeffter, K. O. Noe, and M. S. Hansen, “Accelerating the nonequispaced fast Fourier transform on commodity graphics hardware,” IEEE Trans. Med. Imaging 27(4), 538–547 (2008).
[Crossref]
[PubMed]
D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]
A. J. W. Duijndam and M. A. Schonewille, “Nonuniform fast Fourier transform,” Geophysics 64(2), 539–551 (1999).
[Crossref]
T. S. Sorensen, T. Schaeffter, K. O. Noe, and M. S. Hansen, “Accelerating the nonequispaced fast Fourier transform on commodity graphics hardware,” IEEE Trans. Med. Imaging 27(4), 538–547 (2008).
[Crossref]
[PubMed]
M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[Crossref]
[PubMed]
J. A. Fessler and B. P. Sutton, “Nonuniform fast Fourier transforms using min-max interpolation,” IEEE Trans. Signal Process. 51(2), 560–574 (2003).
[Crossref]
T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79(11), 114301 (2008).
[Crossref]
[PubMed]
M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[Crossref]
[PubMed]
K. K. H. Chan and S. Tang, “High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform,” Biomed. Opt. Express 1(5), 1309–1319 (2010).
[Crossref]
[PubMed]
K. Zhang and J. U. Kang, “Real-time intraoperative 4D full-range FD-OCT based on the dual graphics processing units architecture for microsurgery guidance,” Biomed. Opt. Express 2(4), 764–770 (2011).
[Crossref]
[PubMed]
B. Liu, E. Azimi, and M. E. Brezinski, “True logarithmic amplification of frequency clock in SS-OCT for calibration,” Biomed. Opt. Express 2(6), 1769–1777 (2011).
[Crossref]
[PubMed]
A. J. W. Duijndam and M. A. Schonewille, “Nonuniform fast Fourier transform,” Geophysics 64(2), 539–551 (1999).
[Crossref]
A. W. Schaefer, J. J. Reynolds, D. L. Marks, and S. A. Boppart, “Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography,” IEEE Trans. Biomed. Eng. 51(1), 186–190 (2004).
[Crossref]
[PubMed]
J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski, “Selection of a convolution function for Fourier inversion using gridding [computerised tomography application],” IEEE Trans. Med. Imaging 10(3), 473–478 (1991).
[Crossref]
[PubMed]
P. J. Beatty, D. G. Nishimura, and J. M. Pauly, “Rapid gridding reconstruction with a minimal oversampling ratio,” IEEE Trans. Med. Imaging 24(6), 799–808 (2005).
[Crossref]
[PubMed]
J. D. O’Sullivan, “A fast sinc function gridding algorithm for fourier inversion in computer tomography,” IEEE Trans. Med. Imaging 4(4), 200–207 (1985).
[Crossref]
[PubMed]
T. S. Sorensen, T. Schaeffter, K. O. Noe, and M. S. Hansen, “Accelerating the nonequispaced fast Fourier transform on commodity graphics hardware,” IEEE Trans. Med. Imaging 27(4), 538–547 (2008).
[Crossref]
[PubMed]
J. A. Fessler and B. P. Sutton, “Nonuniform fast Fourier transforms using min-max interpolation,” IEEE Trans. Signal Process. 51(2), 560–574 (2003).
[Crossref]
G. E. Sarty, R. Bennett, and R. W. Cox, “Direct reconstruction of non-Cartesian k-space data using a nonuniform fast Fourier transform,” Magn. Reson. Med. 45(5), 908–915 (2001).
[Crossref]
[PubMed]
D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]
M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[Crossref]
[PubMed]
M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[Crossref]
[PubMed]
C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008).
[Crossref]
[PubMed]
K. Wang, Z. Ding, T. Wu, C. Wang, J. Meng, M. Chen, and L. Xu, “Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system,” Opt. Express 17(14), 12121–12131 (2009).
[Crossref]
[PubMed]
J. Xi, L. Huo, J. Li, and X. Li, “Generic real-time uniform K-space sampling method for high-speed swept-source optical coherence tomography,” Opt. Express 18(9), 9511–9517 (2010).
[Crossref]
[PubMed]
S. Vergnole, D. Lévesque, and G. Lamouche, “Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography,” Opt. Express 18(10), 10446–10461 (2010).
[Crossref]
[PubMed]
K. Zhang and J. U. Kang, “Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT,” Opt. Express 18(22), 23472–23487 (2010).
[Crossref]
[PubMed]
M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Proc. IEEE 93(2), 216–231 (2005).
[Crossref]
D. Hillmann, G. Huttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. SPIE 7372, 73720R (2009).
[Crossref]
T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79(11), 114301 (2008).
[Crossref]
[PubMed]
A. Dutt and V. Rokhlin, “Fast Fourier transforms for nonequispaced data,” SIAM J. Sci. Comput. 14(6), 1368–1393 (1993).
[Crossref]
L. Greengard and J. Lee, “Accelerating the nonuniform Fast Fourier Transform,” SIAM Rev. 46(3), 443–454 (2004).
[Crossref]
D. Potts, G. Steidl, and M. Tasche, “Fast Fourier transforms for nonequispaced data: a tutorial,” in Modern Sampling Theory: Mathematics and Applications, J. J. Benedetto and P. Ferreira, eds. (Springer, 2001), Chap. 12, 249–274.
OpenMP Architecture Review Board, “The OpenMP API specification for parallel programming,” http://www.openmp.org/ .