Abstract

Structural and near-infrared (NIR) emission properties were investigated in the Tm3+-Dy3+ codoped Ge-Ga-based amorphous chalcohalide films fabricated by pulsed laser deposition. The homogeneous films illustrated similar random network to the glass target according to the measurements of X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. An 808 nm laser diode pumping generated a superbroadband NIR emission ranging from 1050 to 1570 nm and the other intense broadband NIR emission centered at ~1800 nm, which was attributed to the efficient energy transfer from Tm3+ to Dy3+ ions. This was further verified by the broad-range excitation measurements near the Urbach optical-absorption edge involved defect states. The results shed light on the potential highly integrated planar optical device applications of the codoped amorphous chalcohalide films.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ramachandran and S. G. Bishop, “Excitation of Er3+ emission by host glass absorption in sputtered films of Er-doped Ge10As40Se25S25 glass,” Appl. Phys. Lett. 73(22), 3196–3198 (1998).
    [CrossRef]
  2. A. P. Caricato, M. D. Sario, M. Fernandez, M. Ferrari, G. Leggieri, A. Luches, M. Martino, M. Montagna, F. Prudenzano, and A. Jha, “Chalcogenide glass thin film waveguides deposited by excimer laser ablation,” Appl. Surf. Sci. 208–209, 632–637 (2003).
    [CrossRef]
  3. J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express 14(5), 1797–1803 (2006).
    [CrossRef] [PubMed]
  4. M. Frumar, B. Frumarova, P. Nemec, T. Wagner, J. Jedelsky, and M. Hrdlicka, “Thin chalcogenide films prepared by pulsed laser doposition: new amorphous materials applicable in optoelectronics and chemical sensors,” J. Non-Cryst. Solids 352(6-7), 544–561 (2006).
    [CrossRef]
  5. V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga-Ge-Sb-S(Se) pulsed laser doposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
    [CrossRef]
  6. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  7. M. Y. Peng, G. P. Dong, L. Wondraczek, L. L. Zhang, N. Zhang, and J. R. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
    [CrossRef]
  8. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
    [CrossRef]
  9. M. Y. Peng, J. R. Qiu, D. P. Chen, X. G. Meng, I. Yang, X. W. Jiang, and C. S. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
    [CrossRef] [PubMed]
  10. T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88(19), 191912 (2006).
    [CrossRef]
  11. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
    [CrossRef] [PubMed]
  12. H. T. Sun, F. Shimaoka, Y. Miwa, J. Ruan, M. Fujii, J. R. Qiu, and S. Hayashi, “Sensitized superbroadband near-IR emission in bismuth glass/Si nanocrystal superlattices,” Opt. Lett. 35(13), 2215–2217 (2010).
    [CrossRef] [PubMed]
  13. H.-T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hyashi, and S. Deki, “Strong ultra-broadband near-infrared photoluminescence from bismuth-embedded zeolites and their derivatives,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3694–3698 (2009).
    [CrossRef]
  14. J. Ruan, G. P. Dong, X. F. Liu, Q. Zhang, D. P. Chen, and J. R. Qiu, “Enhanced broadband near-infrared emission and energy transfer in Bi-Tm-codoped germanate glasses for broadband optical amplification,” Opt. Lett. 34(16), 2486–2488 (2009).
    [CrossRef] [PubMed]
  15. B. Zhou, H. Lin, B. J. Chen, and E. Y. B. Pun, “Superbroadband near-infrared emission in Tm-Bi codoped sodium-germanium-gallate glasses,” Opt. Express 19(7), 6514–6523 (2011).
    [CrossRef] [PubMed]
  16. B. Zhou and E. Y. B. Pun, “Superbroadband near-IR emission from praseodymium-doped bismuth gallate glasses,” Opt. Lett. 36(15), 2958–2960 (2011).
    [CrossRef] [PubMed]
  17. H. T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett. 36(2), 100–102 (2011).
    [CrossRef] [PubMed]
  18. L. H. Huang, A. Jha, S. X. Shen, and X. B. Liu, “Broadband emission in Er3+-Tm3+ codoped tellurite fibre,” Opt. Express 12(11), 2429–2434 (2004).
    [CrossRef] [PubMed]
  19. Y. S. Xu, D. P. Chen, W. Wang, Q. Zhang, H. D. Zeng, C. Shen, and G. R. Chen, “Broadband near-infrared emission in Er3+-Tm3+ codoped chalcohalide glasses,” Opt. Lett. 33(20), 2293–2295 (2008).
    [CrossRef] [PubMed]
  20. T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86(13), 131903 (2005).
    [CrossRef]
  21. Y. X. Zhuang, Y. Teng, J. Luo, B. Zhu, Y. Z. Chi, E. Wu, H. P. Zeng, and J. R. Qiu, “Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4:Cr4+ nanocrystals,” Appl. Phys. Lett. 95(11), 111913 (2009).
    [CrossRef]
  22. S. F. Zhou, N. Jiang, B. T. Wu, J. H. Hao, and J. R. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
    [CrossRef]
  23. G. P. Dong, B. T. Wu, F. T. Zhang, L. L. Zhang, M. Y. Peng, D. D. Chen, E. Wu, and J. R. Qiu, “Broadband near-infrared luminescence and tunable optical amplification around 1.55 μm and 1.33 μm of PbS quantum dots in glasses,” J. Alloy. Comp. 509(38), 9335–9339 (2011).
    [CrossRef]
  24. J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
    [CrossRef]
  25. M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M. Mikulla, and J. Wagner, “High-power 1.9-μm diode laser arrays with reduced far-field angle,” IEEE Photon. Technol. Lett. 18(4), 628–630 (2006).
    [CrossRef]
  26. J. Z. Wang, Y. Xia, Y. Shi, Z. Q. Shi, L. Pu, Z. S. Tao, and F. Lu, “1.54 μm photoluminescence emission and oxygen vacancy as sensitizer in Er-doped HfO2 films,” Appl. Phys. Lett. 91(19), 191115 (2007).
    [CrossRef]
  27. H. T. Guo, L. Liu, Y. Q. Wang, C. Q. Hou, W. N. Li, M. Lu, K. S. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+-doped and Dy3+, Tm3+-codoped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express 17(17), 15350–15358 (2009).
    [CrossRef] [PubMed]
  28. H. T. Guo, Y. B. Zhai, H. Z. Tao, G. P. Dong, and X. J. Zhao, “Structure and properties of GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Sci. Eng. B 138(3), 235–240 (2007).
    [CrossRef]
  29. X. F. Wang, S. X. Gu, J. G. Yu, X. J. Zhao, and H. Z. Tao, “Structural investigations of GeS2-Ga2S3-CdS chalcogenide glasses using Raman spectroscopy,” Solid State Commun. 130(7), 459–464 (2004).
    [CrossRef]
  30. T. H. Lee, Y. K. Kwon, and J. Heo, “Local structure and its effect on the oscillator strengths and emission properties of Ho3+ in chalcohalide glasses,” J. Non-Cryst. Solids 354(27), 3107–3112 (2008).
    [CrossRef]
  31. J. H. Song and J. Heo, “Effect of CsBr addition on the emission properties of TM3+ ion in Ge-Ga-S glass,” J. Mater. Res. 21(09), 2323–2330 (2006).
    [CrossRef]
  32. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, 1979).
  33. J. Tauc, Amorphous and Liquid Semiconductors (Plenum, New York, 1974).
  34. S. Q. Gu, S. Ramachandran, E. E. Reuter, D. A. Turnbull, J. T. Verdeyen, and S. G. Bishop, “Novel broad-band excitation of Er3+ luminescence in chalcogenide glasses,” Appl. Phys. Lett. 66(6), 670–672 (1995).
    [CrossRef]
  35. S. G. Bishop, D. A. Turnbull, and B. G. Aitken, “Excitation of rare earth emission in chalcogenide glasses by broadband Urbach edge absorption,” J. Non-Cryst. Solids 266–269, 876–883 (2000).
    [CrossRef]
  36. J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212(2-3), 151–156 (1997).
    [CrossRef]

2011 (6)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

M. Y. Peng, G. P. Dong, L. Wondraczek, L. L. Zhang, N. Zhang, and J. R. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
[CrossRef]

G. P. Dong, B. T. Wu, F. T. Zhang, L. L. Zhang, M. Y. Peng, D. D. Chen, E. Wu, and J. R. Qiu, “Broadband near-infrared luminescence and tunable optical amplification around 1.55 μm and 1.33 μm of PbS quantum dots in glasses,” J. Alloy. Comp. 509(38), 9335–9339 (2011).
[CrossRef]

H. T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett. 36(2), 100–102 (2011).
[CrossRef] [PubMed]

B. Zhou, H. Lin, B. J. Chen, and E. Y. B. Pun, “Superbroadband near-infrared emission in Tm-Bi codoped sodium-germanium-gallate glasses,” Opt. Express 19(7), 6514–6523 (2011).
[CrossRef] [PubMed]

B. Zhou and E. Y. B. Pun, “Superbroadband near-IR emission from praseodymium-doped bismuth gallate glasses,” Opt. Lett. 36(15), 2958–2960 (2011).
[CrossRef] [PubMed]

2010 (2)

H. T. Sun, F. Shimaoka, Y. Miwa, J. Ruan, M. Fujii, J. R. Qiu, and S. Hayashi, “Sensitized superbroadband near-IR emission in bismuth glass/Si nanocrystal superlattices,” Opt. Lett. 35(13), 2215–2217 (2010).
[CrossRef] [PubMed]

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga-Ge-Sb-S(Se) pulsed laser doposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

2009 (6)

Y. X. Zhuang, Y. Teng, J. Luo, B. Zhu, Y. Z. Chi, E. Wu, H. P. Zeng, and J. R. Qiu, “Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4:Cr4+ nanocrystals,” Appl. Phys. Lett. 95(11), 111913 (2009).
[CrossRef]

S. F. Zhou, N. Jiang, B. T. Wu, J. H. Hao, and J. R. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[CrossRef]

H.-T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hyashi, and S. Deki, “Strong ultra-broadband near-infrared photoluminescence from bismuth-embedded zeolites and their derivatives,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3694–3698 (2009).
[CrossRef]

J. Ruan, G. P. Dong, X. F. Liu, Q. Zhang, D. P. Chen, and J. R. Qiu, “Enhanced broadband near-infrared emission and energy transfer in Bi-Tm-codoped germanate glasses for broadband optical amplification,” Opt. Lett. 34(16), 2486–2488 (2009).
[CrossRef] [PubMed]

H. T. Guo, L. Liu, Y. Q. Wang, C. Q. Hou, W. N. Li, M. Lu, K. S. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+-doped and Dy3+, Tm3+-codoped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express 17(17), 15350–15358 (2009).
[CrossRef] [PubMed]

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

2008 (2)

Y. S. Xu, D. P. Chen, W. Wang, Q. Zhang, H. D. Zeng, C. Shen, and G. R. Chen, “Broadband near-infrared emission in Er3+-Tm3+ codoped chalcohalide glasses,” Opt. Lett. 33(20), 2293–2295 (2008).
[CrossRef] [PubMed]

T. H. Lee, Y. K. Kwon, and J. Heo, “Local structure and its effect on the oscillator strengths and emission properties of Ho3+ in chalcohalide glasses,” J. Non-Cryst. Solids 354(27), 3107–3112 (2008).
[CrossRef]

2007 (2)

J. Z. Wang, Y. Xia, Y. Shi, Z. Q. Shi, L. Pu, Z. S. Tao, and F. Lu, “1.54 μm photoluminescence emission and oxygen vacancy as sensitizer in Er-doped HfO2 films,” Appl. Phys. Lett. 91(19), 191115 (2007).
[CrossRef]

H. T. Guo, Y. B. Zhai, H. Z. Tao, G. P. Dong, and X. J. Zhao, “Structure and properties of GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Sci. Eng. B 138(3), 235–240 (2007).
[CrossRef]

2006 (5)

M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M. Mikulla, and J. Wagner, “High-power 1.9-μm diode laser arrays with reduced far-field angle,” IEEE Photon. Technol. Lett. 18(4), 628–630 (2006).
[CrossRef]

M. Frumar, B. Frumarova, P. Nemec, T. Wagner, J. Jedelsky, and M. Hrdlicka, “Thin chalcogenide films prepared by pulsed laser doposition: new amorphous materials applicable in optoelectronics and chemical sensors,” J. Non-Cryst. Solids 352(6-7), 544–561 (2006).
[CrossRef]

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88(19), 191912 (2006).
[CrossRef]

J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express 14(5), 1797–1803 (2006).
[CrossRef] [PubMed]

J. H. Song and J. Heo, “Effect of CsBr addition on the emission properties of TM3+ ion in Ge-Ga-S glass,” J. Mater. Res. 21(09), 2323–2330 (2006).
[CrossRef]

2005 (1)

T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86(13), 131903 (2005).
[CrossRef]

2004 (3)

2003 (2)

A. P. Caricato, M. D. Sario, M. Fernandez, M. Ferrari, G. Leggieri, A. Luches, M. Martino, M. Montagna, F. Prudenzano, and A. Jha, “Chalcogenide glass thin film waveguides deposited by excimer laser ablation,” Appl. Surf. Sci. 208–209, 632–637 (2003).
[CrossRef]

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[CrossRef]

2001 (1)

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
[CrossRef]

2000 (1)

S. G. Bishop, D. A. Turnbull, and B. G. Aitken, “Excitation of rare earth emission in chalcogenide glasses by broadband Urbach edge absorption,” J. Non-Cryst. Solids 266–269, 876–883 (2000).
[CrossRef]

1998 (1)

S. Ramachandran and S. G. Bishop, “Excitation of Er3+ emission by host glass absorption in sputtered films of Er-doped Ge10As40Se25S25 glass,” Appl. Phys. Lett. 73(22), 3196–3198 (1998).
[CrossRef]

1997 (1)

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212(2-3), 151–156 (1997).
[CrossRef]

1995 (1)

S. Q. Gu, S. Ramachandran, E. E. Reuter, D. A. Turnbull, J. T. Verdeyen, and S. G. Bishop, “Novel broad-band excitation of Er3+ luminescence in chalcogenide glasses,” Appl. Phys. Lett. 66(6), 670–672 (1995).
[CrossRef]

Adam, J. L.

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga-Ge-Sb-S(Se) pulsed laser doposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[CrossRef]

Aggarwal, I. D.

Aitken, B. G.

S. G. Bishop, D. A. Turnbull, and B. G. Aitken, “Excitation of rare earth emission in chalcogenide glasses by broadband Urbach edge absorption,” J. Non-Cryst. Solids 266–269, 876–883 (2000).
[CrossRef]

Akada, T.

Bishop, S. G.

S. G. Bishop, D. A. Turnbull, and B. G. Aitken, “Excitation of rare earth emission in chalcogenide glasses by broadband Urbach edge absorption,” J. Non-Cryst. Solids 266–269, 876–883 (2000).
[CrossRef]

S. Ramachandran and S. G. Bishop, “Excitation of Er3+ emission by host glass absorption in sputtered films of Er-doped Ge10As40Se25S25 glass,” Appl. Phys. Lett. 73(22), 3196–3198 (1998).
[CrossRef]

S. Q. Gu, S. Ramachandran, E. E. Reuter, D. A. Turnbull, J. T. Verdeyen, and S. G. Bishop, “Novel broad-band excitation of Er3+ luminescence in chalcogenide glasses,” Appl. Phys. Lett. 66(6), 670–672 (1995).
[CrossRef]

Caricato, A. P.

A. P. Caricato, M. D. Sario, M. Fernandez, M. Ferrari, G. Leggieri, A. Luches, M. Martino, M. Montagna, F. Prudenzano, and A. Jha, “Chalcogenide glass thin film waveguides deposited by excimer laser ablation,” Appl. Surf. Sci. 208–209, 632–637 (2003).
[CrossRef]

Charpentier, F.

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga-Ge-Sb-S(Se) pulsed laser doposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

Charrier, J.

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga-Ge-Sb-S(Se) pulsed laser doposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

Chen, B. J.

Chen, D. D.

G. P. Dong, B. T. Wu, F. T. Zhang, L. L. Zhang, M. Y. Peng, D. D. Chen, E. Wu, and J. R. Qiu, “Broadband near-infrared luminescence and tunable optical amplification around 1.55 μm and 1.33 μm of PbS quantum dots in glasses,” J. Alloy. Comp. 509(38), 9335–9339 (2011).
[CrossRef]

Chen, D. P.

Chen, G. R.

Chi, Y. Z.

Y. X. Zhuang, Y. Teng, J. Luo, B. Zhu, Y. Z. Chi, E. Wu, H. P. Zeng, and J. R. Qiu, “Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4:Cr4+ nanocrystals,” Appl. Phys. Lett. 95(11), 111913 (2009).
[CrossRef]

Cho, W. Y.

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212(2-3), 151–156 (1997).
[CrossRef]

Chung, W. J.

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212(2-3), 151–156 (1997).
[CrossRef]

Deki, S.

H.-T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hyashi, and S. Deki, “Strong ultra-broadband near-infrared photoluminescence from bismuth-embedded zeolites and their derivatives,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3694–3698 (2009).
[CrossRef]

Dong, G. P.

G. P. Dong, B. T. Wu, F. T. Zhang, L. L. Zhang, M. Y. Peng, D. D. Chen, E. Wu, and J. R. Qiu, “Broadband near-infrared luminescence and tunable optical amplification around 1.55 μm and 1.33 μm of PbS quantum dots in glasses,” J. Alloy. Comp. 509(38), 9335–9339 (2011).
[CrossRef]

M. Y. Peng, G. P. Dong, L. Wondraczek, L. L. Zhang, N. Zhang, and J. R. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
[CrossRef]

J. Ruan, G. P. Dong, X. F. Liu, Q. Zhang, D. P. Chen, and J. R. Qiu, “Enhanced broadband near-infrared emission and energy transfer in Bi-Tm-codoped germanate glasses for broadband optical amplification,” Opt. Lett. 34(16), 2486–2488 (2009).
[CrossRef] [PubMed]

H. T. Guo, Y. B. Zhai, H. Z. Tao, G. P. Dong, and X. J. Zhao, “Structure and properties of GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Sci. Eng. B 138(3), 235–240 (2007).
[CrossRef]

Doualan, J. L.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[CrossRef]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Fernandez, M.

A. P. Caricato, M. D. Sario, M. Fernandez, M. Ferrari, G. Leggieri, A. Luches, M. Martino, M. Montagna, F. Prudenzano, and A. Jha, “Chalcogenide glass thin film waveguides deposited by excimer laser ablation,” Appl. Surf. Sci. 208–209, 632–637 (2003).
[CrossRef]

Ferrari, M.

A. P. Caricato, M. D. Sario, M. Fernandez, M. Ferrari, G. Leggieri, A. Luches, M. Martino, M. Montagna, F. Prudenzano, and A. Jha, “Chalcogenide glass thin film waveguides deposited by excimer laser ablation,” Appl. Surf. Sci. 208–209, 632–637 (2003).
[CrossRef]

Frantz, J. A.

Frumar, M.

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga-Ge-Sb-S(Se) pulsed laser doposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

M. Frumar, B. Frumarova, P. Nemec, T. Wagner, J. Jedelsky, and M. Hrdlicka, “Thin chalcogenide films prepared by pulsed laser doposition: new amorphous materials applicable in optoelectronics and chemical sensors,” J. Non-Cryst. Solids 352(6-7), 544–561 (2006).
[CrossRef]

Frumarova, B.

M. Frumar, B. Frumarova, P. Nemec, T. Wagner, J. Jedelsky, and M. Hrdlicka, “Thin chalcogenide films prepared by pulsed laser doposition: new amorphous materials applicable in optoelectronics and chemical sensors,” J. Non-Cryst. Solids 352(6-7), 544–561 (2006).
[CrossRef]

Fujii, M.

Fujimoto, Y.

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
[CrossRef]

Gao, H.

Girard, S.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[CrossRef]

Gu, S. Q.

S. Q. Gu, S. Ramachandran, E. E. Reuter, D. A. Turnbull, J. T. Verdeyen, and S. G. Bishop, “Novel broad-band excitation of Er3+ luminescence in chalcogenide glasses,” Appl. Phys. Lett. 66(6), 670–672 (1995).
[CrossRef]

Gu, S. X.

X. F. Wang, S. X. Gu, J. G. Yu, X. J. Zhao, and H. Z. Tao, “Structural investigations of GeS2-Ga2S3-CdS chalcogenide glasses using Raman spectroscopy,” Solid State Commun. 130(7), 459–464 (2004).
[CrossRef]

Guin, J. P.

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga-Ge-Sb-S(Se) pulsed laser doposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

Guo, H. T.

Hao, J. H.

S. F. Zhou, N. Jiang, B. T. Wu, J. H. Hao, and J. R. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[CrossRef]

Haquin, H.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[CrossRef]

Hayashi, S.

Heo, J.

T. H. Lee, Y. K. Kwon, and J. Heo, “Local structure and its effect on the oscillator strengths and emission properties of Ho3+ in chalcohalide glasses,” J. Non-Cryst. Solids 354(27), 3107–3112 (2008).
[CrossRef]

J. H. Song and J. Heo, “Effect of CsBr addition on the emission properties of TM3+ ion in Ge-Ga-S glass,” J. Mater. Res. 21(09), 2323–2330 (2006).
[CrossRef]

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212(2-3), 151–156 (1997).
[CrossRef]

Hewak, D. W.

Hosokawa, A.

H.-T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hyashi, and S. Deki, “Strong ultra-broadband near-infrared photoluminescence from bismuth-embedded zeolites and their derivatives,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3694–3698 (2009).
[CrossRef]

Hou, C. Q.

Hrdlicka, M.

M. Frumar, B. Frumarova, P. Nemec, T. Wagner, J. Jedelsky, and M. Hrdlicka, “Thin chalcogenide films prepared by pulsed laser doposition: new amorphous materials applicable in optoelectronics and chemical sensors,” J. Non-Cryst. Solids 352(6-7), 544–561 (2006).
[CrossRef]

Huang, L. H.

Hughes, M. A.

Hyashi, S.

H.-T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hyashi, and S. Deki, “Strong ultra-broadband near-infrared photoluminescence from bismuth-embedded zeolites and their derivatives,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3694–3698 (2009).
[CrossRef]

Jedelsky, J.

M. Frumar, B. Frumarova, P. Nemec, T. Wagner, J. Jedelsky, and M. Hrdlicka, “Thin chalcogenide films prepared by pulsed laser doposition: new amorphous materials applicable in optoelectronics and chemical sensors,” J. Non-Cryst. Solids 352(6-7), 544–561 (2006).
[CrossRef]

Jha, A.

L. H. Huang, A. Jha, S. X. Shen, and X. B. Liu, “Broadband emission in Er3+-Tm3+ codoped tellurite fibre,” Opt. Express 12(11), 2429–2434 (2004).
[CrossRef] [PubMed]

A. P. Caricato, M. D. Sario, M. Fernandez, M. Ferrari, G. Leggieri, A. Luches, M. Martino, M. Montagna, F. Prudenzano, and A. Jha, “Chalcogenide glass thin film waveguides deposited by excimer laser ablation,” Appl. Surf. Sci. 208–209, 632–637 (2003).
[CrossRef]

Jiang, N.

S. F. Zhou, N. Jiang, B. T. Wu, J. H. Hao, and J. R. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[CrossRef]

Jiang, X. W.

Jurdyc, A. M.

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga-Ge-Sb-S(Se) pulsed laser doposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

Kaufel, G.

M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M. Mikulla, and J. Wagner, “High-power 1.9-μm diode laser arrays with reduced far-field angle,” IEEE Photon. Technol. Lett. 18(4), 628–630 (2006).
[CrossRef]

Kelemen, M. T.

M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M. Mikulla, and J. Wagner, “High-power 1.9-μm diode laser arrays with reduced far-field angle,” IEEE Photon. Technol. Lett. 18(4), 628–630 (2006).
[CrossRef]

Kwon, Y. K.

T. H. Lee, Y. K. Kwon, and J. Heo, “Local structure and its effect on the oscillator strengths and emission properties of Ho3+ in chalcohalide glasses,” J. Non-Cryst. Solids 354(27), 3107–3112 (2008).
[CrossRef]

Lee, T. H.

T. H. Lee, Y. K. Kwon, and J. Heo, “Local structure and its effect on the oscillator strengths and emission properties of Ho3+ in chalcohalide glasses,” J. Non-Cryst. Solids 354(27), 3107–3112 (2008).
[CrossRef]

Leggieri, G.

A. P. Caricato, M. D. Sario, M. Fernandez, M. Ferrari, G. Leggieri, A. Luches, M. Martino, M. Montagna, F. Prudenzano, and A. Jha, “Chalcogenide glass thin film waveguides deposited by excimer laser ablation,” Appl. Surf. Sci. 208–209, 632–637 (2003).
[CrossRef]

Lhermite, H.

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga-Ge-Sb-S(Se) pulsed laser doposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

Li, W. N.

Lin, H.

Liu, L.

Liu, X. B.

Liu, X. F.

Lu, F.

J. Z. Wang, Y. Xia, Y. Shi, Z. Q. Shi, L. Pu, Z. S. Tao, and F. Lu, “1.54 μm photoluminescence emission and oxygen vacancy as sensitizer in Er-doped HfO2 films,” Appl. Phys. Lett. 91(19), 191115 (2007).
[CrossRef]

Lu, M.

Luches, A.

A. P. Caricato, M. D. Sario, M. Fernandez, M. Ferrari, G. Leggieri, A. Luches, M. Martino, M. Montagna, F. Prudenzano, and A. Jha, “Chalcogenide glass thin film waveguides deposited by excimer laser ablation,” Appl. Surf. Sci. 208–209, 632–637 (2003).
[CrossRef]

Luo, J.

Y. X. Zhuang, Y. Teng, J. Luo, B. Zhu, Y. Z. Chi, E. Wu, H. P. Zeng, and J. R. Qiu, “Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4:Cr4+ nanocrystals,” Appl. Phys. Lett. 95(11), 111913 (2009).
[CrossRef]

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Martino, M.

A. P. Caricato, M. D. Sario, M. Fernandez, M. Ferrari, G. Leggieri, A. Luches, M. Martino, M. Montagna, F. Prudenzano, and A. Jha, “Chalcogenide glass thin film waveguides deposited by excimer laser ablation,” Appl. Surf. Sci. 208–209, 632–637 (2003).
[CrossRef]

Meng, X. G.

Mikulla, M.

M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M. Mikulla, and J. Wagner, “High-power 1.9-μm diode laser arrays with reduced far-field angle,” IEEE Photon. Technol. Lett. 18(4), 628–630 (2006).
[CrossRef]

Miwa, Y.

H. T. Sun, F. Shimaoka, Y. Miwa, J. Ruan, M. Fujii, J. R. Qiu, and S. Hayashi, “Sensitized superbroadband near-IR emission in bismuth glass/Si nanocrystal superlattices,” Opt. Lett. 35(13), 2215–2217 (2010).
[CrossRef] [PubMed]

H.-T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hyashi, and S. Deki, “Strong ultra-broadband near-infrared photoluminescence from bismuth-embedded zeolites and their derivatives,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3694–3698 (2009).
[CrossRef]

Mizuhata, M.

H.-T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hyashi, and S. Deki, “Strong ultra-broadband near-infrared photoluminescence from bismuth-embedded zeolites and their derivatives,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3694–3698 (2009).
[CrossRef]

Montagna, M.

A. P. Caricato, M. D. Sario, M. Fernandez, M. Ferrari, G. Leggieri, A. Luches, M. Martino, M. Montagna, F. Prudenzano, and A. Jha, “Chalcogenide glass thin film waveguides deposited by excimer laser ablation,” Appl. Surf. Sci. 208–209, 632–637 (2003).
[CrossRef]

Montagne, J.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[CrossRef]

Moreac, A.

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga-Ge-Sb-S(Se) pulsed laser doposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

Moritz, R.

M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M. Mikulla, and J. Wagner, “High-power 1.9-μm diode laser arrays with reduced far-field angle,” IEEE Photon. Technol. Lett. 18(4), 628–630 (2006).
[CrossRef]

Murugan, G. S.

T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86(13), 131903 (2005).
[CrossRef]

Nakatsuka, M.

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
[CrossRef]

Nazabal, V.

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga-Ge-Sb-S(Se) pulsed laser doposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

Nemec, P.

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga-Ge-Sb-S(Se) pulsed laser doposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

M. Frumar, B. Frumarova, P. Nemec, T. Wagner, J. Jedelsky, and M. Hrdlicka, “Thin chalcogenide films prepared by pulsed laser doposition: new amorphous materials applicable in optoelectronics and chemical sensors,” J. Non-Cryst. Solids 352(6-7), 544–561 (2006).
[CrossRef]

Ohishi, Y.

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88(19), 191912 (2006).
[CrossRef]

T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86(13), 131903 (2005).
[CrossRef]

Peng, B.

Peng, M. Y.

G. P. Dong, B. T. Wu, F. T. Zhang, L. L. Zhang, M. Y. Peng, D. D. Chen, E. Wu, and J. R. Qiu, “Broadband near-infrared luminescence and tunable optical amplification around 1.55 μm and 1.33 μm of PbS quantum dots in glasses,” J. Alloy. Comp. 509(38), 9335–9339 (2011).
[CrossRef]

M. Y. Peng, G. P. Dong, L. Wondraczek, L. L. Zhang, N. Zhang, and J. R. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
[CrossRef]

M. Y. Peng, J. R. Qiu, D. P. Chen, X. G. Meng, I. Yang, X. W. Jiang, and C. S. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Prudenzano, F.

A. P. Caricato, M. D. Sario, M. Fernandez, M. Ferrari, G. Leggieri, A. Luches, M. Martino, M. Montagna, F. Prudenzano, and A. Jha, “Chalcogenide glass thin film waveguides deposited by excimer laser ablation,” Appl. Surf. Sci. 208–209, 632–637 (2003).
[CrossRef]

Pu, L.

J. Z. Wang, Y. Xia, Y. Shi, Z. Q. Shi, L. Pu, Z. S. Tao, and F. Lu, “1.54 μm photoluminescence emission and oxygen vacancy as sensitizer in Er-doped HfO2 films,” Appl. Phys. Lett. 91(19), 191115 (2007).
[CrossRef]

Pun, E. Y. B.

Qiu, J. R.

G. P. Dong, B. T. Wu, F. T. Zhang, L. L. Zhang, M. Y. Peng, D. D. Chen, E. Wu, and J. R. Qiu, “Broadband near-infrared luminescence and tunable optical amplification around 1.55 μm and 1.33 μm of PbS quantum dots in glasses,” J. Alloy. Comp. 509(38), 9335–9339 (2011).
[CrossRef]

M. Y. Peng, G. P. Dong, L. Wondraczek, L. L. Zhang, N. Zhang, and J. R. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
[CrossRef]

H. T. Sun, F. Shimaoka, Y. Miwa, J. Ruan, M. Fujii, J. R. Qiu, and S. Hayashi, “Sensitized superbroadband near-IR emission in bismuth glass/Si nanocrystal superlattices,” Opt. Lett. 35(13), 2215–2217 (2010).
[CrossRef] [PubMed]

J. Ruan, G. P. Dong, X. F. Liu, Q. Zhang, D. P. Chen, and J. R. Qiu, “Enhanced broadband near-infrared emission and energy transfer in Bi-Tm-codoped germanate glasses for broadband optical amplification,” Opt. Lett. 34(16), 2486–2488 (2009).
[CrossRef] [PubMed]

S. F. Zhou, N. Jiang, B. T. Wu, J. H. Hao, and J. R. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[CrossRef]

Y. X. Zhuang, Y. Teng, J. Luo, B. Zhu, Y. Z. Chi, E. Wu, H. P. Zeng, and J. R. Qiu, “Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4:Cr4+ nanocrystals,” Appl. Phys. Lett. 95(11), 111913 (2009).
[CrossRef]

M. Y. Peng, J. R. Qiu, D. P. Chen, X. G. Meng, I. Yang, X. W. Jiang, and C. S. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Ramachandran, S.

S. Ramachandran and S. G. Bishop, “Excitation of Er3+ emission by host glass absorption in sputtered films of Er-doped Ge10As40Se25S25 glass,” Appl. Phys. Lett. 73(22), 3196–3198 (1998).
[CrossRef]

S. Q. Gu, S. Ramachandran, E. E. Reuter, D. A. Turnbull, J. T. Verdeyen, and S. G. Bishop, “Novel broad-band excitation of Er3+ luminescence in chalcogenide glasses,” Appl. Phys. Lett. 66(6), 670–672 (1995).
[CrossRef]

Rattunde, M.

M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M. Mikulla, and J. Wagner, “High-power 1.9-μm diode laser arrays with reduced far-field angle,” IEEE Photon. Technol. Lett. 18(4), 628–630 (2006).
[CrossRef]

Reuter, E. E.

S. Q. Gu, S. Ramachandran, E. E. Reuter, D. A. Turnbull, J. T. Verdeyen, and S. G. Bishop, “Novel broad-band excitation of Er3+ luminescence in chalcogenide glasses,” Appl. Phys. Lett. 66(6), 670–672 (1995).
[CrossRef]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Ruan, J.

Sakka, Y.

Sanghera, J. S.

Sario, M. D.

A. P. Caricato, M. D. Sario, M. Fernandez, M. Ferrari, G. Leggieri, A. Luches, M. Martino, M. Montagna, F. Prudenzano, and A. Jha, “Chalcogenide glass thin film waveguides deposited by excimer laser ablation,” Appl. Surf. Sci. 208–209, 632–637 (2003).
[CrossRef]

Schmitz, J.

M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M. Mikulla, and J. Wagner, “High-power 1.9-μm diode laser arrays with reduced far-field angle,” IEEE Photon. Technol. Lett. 18(4), 628–630 (2006).
[CrossRef]

Shaw, L. B.

Shen, C.

Shen, S. X.

Shi, Y.

J. Z. Wang, Y. Xia, Y. Shi, Z. Q. Shi, L. Pu, Z. S. Tao, and F. Lu, “1.54 μm photoluminescence emission and oxygen vacancy as sensitizer in Er-doped HfO2 films,” Appl. Phys. Lett. 91(19), 191115 (2007).
[CrossRef]

Shi, Z. Q.

J. Z. Wang, Y. Xia, Y. Shi, Z. Q. Shi, L. Pu, Z. S. Tao, and F. Lu, “1.54 μm photoluminescence emission and oxygen vacancy as sensitizer in Er-doped HfO2 films,” Appl. Phys. Lett. 91(19), 191115 (2007).
[CrossRef]

Shimaoka, F.

H. T. Sun, F. Shimaoka, Y. Miwa, J. Ruan, M. Fujii, J. R. Qiu, and S. Hayashi, “Sensitized superbroadband near-IR emission in bismuth glass/Si nanocrystal superlattices,” Opt. Lett. 35(13), 2215–2217 (2010).
[CrossRef] [PubMed]

H.-T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hyashi, and S. Deki, “Strong ultra-broadband near-infrared photoluminescence from bismuth-embedded zeolites and their derivatives,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3694–3698 (2009).
[CrossRef]

Shirahata, N.

Song, J. H.

J. H. Song and J. Heo, “Effect of CsBr addition on the emission properties of TM3+ ion in Ge-Ga-S glass,” J. Mater. Res. 21(09), 2323–2330 (2006).
[CrossRef]

Sun, H. T.

Sun, H.-T.

H.-T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hyashi, and S. Deki, “Strong ultra-broadband near-infrared photoluminescence from bismuth-embedded zeolites and their derivatives,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3694–3698 (2009).
[CrossRef]

Suzuki, T.

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88(19), 191912 (2006).
[CrossRef]

T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86(13), 131903 (2005).
[CrossRef]

Tao, H. Z.

H. T. Guo, Y. B. Zhai, H. Z. Tao, G. P. Dong, and X. J. Zhao, “Structure and properties of GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Sci. Eng. B 138(3), 235–240 (2007).
[CrossRef]

X. F. Wang, S. X. Gu, J. G. Yu, X. J. Zhao, and H. Z. Tao, “Structural investigations of GeS2-Ga2S3-CdS chalcogenide glasses using Raman spectroscopy,” Solid State Commun. 130(7), 459–464 (2004).
[CrossRef]

Tao, Z. S.

J. Z. Wang, Y. Xia, Y. Shi, Z. Q. Shi, L. Pu, Z. S. Tao, and F. Lu, “1.54 μm photoluminescence emission and oxygen vacancy as sensitizer in Er-doped HfO2 films,” Appl. Phys. Lett. 91(19), 191115 (2007).
[CrossRef]

Teng, Y.

Y. X. Zhuang, Y. Teng, J. Luo, B. Zhu, Y. Z. Chi, E. Wu, H. P. Zeng, and J. R. Qiu, “Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4:Cr4+ nanocrystals,” Appl. Phys. Lett. 95(11), 111913 (2009).
[CrossRef]

Turnbull, D. A.

S. G. Bishop, D. A. Turnbull, and B. G. Aitken, “Excitation of rare earth emission in chalcogenide glasses by broadband Urbach edge absorption,” J. Non-Cryst. Solids 266–269, 876–883 (2000).
[CrossRef]

S. Q. Gu, S. Ramachandran, E. E. Reuter, D. A. Turnbull, J. T. Verdeyen, and S. G. Bishop, “Novel broad-band excitation of Er3+ luminescence in chalcogenide glasses,” Appl. Phys. Lett. 66(6), 670–672 (1995).
[CrossRef]

Verdeyen, J. T.

S. Q. Gu, S. Ramachandran, E. E. Reuter, D. A. Turnbull, J. T. Verdeyen, and S. G. Bishop, “Novel broad-band excitation of Er3+ luminescence in chalcogenide glasses,” Appl. Phys. Lett. 66(6), 670–672 (1995).
[CrossRef]

Wagner, J.

M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M. Mikulla, and J. Wagner, “High-power 1.9-μm diode laser arrays with reduced far-field angle,” IEEE Photon. Technol. Lett. 18(4), 628–630 (2006).
[CrossRef]

Wagner, T.

M. Frumar, B. Frumarova, P. Nemec, T. Wagner, J. Jedelsky, and M. Hrdlicka, “Thin chalcogenide films prepared by pulsed laser doposition: new amorphous materials applicable in optoelectronics and chemical sensors,” J. Non-Cryst. Solids 352(6-7), 544–561 (2006).
[CrossRef]

Wang, J. Z.

J. Z. Wang, Y. Xia, Y. Shi, Z. Q. Shi, L. Pu, Z. S. Tao, and F. Lu, “1.54 μm photoluminescence emission and oxygen vacancy as sensitizer in Er-doped HfO2 films,” Appl. Phys. Lett. 91(19), 191115 (2007).
[CrossRef]

Wang, W.

Wang, X. F.

X. F. Wang, S. X. Gu, J. G. Yu, X. J. Zhao, and H. Z. Tao, “Structural investigations of GeS2-Ga2S3-CdS chalcogenide glasses using Raman spectroscopy,” Solid State Commun. 130(7), 459–464 (2004).
[CrossRef]

Wang, Y. Q.

Weber, J.

M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M. Mikulla, and J. Wagner, “High-power 1.9-μm diode laser arrays with reduced far-field angle,” IEEE Photon. Technol. Lett. 18(4), 628–630 (2006).
[CrossRef]

Wondraczek, L.

M. Y. Peng, G. P. Dong, L. Wondraczek, L. L. Zhang, N. Zhang, and J. R. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
[CrossRef]

Wu, B. T.

G. P. Dong, B. T. Wu, F. T. Zhang, L. L. Zhang, M. Y. Peng, D. D. Chen, E. Wu, and J. R. Qiu, “Broadband near-infrared luminescence and tunable optical amplification around 1.55 μm and 1.33 μm of PbS quantum dots in glasses,” J. Alloy. Comp. 509(38), 9335–9339 (2011).
[CrossRef]

S. F. Zhou, N. Jiang, B. T. Wu, J. H. Hao, and J. R. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[CrossRef]

Wu, E.

G. P. Dong, B. T. Wu, F. T. Zhang, L. L. Zhang, M. Y. Peng, D. D. Chen, E. Wu, and J. R. Qiu, “Broadband near-infrared luminescence and tunable optical amplification around 1.55 μm and 1.33 μm of PbS quantum dots in glasses,” J. Alloy. Comp. 509(38), 9335–9339 (2011).
[CrossRef]

Y. X. Zhuang, Y. Teng, J. Luo, B. Zhu, Y. Z. Chi, E. Wu, H. P. Zeng, and J. R. Qiu, “Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4:Cr4+ nanocrystals,” Appl. Phys. Lett. 95(11), 111913 (2009).
[CrossRef]

Xia, Y.

J. Z. Wang, Y. Xia, Y. Shi, Z. Q. Shi, L. Pu, Z. S. Tao, and F. Lu, “1.54 μm photoluminescence emission and oxygen vacancy as sensitizer in Er-doped HfO2 films,” Appl. Phys. Lett. 91(19), 191115 (2007).
[CrossRef]

Xu, Y. S.

Yang, I.

Yu, J. G.

X. F. Wang, S. X. Gu, J. G. Yu, X. J. Zhao, and H. Z. Tao, “Structural investigations of GeS2-Ga2S3-CdS chalcogenide glasses using Raman spectroscopy,” Solid State Commun. 130(7), 459–464 (2004).
[CrossRef]

Zeng, H. D.

Zeng, H. P.

Y. X. Zhuang, Y. Teng, J. Luo, B. Zhu, Y. Z. Chi, E. Wu, H. P. Zeng, and J. R. Qiu, “Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4:Cr4+ nanocrystals,” Appl. Phys. Lett. 95(11), 111913 (2009).
[CrossRef]

Zhai, Y. B.

H. T. Guo, Y. B. Zhai, H. Z. Tao, G. P. Dong, and X. J. Zhao, “Structure and properties of GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Sci. Eng. B 138(3), 235–240 (2007).
[CrossRef]

Zhang, F. T.

G. P. Dong, B. T. Wu, F. T. Zhang, L. L. Zhang, M. Y. Peng, D. D. Chen, E. Wu, and J. R. Qiu, “Broadband near-infrared luminescence and tunable optical amplification around 1.55 μm and 1.33 μm of PbS quantum dots in glasses,” J. Alloy. Comp. 509(38), 9335–9339 (2011).
[CrossRef]

Zhang, L. L.

G. P. Dong, B. T. Wu, F. T. Zhang, L. L. Zhang, M. Y. Peng, D. D. Chen, E. Wu, and J. R. Qiu, “Broadband near-infrared luminescence and tunable optical amplification around 1.55 μm and 1.33 μm of PbS quantum dots in glasses,” J. Alloy. Comp. 509(38), 9335–9339 (2011).
[CrossRef]

M. Y. Peng, G. P. Dong, L. Wondraczek, L. L. Zhang, N. Zhang, and J. R. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
[CrossRef]

Zhang, N.

M. Y. Peng, G. P. Dong, L. Wondraczek, L. L. Zhang, N. Zhang, and J. R. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
[CrossRef]

Zhang, Q.

Zhang, S.

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga-Ge-Sb-S(Se) pulsed laser doposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

Zhao, X. J.

H. T. Guo, Y. B. Zhai, H. Z. Tao, G. P. Dong, and X. J. Zhao, “Structure and properties of GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Sci. Eng. B 138(3), 235–240 (2007).
[CrossRef]

X. F. Wang, S. X. Gu, J. G. Yu, X. J. Zhao, and H. Z. Tao, “Structural investigations of GeS2-Ga2S3-CdS chalcogenide glasses using Raman spectroscopy,” Solid State Commun. 130(7), 459–464 (2004).
[CrossRef]

Zhou, B.

Zhou, S. F.

S. F. Zhou, N. Jiang, B. T. Wu, J. H. Hao, and J. R. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[CrossRef]

Zhu, B.

Y. X. Zhuang, Y. Teng, J. Luo, B. Zhu, Y. Z. Chi, E. Wu, H. P. Zeng, and J. R. Qiu, “Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4:Cr4+ nanocrystals,” Appl. Phys. Lett. 95(11), 111913 (2009).
[CrossRef]

Zhu, C. S.

Zhuang, Y. X.

Y. X. Zhuang, Y. Teng, J. Luo, B. Zhu, Y. Z. Chi, E. Wu, H. P. Zeng, and J. R. Qiu, “Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4:Cr4+ nanocrystals,” Appl. Phys. Lett. 95(11), 111913 (2009).
[CrossRef]

Zou, K. S.

Adv. Funct. Mater. (1)

S. F. Zhou, N. Jiang, B. T. Wu, J. H. Hao, and J. R. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

H.-T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hyashi, and S. Deki, “Strong ultra-broadband near-infrared photoluminescence from bismuth-embedded zeolites and their derivatives,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3694–3698 (2009).
[CrossRef]

Appl. Phys. Lett. (6)

S. Q. Gu, S. Ramachandran, E. E. Reuter, D. A. Turnbull, J. T. Verdeyen, and S. G. Bishop, “Novel broad-band excitation of Er3+ luminescence in chalcogenide glasses,” Appl. Phys. Lett. 66(6), 670–672 (1995).
[CrossRef]

J. Z. Wang, Y. Xia, Y. Shi, Z. Q. Shi, L. Pu, Z. S. Tao, and F. Lu, “1.54 μm photoluminescence emission and oxygen vacancy as sensitizer in Er-doped HfO2 films,” Appl. Phys. Lett. 91(19), 191115 (2007).
[CrossRef]

S. Ramachandran and S. G. Bishop, “Excitation of Er3+ emission by host glass absorption in sputtered films of Er-doped Ge10As40Se25S25 glass,” Appl. Phys. Lett. 73(22), 3196–3198 (1998).
[CrossRef]

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88(19), 191912 (2006).
[CrossRef]

T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86(13), 131903 (2005).
[CrossRef]

Y. X. Zhuang, Y. Teng, J. Luo, B. Zhu, Y. Z. Chi, E. Wu, H. P. Zeng, and J. R. Qiu, “Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4:Cr4+ nanocrystals,” Appl. Phys. Lett. 95(11), 111913 (2009).
[CrossRef]

Appl. Surf. Sci. (1)

A. P. Caricato, M. D. Sario, M. Fernandez, M. Ferrari, G. Leggieri, A. Luches, M. Martino, M. Montagna, F. Prudenzano, and A. Jha, “Chalcogenide glass thin film waveguides deposited by excimer laser ablation,” Appl. Surf. Sci. 208–209, 632–637 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M. Mikulla, and J. Wagner, “High-power 1.9-μm diode laser arrays with reduced far-field angle,” IEEE Photon. Technol. Lett. 18(4), 628–630 (2006).
[CrossRef]

J. Alloy. Comp. (1)

G. P. Dong, B. T. Wu, F. T. Zhang, L. L. Zhang, M. Y. Peng, D. D. Chen, E. Wu, and J. R. Qiu, “Broadband near-infrared luminescence and tunable optical amplification around 1.55 μm and 1.33 μm of PbS quantum dots in glasses,” J. Alloy. Comp. 509(38), 9335–9339 (2011).
[CrossRef]

J. Mater. Res. (1)

J. H. Song and J. Heo, “Effect of CsBr addition on the emission properties of TM3+ ion in Ge-Ga-S glass,” J. Mater. Res. 21(09), 2323–2330 (2006).
[CrossRef]

J. Non-Cryst. Solids (5)

M. Frumar, B. Frumarova, P. Nemec, T. Wagner, J. Jedelsky, and M. Hrdlicka, “Thin chalcogenide films prepared by pulsed laser doposition: new amorphous materials applicable in optoelectronics and chemical sensors,” J. Non-Cryst. Solids 352(6-7), 544–561 (2006).
[CrossRef]

M. Y. Peng, G. P. Dong, L. Wondraczek, L. L. Zhang, N. Zhang, and J. R. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
[CrossRef]

S. G. Bishop, D. A. Turnbull, and B. G. Aitken, “Excitation of rare earth emission in chalcogenide glasses by broadband Urbach edge absorption,” J. Non-Cryst. Solids 266–269, 876–883 (2000).
[CrossRef]

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212(2-3), 151–156 (1997).
[CrossRef]

T. H. Lee, Y. K. Kwon, and J. Heo, “Local structure and its effect on the oscillator strengths and emission properties of Ho3+ in chalcohalide glasses,” J. Non-Cryst. Solids 354(27), 3107–3112 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
[CrossRef]

Mater. Sci. Eng. B (1)

H. T. Guo, Y. B. Zhai, H. Z. Tao, G. P. Dong, and X. J. Zhao, “Structure and properties of GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Sci. Eng. B 138(3), 235–240 (2007).
[CrossRef]

Nat. Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Opt. Express (5)

Opt. Lett. (6)

Opt. Mater. (1)

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[CrossRef]

Solid State Commun. (1)

X. F. Wang, S. X. Gu, J. G. Yu, X. J. Zhao, and H. Z. Tao, “Structural investigations of GeS2-Ga2S3-CdS chalcogenide glasses using Raman spectroscopy,” Solid State Commun. 130(7), 459–464 (2004).
[CrossRef]

Thin Solid Films (1)

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga-Ge-Sb-S(Se) pulsed laser doposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

Other (2)

N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, 1979).

J. Tauc, Amorphous and Liquid Semiconductors (Plenum, New York, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) XRD pattern of the chalcohalide film. Inset shows the digital photographs of the film and quartz. (b) XPS survey spectrum of the chalcohalide film.

Fig. 2
Fig. 2

(a) Raman spectra of the chalcohalide film and the glass target. Dashed lines are drawn as guides for the eyes. (b) Optical transmission spectrum of the chalcohalide film. Inset shows the plot of the optical gap in terms of Tauc’s law. The optical energy gap of 1.90 eV (~653 nm) is deduced by the linear extrapolation.

Fig. 3
Fig. 3

NIR emission spectra of the chalcohalide film excited at the different wavelengths of (a) 808 nm with a PbSe detector, (b) 325 nm with an InGaAs detector, and 450 nm and 488 nm with a Ge detector, as shown in the inset of (b). Inset of (a) shows the enlargement of NIR emission between 1000 and 1600 nm. The emission spectra excited at 325 nm and 808 nm are Gaussian fitted. The standard telecommunication bands are also indicated in the boxed inset of (a). Dashed lines are drawn as guides for the eyes.

Fig. 4
Fig. 4

Schematic energy-level diagrams, showing the energy-transfer mechanism (a) between the chalcohalide film and RE ions under 325-488 nm pumping and (b) between Tm3+ and Dy3+ under 808 nm pumping. The filled and open circles denote electrons and holes, respectively. The NIR emission bands are also indicated in the diagrams with the units of nm. ET: energy transfer.

Metrics