Abstract

We numerically investigate the scintillation index of an elliptical vortex beam in both modest turbulence and strong turbulence. Numerical simulations are realized with random phase screen scheme. It is shown that the on-axis scintillation index can be effectively reduced by an elliptical vortex beam if crucial parameters are properly chosen. The mechanisms of scintillation reduction in turbulence of different strengths are different. We find that the topological charge and the ratio of minor axis to major axis of an elliptical vortex beam are important in determining the on-axis scintillation index. Our simulation results indicate that using an elliptical vortex beam is a promising strategy to alleviate atmospheric influence on free space optical communication link.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Korotkova and E. Wolf, “Beam criterion for atmospheric propagation,” Opt. Lett. 32(15), 2137–2139 (2007).
    [CrossRef] [PubMed]
  2. O. Korotkova and E. Shchepakina, “Color changes in stochastic light fields propagating in non-Kolmogorov turbulence,” Opt. Lett. 35(22), 3772–3774 (2010).
    [CrossRef] [PubMed]
  3. X. Ji, H. T. Eyyuboğlu, and Y. Baykal, “Influence of turbulence on the effective radius of curvature of radial Gaussian array beams,” Opt. Express 18(7), 6922–6928 (2010).
    [CrossRef] [PubMed]
  4. Y. Cai, Y. Chen, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation index of elliptical Gaussian beam in turbulent atmosphere,” Opt. Lett. 32(16), 2405–2407 (2007).
    [CrossRef] [PubMed]
  5. Y. Chen, Y. Cai, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation properties of dark hollow beams in a weak turbulent atmosphere,” Appl. Phys. B 90(1), 87–92 (2008).
    [CrossRef]
  6. X. Qian, W. Zhu, and R. Rao, “Numerical investigation on propagation effects of pseudo-partially coherent Gaussian Schell-model beams in atmospheric turbulence,” Opt. Express 17(5), 3782–3791 (2009).
    [CrossRef] [PubMed]
  7. Y. Gu, O. Korotkova, and G. Gbur, “Scintillation of nonuniformly polarized beams in atmospheric turbulence,” Opt. Lett. 34(15), 2261–2263 (2009).
    [CrossRef] [PubMed]
  8. P. Polynkin, A. Peleg, L. Klein, T. Rhoadarmer, and J. V. Moloney, “Optimized multiemitter beams for free-space optical communications through turbulent atmosphere,” Opt. Lett. 32(8), 885–887 (2007).
    [CrossRef] [PubMed]
  9. L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [CrossRef] [PubMed]
  10. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
    [CrossRef] [PubMed]
  11. R. Čelechovský and Z. Bouchal, “Optical implementation of the vortex information channel,” New J. Phys. 9(9), 328 (2007).
    [CrossRef]
  12. G. Gbur and R. K. Tyson, “Vortex beam propagation through atmospheric turbulence and topological charge conservation,” J. Opt. Soc. Am. A 25(1), 225–230 (2008).
    [CrossRef] [PubMed]
  13. H. T. Eyyuboğlu, Y. Baykal, and X. Ji, “Scintillations of Laguerre Gaussian beams,” Appl. Phys. B 98(4), 857–863 (2010).
    [CrossRef]
  14. W. Cheng, J. W. Haus, and Q. Zhan, “Propagation of vector vortex beams through a turbulent atmosphere,” Opt. Express 17(20), 17829–17836 (2009).
    [CrossRef] [PubMed]
  15. J. M. Martin and S. M. Flatté, “Intensity images and statistics from numerical simulation of wave propagation in 3-D random media,” Appl. Opt. 27(11), 2111–2126 (1988).
    [CrossRef] [PubMed]
  16. Y. Tian, J. Guo, R. Wang, and T. Wang, “Mathematic model analysis of Gaussian beam propagation through an arbitrary thickness random phase screen,” Opt. Express 19(19), 18216–18228 (2011).
    [CrossRef] [PubMed]
  17. L. C. Andrews and R. L. Phillips, Laser beam propagation through random media (SPIE Press, Bellingham, Washington, 1998).
  18. V. V. Kotlyar, S. N. Khonina, A. A. Almazov, V. A. Soifer, K. Jefimovs, and J. Turunen, “Elliptic Laguerre-Gaussian beams,” J. Opt. Soc. Am. A 23(1), 43–56 (2006).
    [CrossRef] [PubMed]
  19. G. P. Berman, V. N. Gorshkov, and S. V. Torous, “Scintillation reduction for laser beams propagating through turbulent atmosphere,” J. Phys. At. Mol. Opt. Phys. 44(5), 055402 (2011).
    [CrossRef]

2011

Y. Tian, J. Guo, R. Wang, and T. Wang, “Mathematic model analysis of Gaussian beam propagation through an arbitrary thickness random phase screen,” Opt. Express 19(19), 18216–18228 (2011).
[CrossRef] [PubMed]

G. P. Berman, V. N. Gorshkov, and S. V. Torous, “Scintillation reduction for laser beams propagating through turbulent atmosphere,” J. Phys. At. Mol. Opt. Phys. 44(5), 055402 (2011).
[CrossRef]

2010

2009

2008

G. Gbur and R. K. Tyson, “Vortex beam propagation through atmospheric turbulence and topological charge conservation,” J. Opt. Soc. Am. A 25(1), 225–230 (2008).
[CrossRef] [PubMed]

Y. Chen, Y. Cai, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation properties of dark hollow beams in a weak turbulent atmosphere,” Appl. Phys. B 90(1), 87–92 (2008).
[CrossRef]

2007

2006

2004

1992

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

1988

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Almazov, A. A.

Barnett, S.

Baykal, Y.

H. T. Eyyuboğlu, Y. Baykal, and X. Ji, “Scintillations of Laguerre Gaussian beams,” Appl. Phys. B 98(4), 857–863 (2010).
[CrossRef]

X. Ji, H. T. Eyyuboğlu, and Y. Baykal, “Influence of turbulence on the effective radius of curvature of radial Gaussian array beams,” Opt. Express 18(7), 6922–6928 (2010).
[CrossRef] [PubMed]

Y. Chen, Y. Cai, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation properties of dark hollow beams in a weak turbulent atmosphere,” Appl. Phys. B 90(1), 87–92 (2008).
[CrossRef]

Y. Cai, Y. Chen, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation index of elliptical Gaussian beam in turbulent atmosphere,” Opt. Lett. 32(16), 2405–2407 (2007).
[CrossRef] [PubMed]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Berman, G. P.

G. P. Berman, V. N. Gorshkov, and S. V. Torous, “Scintillation reduction for laser beams propagating through turbulent atmosphere,” J. Phys. At. Mol. Opt. Phys. 44(5), 055402 (2011).
[CrossRef]

Bouchal, Z.

R. Čelechovský and Z. Bouchal, “Optical implementation of the vortex information channel,” New J. Phys. 9(9), 328 (2007).
[CrossRef]

Cai, Y.

Y. Chen, Y. Cai, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation properties of dark hollow beams in a weak turbulent atmosphere,” Appl. Phys. B 90(1), 87–92 (2008).
[CrossRef]

Y. Cai, Y. Chen, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation index of elliptical Gaussian beam in turbulent atmosphere,” Opt. Lett. 32(16), 2405–2407 (2007).
[CrossRef] [PubMed]

Celechovský, R.

R. Čelechovský and Z. Bouchal, “Optical implementation of the vortex information channel,” New J. Phys. 9(9), 328 (2007).
[CrossRef]

Chen, Y.

Y. Chen, Y. Cai, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation properties of dark hollow beams in a weak turbulent atmosphere,” Appl. Phys. B 90(1), 87–92 (2008).
[CrossRef]

Y. Cai, Y. Chen, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation index of elliptical Gaussian beam in turbulent atmosphere,” Opt. Lett. 32(16), 2405–2407 (2007).
[CrossRef] [PubMed]

Cheng, W.

Courtial, J.

Eyyuboglu, H. T.

X. Ji, H. T. Eyyuboğlu, and Y. Baykal, “Influence of turbulence on the effective radius of curvature of radial Gaussian array beams,” Opt. Express 18(7), 6922–6928 (2010).
[CrossRef] [PubMed]

H. T. Eyyuboğlu, Y. Baykal, and X. Ji, “Scintillations of Laguerre Gaussian beams,” Appl. Phys. B 98(4), 857–863 (2010).
[CrossRef]

Y. Chen, Y. Cai, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation properties of dark hollow beams in a weak turbulent atmosphere,” Appl. Phys. B 90(1), 87–92 (2008).
[CrossRef]

Y. Cai, Y. Chen, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation index of elliptical Gaussian beam in turbulent atmosphere,” Opt. Lett. 32(16), 2405–2407 (2007).
[CrossRef] [PubMed]

Flatté, S. M.

Franke-Arnold, S.

Gbur, G.

Gibson, G.

Gorshkov, V. N.

G. P. Berman, V. N. Gorshkov, and S. V. Torous, “Scintillation reduction for laser beams propagating through turbulent atmosphere,” J. Phys. At. Mol. Opt. Phys. 44(5), 055402 (2011).
[CrossRef]

Gu, Y.

Guo, J.

Haus, J. W.

Jefimovs, K.

Ji, X.

Khonina, S. N.

Klein, L.

Korotkova, O.

Kotlyar, V. V.

Martin, J. M.

Moloney, J. V.

Padgett, M. J.

Pas’ko, V.

Peleg, A.

Polynkin, P.

Qian, X.

Rao, R.

Rhoadarmer, T.

Shchepakina, E.

Soifer, V. A.

Spreeuw, R. J.

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Tian, Y.

Torous, S. V.

G. P. Berman, V. N. Gorshkov, and S. V. Torous, “Scintillation reduction for laser beams propagating through turbulent atmosphere,” J. Phys. At. Mol. Opt. Phys. 44(5), 055402 (2011).
[CrossRef]

Turunen, J.

Tyson, R. K.

Vasnetsov, M.

Wang, R.

Wang, T.

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Wolf, E.

Zhan, Q.

Zhu, W.

Appl. Opt.

Appl. Phys. B

H. T. Eyyuboğlu, Y. Baykal, and X. Ji, “Scintillations of Laguerre Gaussian beams,” Appl. Phys. B 98(4), 857–863 (2010).
[CrossRef]

Y. Chen, Y. Cai, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation properties of dark hollow beams in a weak turbulent atmosphere,” Appl. Phys. B 90(1), 87–92 (2008).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. At. Mol. Opt. Phys.

G. P. Berman, V. N. Gorshkov, and S. V. Torous, “Scintillation reduction for laser beams propagating through turbulent atmosphere,” J. Phys. At. Mol. Opt. Phys. 44(5), 055402 (2011).
[CrossRef]

New J. Phys.

R. Čelechovský and Z. Bouchal, “Optical implementation of the vortex information channel,” New J. Phys. 9(9), 328 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Other

L. C. Andrews and R. L. Phillips, Laser beam propagation through random media (SPIE Press, Bellingham, Washington, 1998).

Supplementary Material (4)

» Media 1: MOV (318 KB)     
» Media 2: MOV (302 KB)     
» Media 3: MOV (334 KB)     
» Media 4: MOV (322 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

On-axis scintillation index vs. propagation distance in modest turbulence where C n 2 is 2.5× 10 14 m 2/3 .

Fig. 2
Fig. 2

Patterns of the beams in Fig. 1 propagating in free space at 6000m. Beam parameters are listed in Fig. 1. (a)Beam 2 has a hollow core. (b)Beam 3 has a hollow core. (c)The on-axis intensity of beam 4 is not zero. (d)Beam 5 has a hollow core. (e) The on-axis intensity of beam 6 is not zero.

Fig. 3
Fig. 3

On-axis scintillation index vs. propagation distance in strong turbulence where C n 2 is 8.0× 10 13 m 2/3 .

Fig. 4
Fig. 4

Normalized on-axis intensity of the beams propagating in turbulence of different strengths. (a) Modest turbulence, C n 2 =2.5× 10 14 m 2/3 (b) Strong turbulence, C n 2 =8.0× 10 13 m 2/3

Fig. 5
Fig. 5

Scintillation of elliptical vortex beams with even topological charge of different α propagating in modest atmospheric turbulence. C n 2 =2.5× 10 14 m 2/3

Fig. 6
Fig. 6

Video clips of intensity patterns of elliptical vortex beams of different α at 3000m, C n 2 =2.5× 10 14 m 2/3 (a) m=2 α = 1/4 w=1.8cm (Media 1). (b)m=2 α = 1/2 w=3.6/ 2 cm (Media 2). (c)m=4 α =1/4 w = 1.8cm (Media 3). (d)m=4 α =1/2 w=3.6/ 2 cm (Media 4).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E(x,y,pΔ z + )=E(x,y,pΔ z )exp[i φ r (x,y)],
Φ n (κ)=0.033 C n 2 exp( κ 2 κ m 2 ) ( κ 2 + κ 0 2 ) 11/6 ,
Φ φ ( κ x , κ y , κ z )=2π k 2 Δz Φ n ( κ x , κ y , κ z =0),
E(x,y,z=0)= ( 2 x 2 +2 α 2 y 2 w 2 ) m/2 exp( x 2 + α 2 y 2 w 2 )exp[imarctan(αy/x)].
σ I 2 = I 2 I 2 I 2 ,

Metrics