Abstract

In this paper we experimentally demonstrate transmission performance of optical DFT-spread OFDM systems in comparison with conventional OFDM systems. A 440.8-Gb/s superchannel consisting of 8 x 55.1-Gb/s densely-spaced DFT-S OFDM signal is successfully received after 1120-km transmission with a spectral efficiency of 3.5 b/s/Hz. It is shown that DFT-S OFDM can achieve an improvement of 1 dB in Q factor and 1 dB in launch power over conventional OFDM. Additionally, unique word aided phase estimation algorithm is proposed and demonstrated enabling extremely long OFDM symbol transmission.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
    [CrossRef] [PubMed]
  2. S. Chandrasekhar and X. Liu, “Experimental investigation on the performance of closely spaced multi-carrier PDM-QPSK with digital coherent detection,” Opt. Express 17(24), 21350–21361 (2009).
    [CrossRef] [PubMed]
  3. R. Dischler and F. Buchali, “Transmission of 1.2 Tb/s Continuous Waveband PDM‐OFDM‐FDM Signal with Spectral Efficiency of 3.3 bit/s/Hz over 400 km of SSMF,” Optical Fiber Communication Conference (OFC), San Diego, USA, 2009, p. PDPC2.
  4. X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s reduced-guardinterval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011).
    [CrossRef]
  5. S. L. Jansen, I. Morita, T. C. W. Schenk, and H. Tanaka, “121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF,” J. Lightwave Technol. 27(3), 177–188 (2009).
    [CrossRef]
  6. M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P. Cho, R. Noe, I. Shpantzer, and V. Karagodsky, “Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links,” Opt. Express 16(20), 15777–15810 (2008).
    [CrossRef] [PubMed]
  7. Y. Tang, W. Shieh, and B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett. 22(16), 1250–1252 (2010).
    [CrossRef]
  8. H. G. Myung, J. Lim, and D. J. Goodman, “Peak-to-average power ratio of single carrier FDMA signals with pulse shaping,” In IEEE 17th Int. Symp. Personal, Indoor and Mobile Radio Communications, Sep. 11–14, 2006, 1–5.
  9. W. Shieh, “OFDM for Flexible High-Speed Optical Networks,” J. Lightwave Technol. 29(10), 1560–1577 (2011).
    [CrossRef]
  10. D. Falconer, S. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag. 40(4), 58–66 (2002).
    [CrossRef]
  11. M. Huemer, H. Witschnig, and J. Hausner, “Unique Word Based Phase Tracking Algorithms for SC/FDE Systems”, In Proceedings of the IEEE International Conference on Global Communications (GLOBECOM), 2003, 1, 70–74.
  12. L. Deneire, B. Gyselinckx, and M. Engels, “Training Sequence vs. Cyclic Prefix: A New Look on Single Carrier Communication,” In Proceedings of the IEEE International Conference on Global Communications (GLOBECOM), 2000, 1056–1060.
  13. D. Ly-Gagnon, K. Katoh, and K. Kikuchi, “Unrepeated 210-km transmission with coherent detection and digital signal processing of 20-Gb/s QPSK signal,” Tech. Dig. OFC’05, Anaheim, CA, USA, 2005, p. OTuL4.
  14. M. E. Mousa-Pasandi and D. V. Plant, “Zero-overhead phase noise compensation via decision-directed phase equalizer for coherent optical OFDM,” Opt. Express 18(20), 20651–20660 (2010).
    [CrossRef] [PubMed]
  15. S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Laser linewidth tolerance of decision-aided maximum likelihood phase estimation in coherent optical M-ary PSK and QAM systems,” IEEE Photon. Technol. Lett. 21(15), 1075–1077 (2009).
    [CrossRef]
  16. W. Shieh, “Maximum-likelihood phase and channel estimation for coherent optical OFDM,” IEEE Photon. Technol. Lett. 20(8), 605–607 (2008).
    [CrossRef]
  17. D. C. Chu, “Polyphase Codes with Good Periodic Correlation Properties,” IEEE Trans. Inf. Theory 18(4), 531–532 (1972).
    [CrossRef]
  18. 3GPP TR 25.814 V7.0.0, “Technical Specification Group Radio Access Network; Physical Layer Aspects for Evolved UTRA”, (2006).

2011

2010

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett. 22(16), 1250–1252 (2010).
[CrossRef]

M. E. Mousa-Pasandi and D. V. Plant, “Zero-overhead phase noise compensation via decision-directed phase equalizer for coherent optical OFDM,” Opt. Express 18(20), 20651–20660 (2010).
[CrossRef] [PubMed]

2009

2008

2002

D. Falconer, S. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag. 40(4), 58–66 (2002).
[CrossRef]

1972

D. C. Chu, “Polyphase Codes with Good Periodic Correlation Properties,” IEEE Trans. Inf. Theory 18(4), 531–532 (1972).
[CrossRef]

Ariyavisitakul, S.

D. Falconer, S. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag. 40(4), 58–66 (2002).
[CrossRef]

Benyamin-Seeyar, A.

D. Falconer, S. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag. 40(4), 58–66 (2002).
[CrossRef]

Chandrasekhar, S.

Chen, J.

S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Laser linewidth tolerance of decision-aided maximum likelihood phase estimation in coherent optical M-ary PSK and QAM systems,” IEEE Photon. Technol. Lett. 21(15), 1075–1077 (2009).
[CrossRef]

Chen, S.

Cho, P.

Chu, D. C.

D. C. Chu, “Polyphase Codes with Good Periodic Correlation Properties,” IEEE Trans. Inf. Theory 18(4), 531–532 (1972).
[CrossRef]

Eidson, B.

D. Falconer, S. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag. 40(4), 58–66 (2002).
[CrossRef]

Falconer, D.

D. Falconer, S. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag. 40(4), 58–66 (2002).
[CrossRef]

Gnauck, A. H.

Jansen, S. L.

Kam, P. Y.

S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Laser linewidth tolerance of decision-aided maximum likelihood phase estimation in coherent optical M-ary PSK and QAM systems,” IEEE Photon. Technol. Lett. 21(15), 1075–1077 (2009).
[CrossRef]

Karagodsky, V.

Khurgin, J.

Krongold, B. S.

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett. 22(16), 1250–1252 (2010).
[CrossRef]

Liu, X.

Ma, Y.

Meiman, Y.

Morita, I.

Mousa-Pasandi, M. E.

Nazarathy, M.

Noe, R.

Peckham, D. W.

Plant, D. V.

Schenk, T. C. W.

Shieh, W.

W. Shieh, “OFDM for Flexible High-Speed Optical Networks,” J. Lightwave Technol. 29(10), 1560–1577 (2011).
[CrossRef]

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett. 22(16), 1250–1252 (2010).
[CrossRef]

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
[CrossRef] [PubMed]

W. Shieh, “Maximum-likelihood phase and channel estimation for coherent optical OFDM,” IEEE Photon. Technol. Lett. 20(8), 605–607 (2008).
[CrossRef]

Shpantzer, I.

Tanaka, H.

Tang, Y.

Weidenfeld, R.

Winzer, P. J.

Yang, Q.

Yu, C.

S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Laser linewidth tolerance of decision-aided maximum likelihood phase estimation in coherent optical M-ary PSK and QAM systems,” IEEE Photon. Technol. Lett. 21(15), 1075–1077 (2009).
[CrossRef]

Zhang, S.

S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Laser linewidth tolerance of decision-aided maximum likelihood phase estimation in coherent optical M-ary PSK and QAM systems,” IEEE Photon. Technol. Lett. 21(15), 1075–1077 (2009).
[CrossRef]

Zhu, B.

IEEE Commun. Mag.

D. Falconer, S. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag. 40(4), 58–66 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Laser linewidth tolerance of decision-aided maximum likelihood phase estimation in coherent optical M-ary PSK and QAM systems,” IEEE Photon. Technol. Lett. 21(15), 1075–1077 (2009).
[CrossRef]

W. Shieh, “Maximum-likelihood phase and channel estimation for coherent optical OFDM,” IEEE Photon. Technol. Lett. 20(8), 605–607 (2008).
[CrossRef]

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett. 22(16), 1250–1252 (2010).
[CrossRef]

IEEE Trans. Inf. Theory

D. C. Chu, “Polyphase Codes with Good Periodic Correlation Properties,” IEEE Trans. Inf. Theory 18(4), 531–532 (1972).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

R. Dischler and F. Buchali, “Transmission of 1.2 Tb/s Continuous Waveband PDM‐OFDM‐FDM Signal with Spectral Efficiency of 3.3 bit/s/Hz over 400 km of SSMF,” Optical Fiber Communication Conference (OFC), San Diego, USA, 2009, p. PDPC2.

H. G. Myung, J. Lim, and D. J. Goodman, “Peak-to-average power ratio of single carrier FDMA signals with pulse shaping,” In IEEE 17th Int. Symp. Personal, Indoor and Mobile Radio Communications, Sep. 11–14, 2006, 1–5.

3GPP TR 25.814 V7.0.0, “Technical Specification Group Radio Access Network; Physical Layer Aspects for Evolved UTRA”, (2006).

M. Huemer, H. Witschnig, and J. Hausner, “Unique Word Based Phase Tracking Algorithms for SC/FDE Systems”, In Proceedings of the IEEE International Conference on Global Communications (GLOBECOM), 2003, 1, 70–74.

L. Deneire, B. Gyselinckx, and M. Engels, “Training Sequence vs. Cyclic Prefix: A New Look on Single Carrier Communication,” In Proceedings of the IEEE International Conference on Global Communications (GLOBECOM), 2000, 1056–1060.

D. Ly-Gagnon, K. Katoh, and K. Kikuchi, “Unrepeated 210-km transmission with coherent detection and digital signal processing of 20-Gb/s QPSK signal,” Tech. Dig. OFC’05, Anaheim, CA, USA, 2005, p. OTuL4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Structure of one DFT-S OFDM symbol. UW: Unique Word; GI: Guard Interval; pt: Point.

Fig. 2
Fig. 2

Configuration of baseband DFT-S OFDM transmitter and receiver; S/P (P/S): Serial-to-Parallel (Parallel-to-Serial) conversion; UW: Unique Word; GI: Guard-Interval; D/A (A/D): Digital-to-Analog (Analog-to-Digital) conversion.

Fig. 3
Fig. 3

Baseband spectra for (a) conventional OFDM and (b) DFT-S OFDM.

Fig. 4
Fig. 4

Flow diagram for channel estimation.

Fig. 5
Fig. 5

Experimental setup of 8x55.1-Gb/s DFT-S OFDM system. AWG: Arbitrary Waveform Generator; PBC: Polarization Beam Combiner; PBS: Polarization Beam Splitter; LO: Local Oscillator; BR: Balanced Receiver; The three insets are (i) measured optical spectrum of 8 wavelength lasers; (ii) Measured optical spectrum of (3x8) 24 tones; (iii) Measured optical spectrum of 24 bands after data modulation.

Fig. 6
Fig. 6

Phase evolution for the received DFT-S OFDM signal. The inset is the zoomed-in phase noise of 12th symbol.

Fig. 7
Fig. 7

Bit Error Rate (BER) versus OSNR for 18.4-, 55.1- and 440.8-Gb/s DFT-S OFDM and conventional OFDM system at the back-to-back.

Fig. 8
Fig. 8

(a) Q factor vs. launch optical power for 440.8-Gb/s signal after 1120-km transmission. Insets are constellations for conventional and DFT-S OFDM signals. (b) Q factor difference between DFT-S OFDM signal and conventional OFDM when using the same phase estimation window size of 64.

Fig. 9
Fig. 9

Q factor measurement for all the 24 bands after 1120-km transmission at the optimal launch power of 4 dBm. Inset is the measured received optical spectrum after 1120-km transmission.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( U W x1 U W y1 )=IDFT( ZC circshift(ZC) ),( U W x2 U W y2 )=IDFT( circshift(ZC) ZC ),

Metrics