Abstract

We report on the novel all-optical generation of duobinary (DB) and alternate-mark-inversion (AMI) modulation formats at 42.6 Gb/s from an input on-off keyed signal. The modulation converter consists of two semiconductor optical amplifier (SOA)-based Mach-Zehnder interferometer gates. A detailed SOA model numerically confirms the operational principles and experimental data shows successful AMI and DB conversion at 42.6 Gb/s. We also predict that the operational bandwidth can be extended beyond 40 Gb/s by utilizing a new pattern-effect suppression scheme, and demonstrate dramatic reductions in patterning up to 160 Gb/s. We show an increasing trade-off between pattern-effect reduction and mean output power with increasing bitrate.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer and R. J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
    [CrossRef]
  2. J. D. Downie, A. B. Ruffin, and J. Hurley, “Ultra-low-loss optical fiber enabling purely passive 10 Gb/s PON systems with 100 km length,” Opt. Express 17(4), 2392–2399 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-4-2392 .
    [CrossRef] [PubMed]
  3. A. H. Gnauck, X. Liu, X. Wei, D. M. Gill, and E. C. Burrows, “Comparison of modulation formats for 42.7-Gb/s single-channel transmission through 1980 km of SSMF,” IEEE Photon. Technol. Lett. 16(3), 909–911 (2004).
    [CrossRef]
  4. P. J. Winzer, A. H. Gnauck, G. Raybon, S. Chandrasekhar, Y. Su, and J. Leuthold, “40-Gb/s return-to-zero alternate-mark-inversion (RZ-AMI) transmission over 2000 km,” IEEE Photon. Technol. Lett. 15(5), 766–768 (2003).
    [CrossRef]
  5. K. S. Cheng and J. Conradi, “Reduction of pulse-to-pulse interaction using alternative RZ formats in 40-Gb/s systems,” IEEE Photon. Technol. Lett. 14(1), 98–100 (2002).
    [CrossRef]
  6. A. J. Price and N. Le Mercier, “Reduced bandwidth optical digital intensity modulation with improved chromatic dispersion tolerance,” Electron. Lett. 31(1), 58–59 (1995).
    [CrossRef]
  7. R. S. Tucker, K. Hinton, and G. Raskutti, “Energy consumption limits in high-speed optical and electronic signal processing,” Electron. Lett. 43(17), 906–908 (2007).
    [CrossRef]
  8. I. Kang, M. S. Rasras, L. L. Buhl, M. Dinu, G. Raybon, S. Cabot, M. A. Cappuzzo, L. L. Gomez, Y. Y. Chen, S. S. Patel, A. A. Piccirilli, J. Jaques, and C. C. Randy Giles, “High-speed all-optical generation of advanced modulation formats using photonic-integrated all-optical format converter,” IEEE J. Sel. Top. Quantum Electron.Published Online, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5771528 .
  9. J. M. Dailey, M. J. Power, R. P. Webb, and R. J. Manning, “All-optical modulation converter for on-off keying to duobinary and alternate-mark inversion at 42.6 Gbps,” in CLEO/Europe 2011, Munich, Germany, 2011, Paper CI4.1.
  10. P. J. Winzer and J. Leuthold, “Return-to-zero modulator using a single NRZ drive signal and an optical delay interferometer,” IEEE Photon. Technol. Lett. 13(12), 1298–1300 (2001).
    [CrossRef]
  11. O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J. Lightwave Technol. 21(11), 2779–2790 (2003).
    [CrossRef]
  12. R. D. Gitlin, J. F. Hayes, and S. B. Weinstein, Data Communication Principles (Plenum Press, 1992).
  13. E. Jahn, N. Agrawal, M. Arbert, H.-J. Ehrke, D. Franke, R. Ludwig, W. Pieper, H. G. Weber, and C. M. Weinert, “40 Gbit/s all-optical demultiplexing using a monolithically integrated Mach-Zehnder interferometer with semiconductor laser amplifiers,” Electron. Lett. 31(21), 1857–1858 (1995).
    [CrossRef]
  14. J. M. Dailey, R. P. Webb, and R. J. Manning, “All-optical technique for modulation format conversion from on-off-keying to alternate-mark-inversion,” Opt. Express 18(21), 21873–21882 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-21-21873 .
    [CrossRef] [PubMed]
  15. L. Billes, J. C. Simon, B. Kowalski, M. Henry, G. Michaud, P. Lamouler, and F. Alard, “20 Gbit/s optical 3R regenerator using SOA based Mach-Zehnder interferometer gate,” in 11th International Conference on Integrated Optics and Optical Fibre Communications and 23rd European Conference on Optical Communications (IOCC-ECOC1997), Edinburgh, UK, 2, pg. 269–272.
  16. J. M. Dailey and T. L. Koch, “Simple rules for optimizing asymmetries in SOA-based Mach-Zehnder wavelength converters,” J. Lightwave Technol. 27(11), 1480–1488 (2009).
    [CrossRef]
  17. R. P. Webb, J. M. Dailey, and R. J. Manning, “Pattern compensation in SOA-based gates,” Opt. Express 18(13), 13502–13509 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-13-13502 .
    [CrossRef] [PubMed]
  18. T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
    [CrossRef]
  19. G. Contestabile, A. Maruta, and K. Kitayama, “Gain dynamics in quantum-dot semiconductor optical amplifiers at 1550 nm,” IEEE Photon. Technol. Lett. 22(13), 987–989 (2010).
    [CrossRef]
  20. R. J. Manning, X. Yang, R. P. Webb, R. Giller, F. C. Garcia Gunning, and A. D. Ellis, “The turbo-switch - a novel technique to increase the high-speed response of SOAs for wavelength conversion,” in Optical Fiber Communication Conference, Anaheim, CA, USA, 2006, Paper OWS8.
  21. Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160 gb/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave Technol. 24(1), 230–236 (2006).
    [CrossRef]
  22. M. Nielsen and J. Mørk, “Bandwidth enhancement of SOA-based switches using optical filtering: theory and experimental verification,” Opt. Express 14(3), 1260–1265 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-3-1260 .
    [CrossRef] [PubMed]
  23. S. Bischoff, M. L. Nielsen, and J. Mork, “Improving the all-optical response of SOAs using a modulated holding signal,” J. Lightwave Technol. 22(5), 1303–1308 (2004).
    [CrossRef]
  24. I. Kang, C. Dorrer, L. Zhang, M. Rasras, A. Bhardwaj, L. Buhl, S. Cabot, M. Dinu, M. Cappuzzo, L. Gomez, A. Wong-Foy, Y. F. Chen, D. T. Neilson, S. Patel, and J. Jaques, “Experimental investigation of pattern-dependent phase fluctuation in wavelength conversion and XOR operation using semiconductor optical amplifiers,” in 31st European Conference on Optical Communication (ECOC 2005), Glasgow, UK, 2005, 2, pg. 231–232.
  25. M. L. Nielsen, J. Mørk, R. Suzuki, J. Sakaguchi, and Y. Ueno, “Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches,” Opt. Express 14(1), 331–347 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-1-331 .
    [CrossRef] [PubMed]
  26. R. J. Manning and D. A. O. Davies, “Three-wavelength device for all-optical signal processing,” Opt. Lett. 19(12), 889–991 (1994).
    [CrossRef] [PubMed]
  27. J. Xu, X. Zhang, and J. Moerk, “Investigation of patterning effects in ultrafast SOA-based optical switches,” IEEE J. Quantum Electron. 46(1), 87–94 (2010).
    [CrossRef]

2010

2009

2007

R. S. Tucker, K. Hinton, and G. Raskutti, “Energy consumption limits in high-speed optical and electronic signal processing,” Electron. Lett. 43(17), 906–908 (2007).
[CrossRef]

2006

2004

S. Bischoff, M. L. Nielsen, and J. Mork, “Improving the all-optical response of SOAs using a modulated holding signal,” J. Lightwave Technol. 22(5), 1303–1308 (2004).
[CrossRef]

A. H. Gnauck, X. Liu, X. Wei, D. M. Gill, and E. C. Burrows, “Comparison of modulation formats for 42.7-Gb/s single-channel transmission through 1980 km of SSMF,” IEEE Photon. Technol. Lett. 16(3), 909–911 (2004).
[CrossRef]

2003

P. J. Winzer, A. H. Gnauck, G. Raybon, S. Chandrasekhar, Y. Su, and J. Leuthold, “40-Gb/s return-to-zero alternate-mark-inversion (RZ-AMI) transmission over 2000 km,” IEEE Photon. Technol. Lett. 15(5), 766–768 (2003).
[CrossRef]

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J. Lightwave Technol. 21(11), 2779–2790 (2003).
[CrossRef]

2002

K. S. Cheng and J. Conradi, “Reduction of pulse-to-pulse interaction using alternative RZ formats in 40-Gb/s systems,” IEEE Photon. Technol. Lett. 14(1), 98–100 (2002).
[CrossRef]

2001

P. J. Winzer and J. Leuthold, “Return-to-zero modulator using a single NRZ drive signal and an optical delay interferometer,” IEEE Photon. Technol. Lett. 13(12), 1298–1300 (2001).
[CrossRef]

1996

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

1995

E. Jahn, N. Agrawal, M. Arbert, H.-J. Ehrke, D. Franke, R. Ludwig, W. Pieper, H. G. Weber, and C. M. Weinert, “40 Gbit/s all-optical demultiplexing using a monolithically integrated Mach-Zehnder interferometer with semiconductor laser amplifiers,” Electron. Lett. 31(21), 1857–1858 (1995).
[CrossRef]

A. J. Price and N. Le Mercier, “Reduced bandwidth optical digital intensity modulation with improved chromatic dispersion tolerance,” Electron. Lett. 31(1), 58–59 (1995).
[CrossRef]

1994

Agrawal, N.

E. Jahn, N. Agrawal, M. Arbert, H.-J. Ehrke, D. Franke, R. Ludwig, W. Pieper, H. G. Weber, and C. M. Weinert, “40 Gbit/s all-optical demultiplexing using a monolithically integrated Mach-Zehnder interferometer with semiconductor laser amplifiers,” Electron. Lett. 31(21), 1857–1858 (1995).
[CrossRef]

Arbert, M.

E. Jahn, N. Agrawal, M. Arbert, H.-J. Ehrke, D. Franke, R. Ludwig, W. Pieper, H. G. Weber, and C. M. Weinert, “40 Gbit/s all-optical demultiplexing using a monolithically integrated Mach-Zehnder interferometer with semiconductor laser amplifiers,” Electron. Lett. 31(21), 1857–1858 (1995).
[CrossRef]

Balmefrezol, E.

Bischoff, S.

Brindel, P.

Buhl, L. L.

I. Kang, M. S. Rasras, L. L. Buhl, M. Dinu, G. Raybon, S. Cabot, M. A. Cappuzzo, L. L. Gomez, Y. Y. Chen, S. S. Patel, A. A. Piccirilli, J. Jaques, and C. C. Randy Giles, “High-speed all-optical generation of advanced modulation formats using photonic-integrated all-optical format converter,” IEEE J. Sel. Top. Quantum Electron.Published Online, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5771528 .

Burrows, E. C.

A. H. Gnauck, X. Liu, X. Wei, D. M. Gill, and E. C. Burrows, “Comparison of modulation formats for 42.7-Gb/s single-channel transmission through 1980 km of SSMF,” IEEE Photon. Technol. Lett. 16(3), 909–911 (2004).
[CrossRef]

Cabot, S.

I. Kang, M. S. Rasras, L. L. Buhl, M. Dinu, G. Raybon, S. Cabot, M. A. Cappuzzo, L. L. Gomez, Y. Y. Chen, S. S. Patel, A. A. Piccirilli, J. Jaques, and C. C. Randy Giles, “High-speed all-optical generation of advanced modulation formats using photonic-integrated all-optical format converter,” IEEE J. Sel. Top. Quantum Electron.Published Online, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5771528 .

Cappuzzo, M. A.

I. Kang, M. S. Rasras, L. L. Buhl, M. Dinu, G. Raybon, S. Cabot, M. A. Cappuzzo, L. L. Gomez, Y. Y. Chen, S. S. Patel, A. A. Piccirilli, J. Jaques, and C. C. Randy Giles, “High-speed all-optical generation of advanced modulation formats using photonic-integrated all-optical format converter,” IEEE J. Sel. Top. Quantum Electron.Published Online, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5771528 .

Chandrasekhar, S.

P. J. Winzer, A. H. Gnauck, G. Raybon, S. Chandrasekhar, Y. Su, and J. Leuthold, “40-Gb/s return-to-zero alternate-mark-inversion (RZ-AMI) transmission over 2000 km,” IEEE Photon. Technol. Lett. 15(5), 766–768 (2003).
[CrossRef]

Chen, Y. Y.

I. Kang, M. S. Rasras, L. L. Buhl, M. Dinu, G. Raybon, S. Cabot, M. A. Cappuzzo, L. L. Gomez, Y. Y. Chen, S. S. Patel, A. A. Piccirilli, J. Jaques, and C. C. Randy Giles, “High-speed all-optical generation of advanced modulation formats using photonic-integrated all-optical format converter,” IEEE J. Sel. Top. Quantum Electron.Published Online, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5771528 .

Cheng, K. S.

K. S. Cheng and J. Conradi, “Reduction of pulse-to-pulse interaction using alternative RZ formats in 40-Gb/s systems,” IEEE Photon. Technol. Lett. 14(1), 98–100 (2002).
[CrossRef]

Conradi, J.

K. S. Cheng and J. Conradi, “Reduction of pulse-to-pulse interaction using alternative RZ formats in 40-Gb/s systems,” IEEE Photon. Technol. Lett. 14(1), 98–100 (2002).
[CrossRef]

Contestabile, G.

G. Contestabile, A. Maruta, and K. Kitayama, “Gain dynamics in quantum-dot semiconductor optical amplifiers at 1550 nm,” IEEE Photon. Technol. Lett. 22(13), 987–989 (2010).
[CrossRef]

Dailey, J. M.

Davies, D. A. O.

de Waardt, H.

Dinu, M.

I. Kang, M. S. Rasras, L. L. Buhl, M. Dinu, G. Raybon, S. Cabot, M. A. Cappuzzo, L. L. Gomez, Y. Y. Chen, S. S. Patel, A. A. Piccirilli, J. Jaques, and C. C. Randy Giles, “High-speed all-optical generation of advanced modulation formats using photonic-integrated all-optical format converter,” IEEE J. Sel. Top. Quantum Electron.Published Online, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5771528 .

Dorren, H. J. S.

Downie, J. D.

Durhuus, T.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

Ehrke, H.-J.

E. Jahn, N. Agrawal, M. Arbert, H.-J. Ehrke, D. Franke, R. Ludwig, W. Pieper, H. G. Weber, and C. M. Weinert, “40 Gbit/s all-optical demultiplexing using a monolithically integrated Mach-Zehnder interferometer with semiconductor laser amplifiers,” Electron. Lett. 31(21), 1857–1858 (1995).
[CrossRef]

Essiambre, R. J.

P. J. Winzer and R. J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[CrossRef]

Franke, D.

E. Jahn, N. Agrawal, M. Arbert, H.-J. Ehrke, D. Franke, R. Ludwig, W. Pieper, H. G. Weber, and C. M. Weinert, “40 Gbit/s all-optical demultiplexing using a monolithically integrated Mach-Zehnder interferometer with semiconductor laser amplifiers,” Electron. Lett. 31(21), 1857–1858 (1995).
[CrossRef]

Gill, D. M.

A. H. Gnauck, X. Liu, X. Wei, D. M. Gill, and E. C. Burrows, “Comparison of modulation formats for 42.7-Gb/s single-channel transmission through 1980 km of SSMF,” IEEE Photon. Technol. Lett. 16(3), 909–911 (2004).
[CrossRef]

Gnauck, A. H.

A. H. Gnauck, X. Liu, X. Wei, D. M. Gill, and E. C. Burrows, “Comparison of modulation formats for 42.7-Gb/s single-channel transmission through 1980 km of SSMF,” IEEE Photon. Technol. Lett. 16(3), 909–911 (2004).
[CrossRef]

P. J. Winzer, A. H. Gnauck, G. Raybon, S. Chandrasekhar, Y. Su, and J. Leuthold, “40-Gb/s return-to-zero alternate-mark-inversion (RZ-AMI) transmission over 2000 km,” IEEE Photon. Technol. Lett. 15(5), 766–768 (2003).
[CrossRef]

Gomez, L. L.

I. Kang, M. S. Rasras, L. L. Buhl, M. Dinu, G. Raybon, S. Cabot, M. A. Cappuzzo, L. L. Gomez, Y. Y. Chen, S. S. Patel, A. A. Piccirilli, J. Jaques, and C. C. Randy Giles, “High-speed all-optical generation of advanced modulation formats using photonic-integrated all-optical format converter,” IEEE J. Sel. Top. Quantum Electron.Published Online, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5771528 .

Hinton, K.

R. S. Tucker, K. Hinton, and G. Raskutti, “Energy consumption limits in high-speed optical and electronic signal processing,” Electron. Lett. 43(17), 906–908 (2007).
[CrossRef]

Hurley, J.

Jahn, E.

E. Jahn, N. Agrawal, M. Arbert, H.-J. Ehrke, D. Franke, R. Ludwig, W. Pieper, H. G. Weber, and C. M. Weinert, “40 Gbit/s all-optical demultiplexing using a monolithically integrated Mach-Zehnder interferometer with semiconductor laser amplifiers,” Electron. Lett. 31(21), 1857–1858 (1995).
[CrossRef]

Jaques, J.

I. Kang, M. S. Rasras, L. L. Buhl, M. Dinu, G. Raybon, S. Cabot, M. A. Cappuzzo, L. L. Gomez, Y. Y. Chen, S. S. Patel, A. A. Piccirilli, J. Jaques, and C. C. Randy Giles, “High-speed all-optical generation of advanced modulation formats using photonic-integrated all-optical format converter,” IEEE J. Sel. Top. Quantum Electron.Published Online, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5771528 .

Joergensen, C.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

Kang, I.

I. Kang, M. S. Rasras, L. L. Buhl, M. Dinu, G. Raybon, S. Cabot, M. A. Cappuzzo, L. L. Gomez, Y. Y. Chen, S. S. Patel, A. A. Piccirilli, J. Jaques, and C. C. Randy Giles, “High-speed all-optical generation of advanced modulation formats using photonic-integrated all-optical format converter,” IEEE J. Sel. Top. Quantum Electron.Published Online, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5771528 .

Khoe, G. D.

Kitayama, K.

G. Contestabile, A. Maruta, and K. Kitayama, “Gain dynamics in quantum-dot semiconductor optical amplifiers at 1550 nm,” IEEE Photon. Technol. Lett. 22(13), 987–989 (2010).
[CrossRef]

Koch, T. L.

Lavigne, B.

Le Mercier, N.

A. J. Price and N. Le Mercier, “Reduced bandwidth optical digital intensity modulation with improved chromatic dispersion tolerance,” Electron. Lett. 31(1), 58–59 (1995).
[CrossRef]

Leclerc, O.

Leuthold, J.

P. J. Winzer, A. H. Gnauck, G. Raybon, S. Chandrasekhar, Y. Su, and J. Leuthold, “40-Gb/s return-to-zero alternate-mark-inversion (RZ-AMI) transmission over 2000 km,” IEEE Photon. Technol. Lett. 15(5), 766–768 (2003).
[CrossRef]

P. J. Winzer and J. Leuthold, “Return-to-zero modulator using a single NRZ drive signal and an optical delay interferometer,” IEEE Photon. Technol. Lett. 13(12), 1298–1300 (2001).
[CrossRef]

Li, Z.

Liu, X.

A. H. Gnauck, X. Liu, X. Wei, D. M. Gill, and E. C. Burrows, “Comparison of modulation formats for 42.7-Gb/s single-channel transmission through 1980 km of SSMF,” IEEE Photon. Technol. Lett. 16(3), 909–911 (2004).
[CrossRef]

Liu, Y.

Ludwig, R.

E. Jahn, N. Agrawal, M. Arbert, H.-J. Ehrke, D. Franke, R. Ludwig, W. Pieper, H. G. Weber, and C. M. Weinert, “40 Gbit/s all-optical demultiplexing using a monolithically integrated Mach-Zehnder interferometer with semiconductor laser amplifiers,” Electron. Lett. 31(21), 1857–1858 (1995).
[CrossRef]

Lykke Danielsen, S.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

Manning, R. J.

Maruta, A.

G. Contestabile, A. Maruta, and K. Kitayama, “Gain dynamics in quantum-dot semiconductor optical amplifiers at 1550 nm,” IEEE Photon. Technol. Lett. 22(13), 987–989 (2010).
[CrossRef]

Mikkelsen, B.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

Moerk, J.

J. Xu, X. Zhang, and J. Moerk, “Investigation of patterning effects in ultrafast SOA-based optical switches,” IEEE J. Quantum Electron. 46(1), 87–94 (2010).
[CrossRef]

Mork, J.

Mørk, J.

Nielsen, M.

Nielsen, M. L.

Patel, S. S.

I. Kang, M. S. Rasras, L. L. Buhl, M. Dinu, G. Raybon, S. Cabot, M. A. Cappuzzo, L. L. Gomez, Y. Y. Chen, S. S. Patel, A. A. Piccirilli, J. Jaques, and C. C. Randy Giles, “High-speed all-optical generation of advanced modulation formats using photonic-integrated all-optical format converter,” IEEE J. Sel. Top. Quantum Electron.Published Online, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5771528 .

Piccirilli, A. A.

I. Kang, M. S. Rasras, L. L. Buhl, M. Dinu, G. Raybon, S. Cabot, M. A. Cappuzzo, L. L. Gomez, Y. Y. Chen, S. S. Patel, A. A. Piccirilli, J. Jaques, and C. C. Randy Giles, “High-speed all-optical generation of advanced modulation formats using photonic-integrated all-optical format converter,” IEEE J. Sel. Top. Quantum Electron.Published Online, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5771528 .

Pieper, W.

E. Jahn, N. Agrawal, M. Arbert, H.-J. Ehrke, D. Franke, R. Ludwig, W. Pieper, H. G. Weber, and C. M. Weinert, “40 Gbit/s all-optical demultiplexing using a monolithically integrated Mach-Zehnder interferometer with semiconductor laser amplifiers,” Electron. Lett. 31(21), 1857–1858 (1995).
[CrossRef]

Pierre, L.

Price, A. J.

A. J. Price and N. Le Mercier, “Reduced bandwidth optical digital intensity modulation with improved chromatic dispersion tolerance,” Electron. Lett. 31(1), 58–59 (1995).
[CrossRef]

Randy Giles, C. C.

I. Kang, M. S. Rasras, L. L. Buhl, M. Dinu, G. Raybon, S. Cabot, M. A. Cappuzzo, L. L. Gomez, Y. Y. Chen, S. S. Patel, A. A. Piccirilli, J. Jaques, and C. C. Randy Giles, “High-speed all-optical generation of advanced modulation formats using photonic-integrated all-optical format converter,” IEEE J. Sel. Top. Quantum Electron.Published Online, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5771528 .

Raskutti, G.

R. S. Tucker, K. Hinton, and G. Raskutti, “Energy consumption limits in high-speed optical and electronic signal processing,” Electron. Lett. 43(17), 906–908 (2007).
[CrossRef]

Rasras, M. S.

I. Kang, M. S. Rasras, L. L. Buhl, M. Dinu, G. Raybon, S. Cabot, M. A. Cappuzzo, L. L. Gomez, Y. Y. Chen, S. S. Patel, A. A. Piccirilli, J. Jaques, and C. C. Randy Giles, “High-speed all-optical generation of advanced modulation formats using photonic-integrated all-optical format converter,” IEEE J. Sel. Top. Quantum Electron.Published Online, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5771528 .

Raybon, G.

P. J. Winzer, A. H. Gnauck, G. Raybon, S. Chandrasekhar, Y. Su, and J. Leuthold, “40-Gb/s return-to-zero alternate-mark-inversion (RZ-AMI) transmission over 2000 km,” IEEE Photon. Technol. Lett. 15(5), 766–768 (2003).
[CrossRef]

I. Kang, M. S. Rasras, L. L. Buhl, M. Dinu, G. Raybon, S. Cabot, M. A. Cappuzzo, L. L. Gomez, Y. Y. Chen, S. S. Patel, A. A. Piccirilli, J. Jaques, and C. C. Randy Giles, “High-speed all-optical generation of advanced modulation formats using photonic-integrated all-optical format converter,” IEEE J. Sel. Top. Quantum Electron.Published Online, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5771528 .

Rouvillain, D.

Ruffin, A. B.

Sakaguchi, J.

Seguineau, F.

Stubkjaer, K. E.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

Su, Y.

P. J. Winzer, A. H. Gnauck, G. Raybon, S. Chandrasekhar, Y. Su, and J. Leuthold, “40-Gb/s return-to-zero alternate-mark-inversion (RZ-AMI) transmission over 2000 km,” IEEE Photon. Technol. Lett. 15(5), 766–768 (2003).
[CrossRef]

Suzuki, R.

Tangdiongga, E.

Tucker, R. S.

R. S. Tucker, K. Hinton, and G. Raskutti, “Energy consumption limits in high-speed optical and electronic signal processing,” Electron. Lett. 43(17), 906–908 (2007).
[CrossRef]

Ueno, Y.

Webb, R. P.

Weber, H. G.

E. Jahn, N. Agrawal, M. Arbert, H.-J. Ehrke, D. Franke, R. Ludwig, W. Pieper, H. G. Weber, and C. M. Weinert, “40 Gbit/s all-optical demultiplexing using a monolithically integrated Mach-Zehnder interferometer with semiconductor laser amplifiers,” Electron. Lett. 31(21), 1857–1858 (1995).
[CrossRef]

Wei, X.

A. H. Gnauck, X. Liu, X. Wei, D. M. Gill, and E. C. Burrows, “Comparison of modulation formats for 42.7-Gb/s single-channel transmission through 1980 km of SSMF,” IEEE Photon. Technol. Lett. 16(3), 909–911 (2004).
[CrossRef]

Weinert, C. M.

E. Jahn, N. Agrawal, M. Arbert, H.-J. Ehrke, D. Franke, R. Ludwig, W. Pieper, H. G. Weber, and C. M. Weinert, “40 Gbit/s all-optical demultiplexing using a monolithically integrated Mach-Zehnder interferometer with semiconductor laser amplifiers,” Electron. Lett. 31(21), 1857–1858 (1995).
[CrossRef]

Winzer, P. J.

P. J. Winzer and R. J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[CrossRef]

P. J. Winzer, A. H. Gnauck, G. Raybon, S. Chandrasekhar, Y. Su, and J. Leuthold, “40-Gb/s return-to-zero alternate-mark-inversion (RZ-AMI) transmission over 2000 km,” IEEE Photon. Technol. Lett. 15(5), 766–768 (2003).
[CrossRef]

P. J. Winzer and J. Leuthold, “Return-to-zero modulator using a single NRZ drive signal and an optical delay interferometer,” IEEE Photon. Technol. Lett. 13(12), 1298–1300 (2001).
[CrossRef]

Xu, J.

J. Xu, X. Zhang, and J. Moerk, “Investigation of patterning effects in ultrafast SOA-based optical switches,” IEEE J. Quantum Electron. 46(1), 87–94 (2010).
[CrossRef]

Zhang, S.

Zhang, X.

J. Xu, X. Zhang, and J. Moerk, “Investigation of patterning effects in ultrafast SOA-based optical switches,” IEEE J. Quantum Electron. 46(1), 87–94 (2010).
[CrossRef]

Electron. Lett.

A. J. Price and N. Le Mercier, “Reduced bandwidth optical digital intensity modulation with improved chromatic dispersion tolerance,” Electron. Lett. 31(1), 58–59 (1995).
[CrossRef]

R. S. Tucker, K. Hinton, and G. Raskutti, “Energy consumption limits in high-speed optical and electronic signal processing,” Electron. Lett. 43(17), 906–908 (2007).
[CrossRef]

E. Jahn, N. Agrawal, M. Arbert, H.-J. Ehrke, D. Franke, R. Ludwig, W. Pieper, H. G. Weber, and C. M. Weinert, “40 Gbit/s all-optical demultiplexing using a monolithically integrated Mach-Zehnder interferometer with semiconductor laser amplifiers,” Electron. Lett. 31(21), 1857–1858 (1995).
[CrossRef]

IEEE J. Quantum Electron.

J. Xu, X. Zhang, and J. Moerk, “Investigation of patterning effects in ultrafast SOA-based optical switches,” IEEE J. Quantum Electron. 46(1), 87–94 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

I. Kang, M. S. Rasras, L. L. Buhl, M. Dinu, G. Raybon, S. Cabot, M. A. Cappuzzo, L. L. Gomez, Y. Y. Chen, S. S. Patel, A. A. Piccirilli, J. Jaques, and C. C. Randy Giles, “High-speed all-optical generation of advanced modulation formats using photonic-integrated all-optical format converter,” IEEE J. Sel. Top. Quantum Electron.Published Online, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5771528 .

IEEE Photon. Technol. Lett.

A. H. Gnauck, X. Liu, X. Wei, D. M. Gill, and E. C. Burrows, “Comparison of modulation formats for 42.7-Gb/s single-channel transmission through 1980 km of SSMF,” IEEE Photon. Technol. Lett. 16(3), 909–911 (2004).
[CrossRef]

P. J. Winzer, A. H. Gnauck, G. Raybon, S. Chandrasekhar, Y. Su, and J. Leuthold, “40-Gb/s return-to-zero alternate-mark-inversion (RZ-AMI) transmission over 2000 km,” IEEE Photon. Technol. Lett. 15(5), 766–768 (2003).
[CrossRef]

K. S. Cheng and J. Conradi, “Reduction of pulse-to-pulse interaction using alternative RZ formats in 40-Gb/s systems,” IEEE Photon. Technol. Lett. 14(1), 98–100 (2002).
[CrossRef]

P. J. Winzer and J. Leuthold, “Return-to-zero modulator using a single NRZ drive signal and an optical delay interferometer,” IEEE Photon. Technol. Lett. 13(12), 1298–1300 (2001).
[CrossRef]

G. Contestabile, A. Maruta, and K. Kitayama, “Gain dynamics in quantum-dot semiconductor optical amplifiers at 1550 nm,” IEEE Photon. Technol. Lett. 22(13), 987–989 (2010).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Proc. IEEE

P. J. Winzer and R. J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[CrossRef]

Other

J. M. Dailey, M. J. Power, R. P. Webb, and R. J. Manning, “All-optical modulation converter for on-off keying to duobinary and alternate-mark inversion at 42.6 Gbps,” in CLEO/Europe 2011, Munich, Germany, 2011, Paper CI4.1.

R. J. Manning, X. Yang, R. P. Webb, R. Giller, F. C. Garcia Gunning, and A. D. Ellis, “The turbo-switch - a novel technique to increase the high-speed response of SOAs for wavelength conversion,” in Optical Fiber Communication Conference, Anaheim, CA, USA, 2006, Paper OWS8.

L. Billes, J. C. Simon, B. Kowalski, M. Henry, G. Michaud, P. Lamouler, and F. Alard, “20 Gbit/s optical 3R regenerator using SOA based Mach-Zehnder interferometer gate,” in 11th International Conference on Integrated Optics and Optical Fibre Communications and 23rd European Conference on Optical Communications (IOCC-ECOC1997), Edinburgh, UK, 2, pg. 269–272.

R. D. Gitlin, J. F. Hayes, and S. B. Weinstein, Data Communication Principles (Plenum Press, 1992).

I. Kang, C. Dorrer, L. Zhang, M. Rasras, A. Bhardwaj, L. Buhl, S. Cabot, M. Dinu, M. Cappuzzo, L. Gomez, A. Wong-Foy, Y. F. Chen, D. T. Neilson, S. Patel, and J. Jaques, “Experimental investigation of pattern-dependent phase fluctuation in wavelength conversion and XOR operation using semiconductor optical amplifiers,” in 31st European Conference on Optical Communication (ECOC 2005), Glasgow, UK, 2005, 2, pg. 231–232.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

All-optical logic gate with XOR-type architecture.

Fig. 2
Fig. 2

The all-optical gate RZ-OOK inputs and RZ-DB output. Re{E} is the real part of the output electric field, and E has been rotated in the complex plane so as to be aligned with the real axis.

Fig. 3
Fig. 3

Output DB (grey) and OOK (black) spectra calculated from the electric field output from the XOR gate. Spectral features consistent with Eq. (8) can be clearly seen. The frequency axis is centered at the carrier and normalized to the bitrate.

Fig. 4
Fig. 4

Conceptual diagram of the all-optical modulation converter incorporating two optical gates.

Fig. 5
Fig. 5

Detailed experimental setup. V.T., V.A., and P.C. are variable time delay, variable attenuator, and polarization controller, respectively.

Fig. 6
Fig. 6

(a) The DB (black) and OOK (gray) output spectra. (b) The AMI (black) and OOK (gray) output spectra. In both plots the independent axis shows the normalized frequency, F, which has been centered at the carrier and scaled by the bit period (F = f•T).

Fig. 7
Fig. 7

(a) DB and (b) AMI spectra measured for 10.65 Gb/s modulation conversion. In both plots the independent axis shows the normalized frequency, F, which has been centered at the carrier and scaled by the bit period (F = f•T).

Fig. 8
Fig. 8

Input signal pulse timing to XOR gate for the pattern suppression scheme.

Fig. 9
Fig. 9

DB output constellations (a) without and (b) with PSS.

Fig. 10
Fig. 10

Eye diagrams for DB output (a) PSS off and (b) PSS on.

Fig. 11
Fig. 11

Output mark patterning and output power penalty vs. bitrate

Tables (2)

Tables Icon

Table 1 All-Optical Gate Output Logic

Tables Icon

Table 2 Experimental Parameters

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

y AMI [n]=x[n]x[n1]
y DB [n]=x[n]+x[n1]1,
y DB [n]=x[n](1x[n1])=x[n] x ¯ [n1],
H Δ = 1 2 ( e φ 1 α e j φ 1 e φ 2 α e j φ 2 )
H Σ = 1 2 ( e φ 1 α e j φ 1 + e φ 2 α e j φ 2 )
H Δ BA
H Σ 1(A+B)
Y ˜ DB = U ˜ (2π F T ){ 2 x ˜ (2πF) e jπF cos(πF) n=0 M1 e j2πnF }
δ1 Δθ π
Y(t) n=0 M1 y[n]U(tnT) ,
Y ˜ (2πf)= Y(t) e j2πft dt = n y[n] U(tnT) e j2πft dt = U ˜ (2πf) n y[n] e j2πfnT = U ˜ (2πf) y ˜ (2πfT)
y AMI [n]={ x[n]x[n1], 0nM-1 0, otherwise
y ˜ AMI ( 2πfT )= x ˜ ( 2πfT )( 1 e j2πfT ) =2j x ˜ ( 2πfT ) e jπfT sin( πfT )
y DB [n]={ x[n]+x[n1]1, 0nM1 0, otherwise
y ˜ DB =2[ n=0 M1 x[n] e j2πfnT ] e jπfT cos(πfT) n=0 M1 e j2πfnT
y ˜ DB (f=0)=2 n=0 M1 x[n] n=0 M1 1 =2 M 2 M =0

Metrics