Abstract

An asynchronous 10 Gb/s Ethernet packet with maximum packet size of 1518 bytes is synchronized and retimed to a master clock with 200 kHz frequency offset using a time lens. The NRZ packet is simultaneously converted into an RZ packet, then further pulse compressed to a FWHM of 400 fs and finally time-division multiplexed with a serial 1.28 Tb/s signal including a vacant time slot, thus forming a 1.29 Tb/s time-division multiplexed serial signal. Error-free performance of synchronizing, retiming, time-division multiplexing to a Terabit data stream and finally demultiplexing back to 10 Gb/s of the Ethernet packet is achieved.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. Hansen Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-1438 .
    [CrossRef] [PubMed]
  2. T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, J. K. Fischer, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA9.
  3. H. Hu, M. Galili, L. K. Oxenløwe, J. Xu, H. C. H. Mulvad, C. Peucheret, A. T. Clausen, and P. Jeppesen, “Error-free transmission of serial 1.28 Tbaud RZ-DPSK signal,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC), paper 4.18, (2010).
  4. C. Meirosu, P. Golonka, A. Hirstius, S. Stancu, B. Dobinson, E. Radius, A. Antony, F. Dijkstra, J. Blom, and C. de Laat, “Native 10 Gigabit Ethernet experiments over long distances,” Future Gener. Comput. Syst. 21(4), 457–468 (2005).
    [CrossRef]
  5. J. Areal, H. Hu, C. Peucheret, E. Palushani, R. Puttini, A. Clausen, M. Berger, A. Osadchiy, and L. K. Oxenløwe, “Analysis of a Time-lens based Optical Frame Synchronizer and Retimer for 10G Ethernet Aiming at a Tb/s Optical Router/Switch Design,” in Optical Network Design and Modeling (ONDM), paper P-3, (2010).
  6. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
    [CrossRef]
  7. J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” J. Lightwave Technol. 24(7), 2649–2662 (2006).
    [CrossRef]
  8. H. Hu, J. L. Areal, E. Palushani, L. K. Oxenlowe, A. Clausen, M. S. Berger, and P. Jeppesen, “Optical Synchronization of a 10-G Ethernet Packet and Time-Division Multiplexing to a 50-Gb/s Signal Using an Optical Time Lens,” IEEE Photon. Technol. Lett. 22(21), 1583–1585 (2010).
    [CrossRef]
  9. H. Hu, E. Palushani, J. L. Areal, M. Galili, A. T. Clausen, M. S. Berger, C. Peucheret, L. K. Oxenlowe, and P. Jeppesen, “Optical frame synchronizer for 10 G Ethernet packets aiming at 1 Tb/s OTDM Ethernet,” in Optical Fiber Communication Conference, OFC 2010, paper JWA46.
  10. M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, “Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses,” IEEE Photon. Technol. Lett. 16(4), 1059–1061 (2004).
    [CrossRef]
  11. C. W. Chow, A. D. Ellis, and F. Parmigiani, “Time-division-multiplexing using pulse position locking for 100 Gb/s applications,” Opt. Express 17(8), 6562–6567 (2009).
    [CrossRef] [PubMed]
  12. H. Hu, J. L. Areal, H. C. Hansen Mulvad, M. Galili, K. Dalgaard, E. Palushani, A. T. Clausen, M. S. Berger, P. Jeppesen, and L. K. Oxenlowe, “Synchronization, retiming and OTDM of an asynchronous 10 Gigabit Ethernet NRZ packet using a time lens for Terabit Ethernet,” in 37th European Conference and Exposition on Optical Communications, ECOC 2011, paper Tu.3.K.4.
  13. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

2010 (2)

H. C. Hansen Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-1438 .
[CrossRef] [PubMed]

H. Hu, J. L. Areal, E. Palushani, L. K. Oxenlowe, A. Clausen, M. S. Berger, and P. Jeppesen, “Optical Synchronization of a 10-G Ethernet Packet and Time-Division Multiplexing to a 50-Gb/s Signal Using an Optical Time Lens,” IEEE Photon. Technol. Lett. 22(21), 1583–1585 (2010).
[CrossRef]

2009 (1)

2006 (1)

2005 (1)

C. Meirosu, P. Golonka, A. Hirstius, S. Stancu, B. Dobinson, E. Radius, A. Antony, F. Dijkstra, J. Blom, and C. de Laat, “Native 10 Gigabit Ethernet experiments over long distances,” Future Gener. Comput. Syst. 21(4), 457–468 (2005).
[CrossRef]

2004 (1)

M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, “Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses,” IEEE Photon. Technol. Lett. 16(4), 1059–1061 (2004).
[CrossRef]

1994 (1)

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[CrossRef]

Antony, A.

C. Meirosu, P. Golonka, A. Hirstius, S. Stancu, B. Dobinson, E. Radius, A. Antony, F. Dijkstra, J. Blom, and C. de Laat, “Native 10 Gigabit Ethernet experiments over long distances,” Future Gener. Comput. Syst. 21(4), 457–468 (2005).
[CrossRef]

Areal, J. L.

H. Hu, J. L. Areal, E. Palushani, L. K. Oxenlowe, A. Clausen, M. S. Berger, and P. Jeppesen, “Optical Synchronization of a 10-G Ethernet Packet and Time-Division Multiplexing to a 50-Gb/s Signal Using an Optical Time Lens,” IEEE Photon. Technol. Lett. 22(21), 1583–1585 (2010).
[CrossRef]

Berger, M. S.

H. Hu, J. L. Areal, E. Palushani, L. K. Oxenlowe, A. Clausen, M. S. Berger, and P. Jeppesen, “Optical Synchronization of a 10-G Ethernet Packet and Time-Division Multiplexing to a 50-Gb/s Signal Using an Optical Time Lens,” IEEE Photon. Technol. Lett. 22(21), 1583–1585 (2010).
[CrossRef]

Blom, J.

C. Meirosu, P. Golonka, A. Hirstius, S. Stancu, B. Dobinson, E. Radius, A. Antony, F. Dijkstra, J. Blom, and C. de Laat, “Native 10 Gigabit Ethernet experiments over long distances,” Future Gener. Comput. Syst. 21(4), 457–468 (2005).
[CrossRef]

Chow, C. W.

Clausen, A.

H. Hu, J. L. Areal, E. Palushani, L. K. Oxenlowe, A. Clausen, M. S. Berger, and P. Jeppesen, “Optical Synchronization of a 10-G Ethernet Packet and Time-Division Multiplexing to a 50-Gb/s Signal Using an Optical Time Lens,” IEEE Photon. Technol. Lett. 22(21), 1583–1585 (2010).
[CrossRef]

Clausen, A. T.

de Laat, C.

C. Meirosu, P. Golonka, A. Hirstius, S. Stancu, B. Dobinson, E. Radius, A. Antony, F. Dijkstra, J. Blom, and C. de Laat, “Native 10 Gigabit Ethernet experiments over long distances,” Future Gener. Comput. Syst. 21(4), 457–468 (2005).
[CrossRef]

Dijkstra, F.

C. Meirosu, P. Golonka, A. Hirstius, S. Stancu, B. Dobinson, E. Radius, A. Antony, F. Dijkstra, J. Blom, and C. de Laat, “Native 10 Gigabit Ethernet experiments over long distances,” Future Gener. Comput. Syst. 21(4), 457–468 (2005).
[CrossRef]

Dobinson, B.

C. Meirosu, P. Golonka, A. Hirstius, S. Stancu, B. Dobinson, E. Radius, A. Antony, F. Dijkstra, J. Blom, and C. de Laat, “Native 10 Gigabit Ethernet experiments over long distances,” Future Gener. Comput. Syst. 21(4), 457–468 (2005).
[CrossRef]

Ellis, A. D.

Futami, F.

M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, “Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses,” IEEE Photon. Technol. Lett. 16(4), 1059–1061 (2004).
[CrossRef]

Galili, M.

Golonka, P.

C. Meirosu, P. Golonka, A. Hirstius, S. Stancu, B. Dobinson, E. Radius, A. Antony, F. Dijkstra, J. Blom, and C. de Laat, “Native 10 Gigabit Ethernet experiments over long distances,” Future Gener. Comput. Syst. 21(4), 457–468 (2005).
[CrossRef]

Hansen Mulvad, H. C.

Hirooka, T.

M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, “Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses,” IEEE Photon. Technol. Lett. 16(4), 1059–1061 (2004).
[CrossRef]

Hirstius, A.

C. Meirosu, P. Golonka, A. Hirstius, S. Stancu, B. Dobinson, E. Radius, A. Antony, F. Dijkstra, J. Blom, and C. de Laat, “Native 10 Gigabit Ethernet experiments over long distances,” Future Gener. Comput. Syst. 21(4), 457–468 (2005).
[CrossRef]

Hu, H.

H. C. Hansen Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-1438 .
[CrossRef] [PubMed]

H. Hu, J. L. Areal, E. Palushani, L. K. Oxenlowe, A. Clausen, M. S. Berger, and P. Jeppesen, “Optical Synchronization of a 10-G Ethernet Packet and Time-Division Multiplexing to a 50-Gb/s Signal Using an Optical Time Lens,” IEEE Photon. Technol. Lett. 22(21), 1583–1585 (2010).
[CrossRef]

Jensen, J. B.

Jeppesen, P.

H. C. Hansen Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-1438 .
[CrossRef] [PubMed]

H. Hu, J. L. Areal, E. Palushani, L. K. Oxenlowe, A. Clausen, M. S. Berger, and P. Jeppesen, “Optical Synchronization of a 10-G Ethernet Packet and Time-Division Multiplexing to a 50-Gb/s Signal Using an Optical Time Lens,” IEEE Photon. Technol. Lett. 22(21), 1583–1585 (2010).
[CrossRef]

Kolner, B. H.

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[CrossRef]

Meirosu, C.

C. Meirosu, P. Golonka, A. Hirstius, S. Stancu, B. Dobinson, E. Radius, A. Antony, F. Dijkstra, J. Blom, and C. de Laat, “Native 10 Gigabit Ethernet experiments over long distances,” Future Gener. Comput. Syst. 21(4), 457–468 (2005).
[CrossRef]

Nakazawa, M.

M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, “Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses,” IEEE Photon. Technol. Lett. 16(4), 1059–1061 (2004).
[CrossRef]

Oxenlowe, L. K.

H. Hu, J. L. Areal, E. Palushani, L. K. Oxenlowe, A. Clausen, M. S. Berger, and P. Jeppesen, “Optical Synchronization of a 10-G Ethernet Packet and Time-Division Multiplexing to a 50-Gb/s Signal Using an Optical Time Lens,” IEEE Photon. Technol. Lett. 22(21), 1583–1585 (2010).
[CrossRef]

Oxenløwe, L. K.

Palushani, E.

H. Hu, J. L. Areal, E. Palushani, L. K. Oxenlowe, A. Clausen, M. S. Berger, and P. Jeppesen, “Optical Synchronization of a 10-G Ethernet Packet and Time-Division Multiplexing to a 50-Gb/s Signal Using an Optical Time Lens,” IEEE Photon. Technol. Lett. 22(21), 1583–1585 (2010).
[CrossRef]

Parmigiani, F.

Peucheret, C.

Radius, E.

C. Meirosu, P. Golonka, A. Hirstius, S. Stancu, B. Dobinson, E. Radius, A. Antony, F. Dijkstra, J. Blom, and C. de Laat, “Native 10 Gigabit Ethernet experiments over long distances,” Future Gener. Comput. Syst. 21(4), 457–468 (2005).
[CrossRef]

Stancu, S.

C. Meirosu, P. Golonka, A. Hirstius, S. Stancu, B. Dobinson, E. Radius, A. Antony, F. Dijkstra, J. Blom, and C. de Laat, “Native 10 Gigabit Ethernet experiments over long distances,” Future Gener. Comput. Syst. 21(4), 457–468 (2005).
[CrossRef]

van Howe, J.

Watanabe, S.

M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, “Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses,” IEEE Photon. Technol. Lett. 16(4), 1059–1061 (2004).
[CrossRef]

Xu, C.

Future Gener. Comput. Syst. (1)

C. Meirosu, P. Golonka, A. Hirstius, S. Stancu, B. Dobinson, E. Radius, A. Antony, F. Dijkstra, J. Blom, and C. de Laat, “Native 10 Gigabit Ethernet experiments over long distances,” Future Gener. Comput. Syst. 21(4), 457–468 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. Hu, J. L. Areal, E. Palushani, L. K. Oxenlowe, A. Clausen, M. S. Berger, and P. Jeppesen, “Optical Synchronization of a 10-G Ethernet Packet and Time-Division Multiplexing to a 50-Gb/s Signal Using an Optical Time Lens,” IEEE Photon. Technol. Lett. 22(21), 1583–1585 (2010).
[CrossRef]

M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, “Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses,” IEEE Photon. Technol. Lett. 16(4), 1059–1061 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Other (6)

H. Hu, J. L. Areal, H. C. Hansen Mulvad, M. Galili, K. Dalgaard, E. Palushani, A. T. Clausen, M. S. Berger, P. Jeppesen, and L. K. Oxenlowe, “Synchronization, retiming and OTDM of an asynchronous 10 Gigabit Ethernet NRZ packet using a time lens for Terabit Ethernet,” in 37th European Conference and Exposition on Optical Communications, ECOC 2011, paper Tu.3.K.4.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, J. K. Fischer, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA9.

H. Hu, M. Galili, L. K. Oxenløwe, J. Xu, H. C. H. Mulvad, C. Peucheret, A. T. Clausen, and P. Jeppesen, “Error-free transmission of serial 1.28 Tbaud RZ-DPSK signal,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC), paper 4.18, (2010).

J. Areal, H. Hu, C. Peucheret, E. Palushani, R. Puttini, A. Clausen, M. Berger, A. Osadchiy, and L. K. Oxenløwe, “Analysis of a Time-lens based Optical Frame Synchronizer and Retimer for 10G Ethernet Aiming at a Tb/s Optical Router/Switch Design,” in Optical Network Design and Modeling (ONDM), paper P-3, (2010).

H. Hu, E. Palushani, J. L. Areal, M. Galili, A. T. Clausen, M. S. Berger, C. Peucheret, L. K. Oxenlowe, and P. Jeppesen, “Optical frame synchronizer for 10 G Ethernet packets aiming at 1 Tb/s OTDM Ethernet,” in Optical Fiber Communication Conference, OFC 2010, paper JWA46.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of synchronization and NRZ-to-RZ conversion of Ethernet packets, based on a time lens.

Fig. 2
Fig. 2

Operation principle of the synchronization and retiming based on a time lens. (a) phase modulation (blue, Y-axis is power of phase); (b) packet data pulse before the synchronization; (c) packet data pulse after the synchronization (black, Y-axis is power of amplitude).

Fig. 3
Fig. 3

Experimental setup for time lens based 10 G Ethernet packet synchronization and retiming, then subsequent optical time division multiplexing with a serial 1.28 Tb/s signal.

Fig. 5
Fig. 5

(a) Optical sampling oscilloscope diagrams of the 10 Gb/s synchronized, retimed and compressed RZ packet ; (b) the 1.28 Tb/s OTDM serial signal with a vacant time slot ; (c) the synchronized Ethernet packet multiplexed with the 1.28 Tb/s signal. Inset: 10 Gb/s input NRZ packet.

Fig. 4
Fig. 4

(a) Electrical power spectrum of the input NRZ packet; (b) the synchronized RZ packet. Insets: zoom in of the electrical power spectrum.

Fig. 6
Fig. 6

(a) BER measurements for the input NRZ packet, synchronized and compressed RZ packet and demultiplexed RZ packet from the aggregated 650 Gb/s and 1.29 Tb/s OTDM signal; (b) the 640 Gb/s OTDM signal with a vacant time slot; (c) the aggregated 650 Gb/s OTDM signal with the 10 G synchronized Ethernet packet; (d) and (e) demultiplexed eye diagrams of the RZ packet from the aggregated 650 Gb/s OTDM signal and 1.29 Tb/s OTDM signal, respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δφ=π V pp 2 V π cos[ ω m (t+nΔT+δt)]
Δφπ V pp 4 V π ω m 2 (t+nΔT+δt) 2
Δω=π V pp 2 V π ω m 2 (nΔT+δt)
Δt=Δω β 2 L=π V pp 2 V π ω m 2 (nΔT+δt) β 2 L
Δt=(nΔT+δt)
β 2 L= 2 V π π V pp ω m 2
DL= 4C V π λ 2 V pp ω m 2

Metrics