Abstract

We propose a method of testing transmission fiber lines and distributed amplifiers. Multipath interference (MPI) is detected as a beat spectrum between a multipath signal and a direct signal using a synthesized chirped test signal with lightwave frequencies of f1 and f2 periodically emitted from a distributed feedback laser diode (DFB-LD). This chirped test pulse is generated using a directly modulated DFB-LD with a drive signal calculated using a digital signal processing technique (DSP). A receiver consisting of a photodiode and an electrical spectrum analyzer (ESA) detects a baseband power spectrum peak appearing at the frequency of the test signal frequency deviation (f1-f2) as a beat spectrum of self-heterodyne detection. Multipath interference is converted from the spectrum peak power. This method improved the minimum detectable MPI to as low as −78 dB. We discuss the detailed design and performance of the proposed test method, including a DFB-LD drive signal calculation algorithm with DSP for synthesis of the chirped test signal and experiments on single-mode fibers with discrete reflections.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. S. Fludger and R. J. Mears, “Electrical measurements of multipath interference in distributed Raman amplifiers,” J. Lightwave Technol. 19(4), 536–545 (2001).
    [CrossRef]
  2. S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Characterization of double Rayleigh scatter noise in Raman amplifiers,” IEEE Photon. Technol. Lett. 12(5), 528–530 (2000).
    [CrossRef]
  3. S. Faralli and F. Di Pasquale, “Impact of double Rayleigh scattering noise in distributed higher order Raman pumping schemes,” IEEE Photon. Technol. Lett. 15(6), 804–806 (2003).
    [CrossRef]
  4. P. Parolari, L. Marazzi, L. Bernardini, and M. Martinelli, “Double Rayleigh scattering noise in lumped and distributed Raman amplifiers,” J. Lightwave Technol. 21(10), 2224–2228 (2003).
    [CrossRef]
  5. G. Bolognini, S. Sugliani, and F. Di Pasquale, “Double Rayleigh scattering noise in Raman amplifiers using pump time-division-multiplexing schemes,” IEEE Photon. Technol. Lett. 16(5), 1286–1288 (2004).
    [CrossRef]
  6. K. Aida, T. Okada, and Y. Hinako, “Multipath interference test method for distributed amplifier using self-heterodyne technique,” IEICE Trans. ELECTRON,  E 90-C(1), 18–24 (2007).
  7. H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34(10), 1816–1822 (1998).
    [CrossRef]
  8. A. Yariv, Optical Electronics in Modern Communications fifth edition (Oxford University Press, New York, USA, 1997), Chap. 15.

2007 (1)

K. Aida, T. Okada, and Y. Hinako, “Multipath interference test method for distributed amplifier using self-heterodyne technique,” IEICE Trans. ELECTRON,  E 90-C(1), 18–24 (2007).

2004 (1)

G. Bolognini, S. Sugliani, and F. Di Pasquale, “Double Rayleigh scattering noise in Raman amplifiers using pump time-division-multiplexing schemes,” IEEE Photon. Technol. Lett. 16(5), 1286–1288 (2004).
[CrossRef]

2003 (2)

P. Parolari, L. Marazzi, L. Bernardini, and M. Martinelli, “Double Rayleigh scattering noise in lumped and distributed Raman amplifiers,” J. Lightwave Technol. 21(10), 2224–2228 (2003).
[CrossRef]

S. Faralli and F. Di Pasquale, “Impact of double Rayleigh scattering noise in distributed higher order Raman pumping schemes,” IEEE Photon. Technol. Lett. 15(6), 804–806 (2003).
[CrossRef]

2001 (1)

2000 (1)

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Characterization of double Rayleigh scatter noise in Raman amplifiers,” IEEE Photon. Technol. Lett. 12(5), 528–530 (2000).
[CrossRef]

1998 (1)

H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34(10), 1816–1822 (1998).
[CrossRef]

Aida, K.

K. Aida, T. Okada, and Y. Hinako, “Multipath interference test method for distributed amplifier using self-heterodyne technique,” IEICE Trans. ELECTRON,  E 90-C(1), 18–24 (2007).

Andonovic, I.

H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34(10), 1816–1822 (1998).
[CrossRef]

Bernardini, L.

Bolognini, G.

G. Bolognini, S. Sugliani, and F. Di Pasquale, “Double Rayleigh scattering noise in Raman amplifiers using pump time-division-multiplexing schemes,” IEEE Photon. Technol. Lett. 16(5), 1286–1288 (2004).
[CrossRef]

Chernikov, S. V.

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Characterization of double Rayleigh scatter noise in Raman amplifiers,” IEEE Photon. Technol. Lett. 12(5), 528–530 (2000).
[CrossRef]

Cornwell, W. D.

H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34(10), 1816–1822 (1998).
[CrossRef]

Di Pasquale, F.

G. Bolognini, S. Sugliani, and F. Di Pasquale, “Double Rayleigh scattering noise in Raman amplifiers using pump time-division-multiplexing schemes,” IEEE Photon. Technol. Lett. 16(5), 1286–1288 (2004).
[CrossRef]

S. Faralli and F. Di Pasquale, “Impact of double Rayleigh scattering noise in distributed higher order Raman pumping schemes,” IEEE Photon. Technol. Lett. 15(6), 804–806 (2003).
[CrossRef]

Faralli, S.

S. Faralli and F. Di Pasquale, “Impact of double Rayleigh scattering noise in distributed higher order Raman pumping schemes,” IEEE Photon. Technol. Lett. 15(6), 804–806 (2003).
[CrossRef]

Fludger, C. R. S.

Hinako, Y.

K. Aida, T. Okada, and Y. Hinako, “Multipath interference test method for distributed amplifier using self-heterodyne technique,” IEICE Trans. ELECTRON,  E 90-C(1), 18–24 (2007).

Legg, P. J.

H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34(10), 1816–1822 (1998).
[CrossRef]

Lewis, S. A. E.

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Characterization of double Rayleigh scatter noise in Raman amplifiers,” IEEE Photon. Technol. Lett. 12(5), 528–530 (2000).
[CrossRef]

Marazzi, L.

Martinelli, M.

Mears, R. J.

Okada, T.

K. Aida, T. Okada, and Y. Hinako, “Multipath interference test method for distributed amplifier using self-heterodyne technique,” IEICE Trans. ELECTRON,  E 90-C(1), 18–24 (2007).

Parolari, P.

Shalom, H.

H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34(10), 1816–1822 (1998).
[CrossRef]

Sugliani, S.

G. Bolognini, S. Sugliani, and F. Di Pasquale, “Double Rayleigh scattering noise in Raman amplifiers using pump time-division-multiplexing schemes,” IEEE Photon. Technol. Lett. 16(5), 1286–1288 (2004).
[CrossRef]

Taylor, J. R.

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Characterization of double Rayleigh scatter noise in Raman amplifiers,” IEEE Photon. Technol. Lett. 12(5), 528–530 (2000).
[CrossRef]

Tur, M.

H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34(10), 1816–1822 (1998).
[CrossRef]

Zadok, A.

H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34(10), 1816–1822 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34(10), 1816–1822 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

G. Bolognini, S. Sugliani, and F. Di Pasquale, “Double Rayleigh scattering noise in Raman amplifiers using pump time-division-multiplexing schemes,” IEEE Photon. Technol. Lett. 16(5), 1286–1288 (2004).
[CrossRef]

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Characterization of double Rayleigh scatter noise in Raman amplifiers,” IEEE Photon. Technol. Lett. 12(5), 528–530 (2000).
[CrossRef]

S. Faralli and F. Di Pasquale, “Impact of double Rayleigh scattering noise in distributed higher order Raman pumping schemes,” IEEE Photon. Technol. Lett. 15(6), 804–806 (2003).
[CrossRef]

IEICE Trans. ELECTRON (1)

K. Aida, T. Okada, and Y. Hinako, “Multipath interference test method for distributed amplifier using self-heterodyne technique,” IEICE Trans. ELECTRON,  E 90-C(1), 18–24 (2007).

J. Lightwave Technol. (2)

Other (1)

A. Yariv, Optical Electronics in Modern Communications fifth edition (Oxford University Press, New York, USA, 1997), Chap. 15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Proposed test method for MPI measurement using chirped test signal with self-heterodyne detection

Fig. 2
Fig. 2

Chirp characteristics measurement using self-heterodyne fiber loop interferometer

Fig. 3
Fig. 3

Chirp characteristics of output lightwave emitted from directly modulated DFB-LD with 50-kHz rectangular pulse stream

Fig. 4
Fig. 4

Outline of drive signal calculation algorithm

Fig. 5
Fig. 5

Synthesized voltage waveform for DFB-LD direct modulation and attained test signal characteristics

Fig. 6
Fig. 6

MPI measurement of SMF and SMF/DS

Fig. 7
Fig. 7

MPI measurement of fiber lines with discrete reflections

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

MPI= k ESA P | f 1 f 2 | ESA ( P direct opt ) 2 ,
Δf( t )=Δ J Q ( Δ I LD (t) ) F 1 ( z(f) )+ k f Δ I LD ( t ) ,
Δ J Q ( a+2b I bias )Δ I LD ( t )+bΔ I LD ( t ) 2 ,
z(jω) k z τ d jω K 0 ( τ d jω ) K 1 ( τ d jω ) ,
Δ f tentative, 1 ( t )=Δ f target (t) Δ f tentative, n ( t )=Δ f tentative, n1 1δ f error (t).
Δ J Q (Δ I LD (t))=IFFT[ FFT( Δ f tentative, n ( t ) ) z(f) ]
MPI= k R 2 2α [L+ exp(2αL) 2α 1 2α ] k R :Rayleigh backscattering coefficient α:attenuation constant L:fiber length
α SMF :0.0451nep/km(0.196dB/km) α SMF/DS :0.0469nep/km(0.204dB/km) k R_SMF :5.39× 10 5 /km k R_SMF/DS :1.14× 10 4 /km
MPI= k R 2 2α [L+ exp(2αL) 2α 1 2α ] +( k FER + k NER ) k R 2α [1exp(2αL)]+ k FER k NER exp(2αL)

Metrics