Abstract

We compare the transmission performance of 112-Gb/s POLMUX-QPSK modulation over large-Aeff Pure-Silica core fiber and SSMF using EDFA-only amplification. The higher nonlinear threshold of the large-Aeff Pure-Silica core fiber allows for a 55% increase in transmission distance. By using back-propagation an additional 10% increase is observed. In case spans with equal length for both fiber types and two splices per span only would have been used, resulting in a lower span loss for the large-Aeff Pure-Silica core fiber, the total increase grows to 85%.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Veljanovski, V. Sleiffer, D. van den Borne, J. Capasso, H. Kuluslu, J. Seixas, V. Schramm, A. Tschersich, R. Nogueira, N. Pavlovic, K. Ivarson, S. Spaelter, and H. de Waardt, “125 Gb/s CP-QPSK Field Trial over 4108 km of Installed Submarine Cable,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPD3. http://www.opticsinfobase.org.janus.libr.tue.nl/abstract.cfm?URI=OFC-2011-PDPD3
  2. D. van den Borne, V. Sleiffer, M. S. Alfiad, S. L. Jansen, and T. Wuth, “Polmux-QPSK modulation and coherent detection: The challenge of long-haul 100G transmission,” in European Conference on Optical Communication, Paper 3.4.1 (2009).
  3. G. Charlet, M. Salsi, P. Tran, M. Bertolini, H. Mardoyan, J. Renaudier, O. Bertran-Pardo, and S. Bigo, “72x100Gb/s Transmission over Transoceanic Distance, Using Large Effective Area Fiber, Hybrid Raman-Erbium Amplification and Coherent Detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper PDPB6. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-PDPB6
  4. M. Salsi, C. Koebele, P. Tran, H. Mardoyan, S. Bigo, and G. Charlet, “80x100-Gbit/s transmission over 9,000km using erbium-doped fibre repeaters only,” in European Conference on Optical Communication, We.7.C.3 (2010).
  5. J. Cai, Y. Cai, C. Davidson, D. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Pilipetskii, G. Mohs, and N. Bergano, “Transmission of 96x100G Pre-Filtered PDM-RZ-QPSK Channels with 300% Spectral Efficiency over 10,608km and 400% Spectral Efficiency over 4,368km,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDPB10. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-PDPB10
  6. Y. Yamamoto, M. Hirano, and T. Sasaki, “A New Class of Optical Fiber to Support Large Capacity Transmission,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWA6. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-OWA6
  7. M. S. Alfiad, D. van den Borne, T. Wuth, M. Kuschnerov, and H. de Waardt, “On the Tolerance of 111-Gb/s POLMUX-RZ-DQPSK to Nonlinear Transmission Effects,” J. Lighwave Technol. 29(2), 162–170 (2011).
    [CrossRef]
  8. D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
  9. M. S. Alfiad, D. van den Borne, S. L. Jansen, T. Wuth, M. Kuschnerov, G. Grosso, A. Napoli, and H. de Waardt, “A Comparison of Electrical and Optical Dispersion Compensation for 111-Gb/s POLMUX-RZ-DQPSK,” J. Lighwave Technol. 27(16), 3590–3598 (2009).
    [CrossRef]
  10. V. Curri, P. Poggiolini, G. Bosco, A. Carena, and F. Forghieri, “Performance Evaluation of Long-Haul 111 Gb/s PM-QPSK Transmission Over Different Fiber Types,” Photonics Technology Letters 22(19), 1446–1448 (2010).
    [CrossRef]
  11. D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fibre nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quant. Electron. 16(5), 1217–1226 (2010).
    [CrossRef]
  12. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lighwave Technol. 26(20), 3416–3425 (2008).
    [CrossRef]
  13. F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J. 1(2), 144–152 (2009).
    [CrossRef]
  14. L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Implementation Efficient Nonlinear Equalizer Based on Correlated Digital Backpropagation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWW3. http://www.opticsinfobase.org.janus.libr.tue.nl/abstract.cfm?URI=OFC-2011-OWW3
  15. Z. Maalej, V. Sleiffer, A. Napoli, M. Kuschnerov, B. Spinnler, and N. Hanik, “Reduced complexity for back-propagation method algorithm,” IEEE Phot. Conf., to be published (2011).

2011

M. S. Alfiad, D. van den Borne, T. Wuth, M. Kuschnerov, and H. de Waardt, “On the Tolerance of 111-Gb/s POLMUX-RZ-DQPSK to Nonlinear Transmission Effects,” J. Lighwave Technol. 29(2), 162–170 (2011).
[CrossRef]

2010

V. Curri, P. Poggiolini, G. Bosco, A. Carena, and F. Forghieri, “Performance Evaluation of Long-Haul 111 Gb/s PM-QPSK Transmission Over Different Fiber Types,” Photonics Technology Letters 22(19), 1446–1448 (2010).
[CrossRef]

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fibre nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quant. Electron. 16(5), 1217–1226 (2010).
[CrossRef]

2009

M. S. Alfiad, D. van den Borne, S. L. Jansen, T. Wuth, M. Kuschnerov, G. Grosso, A. Napoli, and H. de Waardt, “A Comparison of Electrical and Optical Dispersion Compensation for 111-Gb/s POLMUX-RZ-DQPSK,” J. Lighwave Technol. 27(16), 3590–3598 (2009).
[CrossRef]

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J. 1(2), 144–152 (2009).
[CrossRef]

2008

E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lighwave Technol. 26(20), 3416–3425 (2008).
[CrossRef]

1977

D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

Alfiad, M. S.

M. S. Alfiad, D. van den Borne, T. Wuth, M. Kuschnerov, and H. de Waardt, “On the Tolerance of 111-Gb/s POLMUX-RZ-DQPSK to Nonlinear Transmission Effects,” J. Lighwave Technol. 29(2), 162–170 (2011).
[CrossRef]

M. S. Alfiad, D. van den Borne, S. L. Jansen, T. Wuth, M. Kuschnerov, G. Grosso, A. Napoli, and H. de Waardt, “A Comparison of Electrical and Optical Dispersion Compensation for 111-Gb/s POLMUX-RZ-DQPSK,” J. Lighwave Technol. 27(16), 3590–3598 (2009).
[CrossRef]

Bayvel, P.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fibre nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quant. Electron. 16(5), 1217–1226 (2010).
[CrossRef]

Behrens, C.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fibre nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quant. Electron. 16(5), 1217–1226 (2010).
[CrossRef]

Bosco, G.

V. Curri, P. Poggiolini, G. Bosco, A. Carena, and F. Forghieri, “Performance Evaluation of Long-Haul 111 Gb/s PM-QPSK Transmission Over Different Fiber Types,” Photonics Technology Letters 22(19), 1446–1448 (2010).
[CrossRef]

Carena, A.

V. Curri, P. Poggiolini, G. Bosco, A. Carena, and F. Forghieri, “Performance Evaluation of Long-Haul 111 Gb/s PM-QPSK Transmission Over Different Fiber Types,” Photonics Technology Letters 22(19), 1446–1448 (2010).
[CrossRef]

Curri, V.

V. Curri, P. Poggiolini, G. Bosco, A. Carena, and F. Forghieri, “Performance Evaluation of Long-Haul 111 Gb/s PM-QPSK Transmission Over Different Fiber Types,” Photonics Technology Letters 22(19), 1446–1448 (2010).
[CrossRef]

de Waardt, H.

M. S. Alfiad, D. van den Borne, T. Wuth, M. Kuschnerov, and H. de Waardt, “On the Tolerance of 111-Gb/s POLMUX-RZ-DQPSK to Nonlinear Transmission Effects,” J. Lighwave Technol. 29(2), 162–170 (2011).
[CrossRef]

M. S. Alfiad, D. van den Borne, S. L. Jansen, T. Wuth, M. Kuschnerov, G. Grosso, A. Napoli, and H. de Waardt, “A Comparison of Electrical and Optical Dispersion Compensation for 111-Gb/s POLMUX-RZ-DQPSK,” J. Lighwave Technol. 27(16), 3590–3598 (2009).
[CrossRef]

Forghieri, F.

V. Curri, P. Poggiolini, G. Bosco, A. Carena, and F. Forghieri, “Performance Evaluation of Long-Haul 111 Gb/s PM-QPSK Transmission Over Different Fiber Types,” Photonics Technology Letters 22(19), 1446–1448 (2010).
[CrossRef]

Grosso, G.

M. S. Alfiad, D. van den Borne, S. L. Jansen, T. Wuth, M. Kuschnerov, G. Grosso, A. Napoli, and H. de Waardt, “A Comparison of Electrical and Optical Dispersion Compensation for 111-Gb/s POLMUX-RZ-DQPSK,” J. Lighwave Technol. 27(16), 3590–3598 (2009).
[CrossRef]

Hellerbrand, S.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fibre nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quant. Electron. 16(5), 1217–1226 (2010).
[CrossRef]

Ip, E.

E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lighwave Technol. 26(20), 3416–3425 (2008).
[CrossRef]

Jansen, S. L.

M. S. Alfiad, D. van den Borne, S. L. Jansen, T. Wuth, M. Kuschnerov, G. Grosso, A. Napoli, and H. de Waardt, “A Comparison of Electrical and Optical Dispersion Compensation for 111-Gb/s POLMUX-RZ-DQPSK,” J. Lighwave Technol. 27(16), 3590–3598 (2009).
[CrossRef]

Kahn, J. M.

E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lighwave Technol. 26(20), 3416–3425 (2008).
[CrossRef]

Killey, R. I.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fibre nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quant. Electron. 16(5), 1217–1226 (2010).
[CrossRef]

Kuschnerov, M.

M. S. Alfiad, D. van den Borne, T. Wuth, M. Kuschnerov, and H. de Waardt, “On the Tolerance of 111-Gb/s POLMUX-RZ-DQPSK to Nonlinear Transmission Effects,” J. Lighwave Technol. 29(2), 162–170 (2011).
[CrossRef]

M. S. Alfiad, D. van den Borne, S. L. Jansen, T. Wuth, M. Kuschnerov, G. Grosso, A. Napoli, and H. de Waardt, “A Comparison of Electrical and Optical Dispersion Compensation for 111-Gb/s POLMUX-RZ-DQPSK,” J. Lighwave Technol. 27(16), 3590–3598 (2009).
[CrossRef]

Li, G.

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J. 1(2), 144–152 (2009).
[CrossRef]

Makovejs, S.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fibre nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quant. Electron. 16(5), 1217–1226 (2010).
[CrossRef]

Marcuse, D.

D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

Millar, D. S.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fibre nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quant. Electron. 16(5), 1217–1226 (2010).
[CrossRef]

Napoli, A.

M. S. Alfiad, D. van den Borne, S. L. Jansen, T. Wuth, M. Kuschnerov, G. Grosso, A. Napoli, and H. de Waardt, “A Comparison of Electrical and Optical Dispersion Compensation for 111-Gb/s POLMUX-RZ-DQPSK,” J. Lighwave Technol. 27(16), 3590–3598 (2009).
[CrossRef]

Poggiolini, P.

V. Curri, P. Poggiolini, G. Bosco, A. Carena, and F. Forghieri, “Performance Evaluation of Long-Haul 111 Gb/s PM-QPSK Transmission Over Different Fiber Types,” Photonics Technology Letters 22(19), 1446–1448 (2010).
[CrossRef]

Savory, S. J.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fibre nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quant. Electron. 16(5), 1217–1226 (2010).
[CrossRef]

van den Borne, D.

M. S. Alfiad, D. van den Borne, T. Wuth, M. Kuschnerov, and H. de Waardt, “On the Tolerance of 111-Gb/s POLMUX-RZ-DQPSK to Nonlinear Transmission Effects,” J. Lighwave Technol. 29(2), 162–170 (2011).
[CrossRef]

M. S. Alfiad, D. van den Borne, S. L. Jansen, T. Wuth, M. Kuschnerov, G. Grosso, A. Napoli, and H. de Waardt, “A Comparison of Electrical and Optical Dispersion Compensation for 111-Gb/s POLMUX-RZ-DQPSK,” J. Lighwave Technol. 27(16), 3590–3598 (2009).
[CrossRef]

Wuth, T.

M. S. Alfiad, D. van den Borne, T. Wuth, M. Kuschnerov, and H. de Waardt, “On the Tolerance of 111-Gb/s POLMUX-RZ-DQPSK to Nonlinear Transmission Effects,” J. Lighwave Technol. 29(2), 162–170 (2011).
[CrossRef]

M. S. Alfiad, D. van den Borne, S. L. Jansen, T. Wuth, M. Kuschnerov, G. Grosso, A. Napoli, and H. de Waardt, “A Comparison of Electrical and Optical Dispersion Compensation for 111-Gb/s POLMUX-RZ-DQPSK,” J. Lighwave Technol. 27(16), 3590–3598 (2009).
[CrossRef]

Yaman, F.

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J. 1(2), 144–152 (2009).
[CrossRef]

Bell Syst. Tech. J.

D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

IEEE J. Sel. Top. Quant. Electron.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fibre nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quant. Electron. 16(5), 1217–1226 (2010).
[CrossRef]

IEEE Photon. J.

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J. 1(2), 144–152 (2009).
[CrossRef]

J. Lighwave Technol.

M. S. Alfiad, D. van den Borne, T. Wuth, M. Kuschnerov, and H. de Waardt, “On the Tolerance of 111-Gb/s POLMUX-RZ-DQPSK to Nonlinear Transmission Effects,” J. Lighwave Technol. 29(2), 162–170 (2011).
[CrossRef]

E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lighwave Technol. 26(20), 3416–3425 (2008).
[CrossRef]

M. S. Alfiad, D. van den Borne, S. L. Jansen, T. Wuth, M. Kuschnerov, G. Grosso, A. Napoli, and H. de Waardt, “A Comparison of Electrical and Optical Dispersion Compensation for 111-Gb/s POLMUX-RZ-DQPSK,” J. Lighwave Technol. 27(16), 3590–3598 (2009).
[CrossRef]

Photonics Technology Letters

V. Curri, P. Poggiolini, G. Bosco, A. Carena, and F. Forghieri, “Performance Evaluation of Long-Haul 111 Gb/s PM-QPSK Transmission Over Different Fiber Types,” Photonics Technology Letters 22(19), 1446–1448 (2010).
[CrossRef]

Other

V. Veljanovski, V. Sleiffer, D. van den Borne, J. Capasso, H. Kuluslu, J. Seixas, V. Schramm, A. Tschersich, R. Nogueira, N. Pavlovic, K. Ivarson, S. Spaelter, and H. de Waardt, “125 Gb/s CP-QPSK Field Trial over 4108 km of Installed Submarine Cable,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPD3. http://www.opticsinfobase.org.janus.libr.tue.nl/abstract.cfm?URI=OFC-2011-PDPD3

D. van den Borne, V. Sleiffer, M. S. Alfiad, S. L. Jansen, and T. Wuth, “Polmux-QPSK modulation and coherent detection: The challenge of long-haul 100G transmission,” in European Conference on Optical Communication, Paper 3.4.1 (2009).

G. Charlet, M. Salsi, P. Tran, M. Bertolini, H. Mardoyan, J. Renaudier, O. Bertran-Pardo, and S. Bigo, “72x100Gb/s Transmission over Transoceanic Distance, Using Large Effective Area Fiber, Hybrid Raman-Erbium Amplification and Coherent Detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper PDPB6. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-PDPB6

M. Salsi, C. Koebele, P. Tran, H. Mardoyan, S. Bigo, and G. Charlet, “80x100-Gbit/s transmission over 9,000km using erbium-doped fibre repeaters only,” in European Conference on Optical Communication, We.7.C.3 (2010).

J. Cai, Y. Cai, C. Davidson, D. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Pilipetskii, G. Mohs, and N. Bergano, “Transmission of 96x100G Pre-Filtered PDM-RZ-QPSK Channels with 300% Spectral Efficiency over 10,608km and 400% Spectral Efficiency over 4,368km,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDPB10. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-PDPB10

Y. Yamamoto, M. Hirano, and T. Sasaki, “A New Class of Optical Fiber to Support Large Capacity Transmission,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWA6. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-OWA6

L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Implementation Efficient Nonlinear Equalizer Based on Correlated Digital Backpropagation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWW3. http://www.opticsinfobase.org.janus.libr.tue.nl/abstract.cfm?URI=OFC-2011-OWW3

Z. Maalej, V. Sleiffer, A. Napoli, M. Kuschnerov, B. Spinnler, and N. Hanik, “Reduced complexity for back-propagation method algorithm,” IEEE Phot. Conf., to be published (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. (a) Transmitter (Tx), (b) Re-circulating loop setup, (c) Polarization-diversity coherent receiver (Rx), (d) Optical eyes and spectrum. WSS: Wavelength Selective Switch, LSPS: Loop-Synchronized Polarization Scrambler.

Fig. 2
Fig. 2

(a) Back-to-back curves: Theoretical limit and measured curve, (b) Recovered Constellations, (c) log10(BER) versus launch power per channel after ~4500km of transmission distance, (d) log10(BER) versus transmission distance

Fig. 3
Fig. 3

Log10(BER) versus launch power per channel after ~4500km of transmission distance for (a) SSMF, and (b) LA-PSCF as fiber type.

Fig. 4
Fig. 4

Log10(BER) versus transmission distance for WDM transmission

Tables (1)

Tables Icon

Table 1 Average Fiber Parameters

Metrics