Abstract

We investigated ultra-long-haul transmission of polarization-switched QPSK (PS-QPSK) and polarization-division-multiplexed BPSK (PDM-BPSK) at 42.9 Gbit/s experimentally as well as by means of computer simulations. PDM-BPSK allowed transmission distances in excess of 14,040 km to be achieved, compared to 13,640 km for PS-QPSK. However, PS-QPSK offers a significant reduction in receiver complexity due to the lower symbol-rate.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).
  2. P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
    [CrossRef] [PubMed]
  3. D. G. Foursa, C. R. Davidson, M. Nissov, M. A. Mills, L. Xu, J. X. Cai, A. N. Pilipetskii, Y. Cai, C. Breverman, R. R. Cordell, T. J. Carvelli, P. C. Corbett, H. D. Kidorf, and N. S. Bergano, "2.56 Tb/s (256x10 Gb/s) transmission over 11,000 km using hybrid Raman/EDFAs with 80 nm of continuous bandwidth," in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper FC3.
  4. J. Cai, D. Foursa, L. Liu, C. Davidson, Y. Cai, W. Patterson, A. Lucero, B. Bakhshi, G. Mohs, P. Corbett, V. Gupta, W. Anderson, M. Vaa, G. Domagala, M. Mazurczyk, H. Li, M. Nissov, A. Pilipetskii, and N. Bergano, "RZ-DPSK field trial over 13,100 km of installed non slope-matched submarine fibers," in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, (2004), paper PD34.
  5. G. Charlet, M. Salsi, H. Mardoyan, P. Tran, J. Renaudier, S. Bigo, M. Astruc, P. Sillard, L. Provost, and F. Cerou, “Transmission of 81 channels at 40Gbit/s over a transpacific-distance erbium-only link, using PDM-BPSK modulation, coherent detection, and a new large effective area fibre,” in 34th European Conference on Optical Communication, 2008. ECOC 2008 (IEEE,2008), paper Th.3.E.3.
  6. D. Foursa, Y. Cai, J. Cai, C. Davidson, O. Sinkin, B. Anderson, A. Lucero, A. Pilipetskii, G. Mohs, and N. Bergano, "Coherent 40 Gb/s transmission with high spectral efficiency over transpacific distance," in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMI4.
  7. C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear Distortion in Transmission of Higher Order Modulation Formats,” IEEE Photon. Technol. Lett. 22(15), 1111–1113 (2010).
    [CrossRef]
  8. J. G. Proakis and M. Salehi, Digital Communications, 5th ed. (McGraw-Hill, 2007).
  9. M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical links?” Opt. Express 17(13), 10814–10819 (2009).
    [CrossRef] [PubMed]
  10. E. Agrell and M. Karlsson, “Power-Efficient Modulation Formats in Coherent Transmission Systems,” J. Lightwave Technol. 27(22), 5115–5126 (2009).
    [CrossRef]
  11. D. S. Millar, D. Lavery, S. Makovejs, C. Behrens, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Generation and long-haul transmission of polarization-switched QPSK at 42.9 Gb/s,” Opt. Express 19(10), 9296–9302 (2011).
    [CrossRef] [PubMed]
  12. C. Behrens, D. Lavery, D. S. Millar, S. Makovejs, B. C. Thomsen, R. I. Killey, S. J. Savory, and P. Bayvel, "Ultra-long-haul transmission of 7×42.9Gbit/s PS-QPSK and PM-BPSK," in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Mo.2.B.2.
  13. D. S. Millar and S. J. Savory, “Blind adaptive equalization of polarization-switched QPSK modulation,” Opt. Express 19(9), 8533–8538 (2011).
    [CrossRef] [PubMed]
  14. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
    [CrossRef] [PubMed]
  15. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, New York, 1995).
  16. F. Curti, B. Daino, G. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principil states of polarization in single-mode fibers,” J. Lightwave Technol. 8(8), 1162–1166 (1990).
    [CrossRef]
  17. C. Behrens, S. Makovejs, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Pulse-shaping versus digital backpropagation in 224Gbit/s PDM-16QAM transmission,” Opt. Express 19(14), 12879–12884 (2011).
    [CrossRef] [PubMed]
  18. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [CrossRef] [PubMed]

2011 (3)

2010 (1)

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear Distortion in Transmission of Higher Order Modulation Formats,” IEEE Photon. Technol. Lett. 22(15), 1111–1113 (2010).
[CrossRef]

2009 (2)

2008 (1)

2007 (1)

2001 (1)

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
[CrossRef] [PubMed]

1990 (1)

F. Curti, B. Daino, G. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principil states of polarization in single-mode fibers,” J. Lightwave Technol. 8(8), 1162–1166 (1990).
[CrossRef]

1948 (1)

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).

Agrell, E.

Bayvel, P.

Behrens, C.

Chen, M.

C. Behrens, S. Makovejs, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Pulse-shaping versus digital backpropagation in 224Gbit/s PDM-16QAM transmission,” Opt. Express 19(14), 12879–12884 (2011).
[CrossRef] [PubMed]

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear Distortion in Transmission of Higher Order Modulation Formats,” IEEE Photon. Technol. Lett. 22(15), 1111–1113 (2010).
[CrossRef]

Curti, F.

F. Curti, B. Daino, G. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principil states of polarization in single-mode fibers,” J. Lightwave Technol. 8(8), 1162–1166 (1990).
[CrossRef]

Daino, B.

F. Curti, B. Daino, G. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principil states of polarization in single-mode fibers,” J. Lightwave Technol. 8(8), 1162–1166 (1990).
[CrossRef]

De Marchis, G.

F. Curti, B. Daino, G. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principil states of polarization in single-mode fibers,” J. Lightwave Technol. 8(8), 1162–1166 (1990).
[CrossRef]

Gavioli, G.

Karlsson, M.

Killey, R. I.

Lavery, D.

Makovejs, S.

Matera, F.

F. Curti, B. Daino, G. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principil states of polarization in single-mode fibers,” J. Lightwave Technol. 8(8), 1162–1166 (1990).
[CrossRef]

Millar, D. S.

Mitra, P. P.

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
[CrossRef] [PubMed]

Savory, S. J.

Shannon, C. E.

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).

Stark, J. B.

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
[CrossRef] [PubMed]

Thomsen, B. C.

Bell Syst. Tech. J. (1)

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).

IEEE Photon. Technol. Lett. (1)

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear Distortion in Transmission of Higher Order Modulation Formats,” IEEE Photon. Technol. Lett. 22(15), 1111–1113 (2010).
[CrossRef]

J. Lightwave Technol. (2)

E. Agrell and M. Karlsson, “Power-Efficient Modulation Formats in Coherent Transmission Systems,” J. Lightwave Technol. 27(22), 5115–5126 (2009).
[CrossRef]

F. Curti, B. Daino, G. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principil states of polarization in single-mode fibers,” J. Lightwave Technol. 8(8), 1162–1166 (1990).
[CrossRef]

Nature (1)

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
[CrossRef] [PubMed]

Opt. Express (6)

Other (7)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, New York, 1995).

C. Behrens, D. Lavery, D. S. Millar, S. Makovejs, B. C. Thomsen, R. I. Killey, S. J. Savory, and P. Bayvel, "Ultra-long-haul transmission of 7×42.9Gbit/s PS-QPSK and PM-BPSK," in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Mo.2.B.2.

J. G. Proakis and M. Salehi, Digital Communications, 5th ed. (McGraw-Hill, 2007).

D. G. Foursa, C. R. Davidson, M. Nissov, M. A. Mills, L. Xu, J. X. Cai, A. N. Pilipetskii, Y. Cai, C. Breverman, R. R. Cordell, T. J. Carvelli, P. C. Corbett, H. D. Kidorf, and N. S. Bergano, "2.56 Tb/s (256x10 Gb/s) transmission over 11,000 km using hybrid Raman/EDFAs with 80 nm of continuous bandwidth," in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper FC3.

J. Cai, D. Foursa, L. Liu, C. Davidson, Y. Cai, W. Patterson, A. Lucero, B. Bakhshi, G. Mohs, P. Corbett, V. Gupta, W. Anderson, M. Vaa, G. Domagala, M. Mazurczyk, H. Li, M. Nissov, A. Pilipetskii, and N. Bergano, "RZ-DPSK field trial over 13,100 km of installed non slope-matched submarine fibers," in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, (2004), paper PD34.

G. Charlet, M. Salsi, H. Mardoyan, P. Tran, J. Renaudier, S. Bigo, M. Astruc, P. Sillard, L. Provost, and F. Cerou, “Transmission of 81 channels at 40Gbit/s over a transpacific-distance erbium-only link, using PDM-BPSK modulation, coherent detection, and a new large effective area fibre,” in 34th European Conference on Optical Communication, 2008. ECOC 2008 (IEEE,2008), paper Th.3.E.3.

D. Foursa, Y. Cai, J. Cai, C. Davidson, O. Sinkin, B. Anderson, A. Lucero, A. Pilipetskii, G. Mohs, and N. Bergano, "Coherent 40 Gb/s transmission with high spectral efficiency over transpacific distance," in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMI4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Spectral efficiency versus transmission reach for various WDM-experiments employing a variety of modulation formats, fiber types and amplification techniques. The linear limit assumes ASE noise as the only limitation [1], while the nonlinear limit additionally assumes XPM to be the dominant nonlinearity [2].

Fig. 2
Fig. 2

Transmitter used for WDM transmission of (a) PS-QPSK and (b) PDM-BPSK.

Fig. 3
Fig. 3

Back to back measurements of the bit-error rate with varying OSNR for (a) PDM-BPSK and (b) PS-QPSK.

Fig. 4
Fig. 4

Reach as a function of launch power at BER = 3.8 × 10−3 for PDM-BPSK, PS-QPSK and PDM-QPSK [11]. Markers show experimental results while lines denote simulated performance.

Tables (1)

Tables Icon

Table 1 Fiber and link parameters

Metrics