Abstract

We propose a self-wavelength initialization method for the waveguide Bragg-grating based tunable external cavity laser. Reflection characteristics of the Bragg-grating, and the wavelength routing property in the wavelength division multiplexing-passive optical network (WDM-PON) were used in our proposed method. By adding a cost-effective and low- power broadband light source in the central office, the tunable laser can align its output wavelength with the wavelength at the center of the pass band of the WDM multiplexer. This method can be applicable for the Bragg-grating based tunable laser, which is placed either in the central office or in the subscriber region. The operating principle and the feasibility of the proposed method were described by evaluating the transmission performance. By using our initialization method, a tunable laser with a Bragg-grating can be used as a true colorless light source for the WDM-PON.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Milosavljevic, P. Kourtessis, W. Lim, and J. M. Senior, “Next Generation PONs with Wireless Backhauling,” in Proceedings of the ICTON (2011)
  2. H. Mickelsson, “WDM-PON in Mobile Backhaul,” in Proceedings of the ICTON (2011)
  3. L. G. Kazovsky, W. Shaw, D. Gutierrez, N. Cheng, and S. Wong, “Next-generation optical access networks,” J. Lightwave Technol. 25(11), 3428–3442 (2007).
    [CrossRef]
  4. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network technologies for broadband access: a review,” J. Opt. Networking 4(11), 737–758 (2005).
    [CrossRef]
  5. C. K. Chan, L. K. Chem, and C. Lin, “WDM PON for next-generation optical broadband access networks,” in Proceedings of the OECC (2006)
  6. Y. C. Chung, “Challenges toward practical WDM PON”, in Proceedings of the OECC (2006).
  7. J. H. Lee, S. Cho, H. Lee, E. Jung, J. Yu, B. Kim, S. Lee, J. Koh, B. Sung, S. King, J. Kim, K. Jeong, and S. S. Lee, “First Commercial Deployment of a Colorless Gigabit WDM/TDM Hybrid PON System Using Remote Protocol Terminator,” J. Lightwave Technol. 28(4), 344–351 (2010).
    [CrossRef]
  8. L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, “Tunable semiconductor lasers: a tutorial,” J. Lightwave Technol. 22(1), 193–202 (2004).
    [CrossRef]
  9. J. Buus and E. J. Murphy, “Tunable lasers in optical networks,” J. Lightwave Technol. 24(1), 5–11 (2006).
    [CrossRef]
  10. J. H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable external cavity laser based on Polymer waveguide platform for WDM Access network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
    [CrossRef]
  11. G. Jeong, J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, and B. W. Kim, “Over 26 nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
    [CrossRef]
  12. Y.-O. Noh, H.-J. Lee, J. J. Ju, M.-S. Kim, S. H. Oh, and M.-C. Oh, “Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings,” Opt. Express 16(22), 18194–18201 (2008).
    [CrossRef] [PubMed]
  13. G. Sarlet, G. Morthier, and R. Baets, “Control of widely tunable SSG-DBR lasers for dense wavelength division multiplexing,” J. Lightwave Technol. 18(8), 1128–1138 (2000).
    [CrossRef]
  14. J. H. Lee, H. H. Yoon, M. Y. Oark, and B. W. Kim, “Novel wavelength initialization of the Bragg-grating based tunable external cavity laser for WDM-PON,” in Proceedings of the ECOC (2007), paper P119.
  15. J. Moon, K. Choi, S. Mun, and C. Lee, “A self wavelength managed tunable laser for WDM-PONs,” in Proceedings of the ECOC (2008), paper Th.1.F.2.
  16. S. Mun, J. Moon, S. Oh, and C. Lee, “A self wavelength tracking method for a cost effective WDM-PON with tunable lasers,” in Proceeding of the OFC/NFOEC (2010), paper OWG7.
  17. S. Moon, H. Lee, and C. Lee, “Automatic Wavelength Control Method Using Rayleigh Rackscattering for WDM-PON with Tunable Lasers,” in Proceedings of the CLEO (2011), paper CFH1.
  18. J. H. Lee, H. Lee, S. Cho, K. Kim, E. Jung, Y. S. Jang, J. H. Lee, and S. S. Lee, “Self-Wavelength Initialization Method for the Bragg-Grating Based Tunable Light Source in WDM network,” in Proceedings of the ECOC (2011), Th.11.C.1.
  19. J. H. Lee, S. Cho, Y. S. Jang, and S. S. Lee, “Enhancement of Power Budget in RSOA based Loop-back type WDM-PON by using the Cascaded RSOAs,” in Proceedings of the ICTON (2010), paper Tu.B1.5.
  20. N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol. 7(7), 1071–1082 (1989).
    [CrossRef]

2010 (1)

2008 (1)

2007 (1)

2006 (2)

J. Buus and E. J. Murphy, “Tunable lasers in optical networks,” J. Lightwave Technol. 24(1), 5–11 (2006).
[CrossRef]

G. Jeong, J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, and B. W. Kim, “Over 26 nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

2005 (2)

J. H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable external cavity laser based on Polymer waveguide platform for WDM Access network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network technologies for broadband access: a review,” J. Opt. Networking 4(11), 737–758 (2005).
[CrossRef]

2004 (1)

2000 (1)

1989 (1)

N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol. 7(7), 1071–1082 (1989).
[CrossRef]

Akulova, Y.

Baets, R.

Banerjee, A.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network technologies for broadband access: a review,” J. Opt. Networking 4(11), 737–758 (2005).
[CrossRef]

Barton, J. S.

Buus, J.

Cheng, N.

Cho, S.

Cho, S. H.

G. Jeong, J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, and B. W. Kim, “Over 26 nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

Cho, S.-H.

J. H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable external cavity laser based on Polymer waveguide platform for WDM Access network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Clarke, F.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network technologies for broadband access: a review,” J. Opt. Networking 4(11), 737–758 (2005).
[CrossRef]

Coldren, C. W.

Coldren, L. A.

Fish, G. A.

Gutierrez, D.

Jeong, G.

G. Jeong, J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, and B. W. Kim, “Over 26 nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

J. H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable external cavity laser based on Polymer waveguide platform for WDM Access network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Jeong, K.

Johansson, L.

Ju, J. J.

Jung, E.

Kazovsky, L. G.

Kim, B.

Kim, B. W.

G. Jeong, J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, and B. W. Kim, “Over 26 nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

J. H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable external cavity laser based on Polymer waveguide platform for WDM Access network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Kim, C. Y.

G. Jeong, J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, and B. W. Kim, “Over 26 nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

J. H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable external cavity laser based on Polymer waveguide platform for WDM Access network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Kim, J.

Kim, K.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network technologies for broadband access: a review,” J. Opt. Networking 4(11), 737–758 (2005).
[CrossRef]

Kim, M.-S.

King, S.

Koh, J.

Kramer, G.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network technologies for broadband access: a review,” J. Opt. Networking 4(11), 737–758 (2005).
[CrossRef]

Lee, H.

Lee, H.-J.

Lee, J. H.

J. H. Lee, S. Cho, H. Lee, E. Jung, J. Yu, B. Kim, S. Lee, J. Koh, B. Sung, S. King, J. Kim, K. Jeong, and S. S. Lee, “First Commercial Deployment of a Colorless Gigabit WDM/TDM Hybrid PON System Using Remote Protocol Terminator,” J. Lightwave Technol. 28(4), 344–351 (2010).
[CrossRef]

G. Jeong, J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, and B. W. Kim, “Over 26 nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

J. H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable external cavity laser based on Polymer waveguide platform for WDM Access network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Lee, S.

Lee, S. S.

Lee, W.

G. Jeong, J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, and B. W. Kim, “Over 26 nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

J. H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable external cavity laser based on Polymer waveguide platform for WDM Access network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Morthier, G.

Mukherjee, B.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network technologies for broadband access: a review,” J. Opt. Networking 4(11), 737–758 (2005).
[CrossRef]

Murphy, E. J.

Noh, Y.-O.

Oh, M.-C.

Oh, S. H.

Olsson, N. A.

N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol. 7(7), 1071–1082 (1989).
[CrossRef]

Park, M. Y.

G. Jeong, J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, and B. W. Kim, “Over 26 nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

J. H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable external cavity laser based on Polymer waveguide platform for WDM Access network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Park, Y.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network technologies for broadband access: a review,” J. Opt. Networking 4(11), 737–758 (2005).
[CrossRef]

Sarlet, G.

Shaw, W.

Song, H.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network technologies for broadband access: a review,” J. Opt. Networking 4(11), 737–758 (2005).
[CrossRef]

Sung, B.

Wong, S.

Yang, S.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network technologies for broadband access: a review,” J. Opt. Networking 4(11), 737–758 (2005).
[CrossRef]

Yu, J.

IEEE Photon. Technol. Lett. (2)

J. H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable external cavity laser based on Polymer waveguide platform for WDM Access network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

G. Jeong, J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, and B. W. Kim, “Over 26 nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

J. Lightwave Technol. (6)

J. Opt. Networking (1)

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network technologies for broadband access: a review,” J. Opt. Networking 4(11), 737–758 (2005).
[CrossRef]

Opt. Express (1)

Other (10)

J. H. Lee, H. H. Yoon, M. Y. Oark, and B. W. Kim, “Novel wavelength initialization of the Bragg-grating based tunable external cavity laser for WDM-PON,” in Proceedings of the ECOC (2007), paper P119.

J. Moon, K. Choi, S. Mun, and C. Lee, “A self wavelength managed tunable laser for WDM-PONs,” in Proceedings of the ECOC (2008), paper Th.1.F.2.

S. Mun, J. Moon, S. Oh, and C. Lee, “A self wavelength tracking method for a cost effective WDM-PON with tunable lasers,” in Proceeding of the OFC/NFOEC (2010), paper OWG7.

S. Moon, H. Lee, and C. Lee, “Automatic Wavelength Control Method Using Rayleigh Rackscattering for WDM-PON with Tunable Lasers,” in Proceedings of the CLEO (2011), paper CFH1.

J. H. Lee, H. Lee, S. Cho, K. Kim, E. Jung, Y. S. Jang, J. H. Lee, and S. S. Lee, “Self-Wavelength Initialization Method for the Bragg-Grating Based Tunable Light Source in WDM network,” in Proceedings of the ECOC (2011), Th.11.C.1.

J. H. Lee, S. Cho, Y. S. Jang, and S. S. Lee, “Enhancement of Power Budget in RSOA based Loop-back type WDM-PON by using the Cascaded RSOAs,” in Proceedings of the ICTON (2010), paper Tu.B1.5.

C. K. Chan, L. K. Chem, and C. Lin, “WDM PON for next-generation optical broadband access networks,” in Proceedings of the OECC (2006)

Y. C. Chung, “Challenges toward practical WDM PON”, in Proceedings of the OECC (2006).

M. Milosavljevic, P. Kourtessis, W. Lim, and J. M. Senior, “Next Generation PONs with Wireless Backhauling,” in Proceedings of the ICTON (2011)

H. Mickelsson, “WDM-PON in Mobile Backhaul,” in Proceedings of the ICTON (2011)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Simplified configuration of the WDM-PON using the Bragg-grating based tunable external cavity laser. Inset is the lasing principle of the Bragg-grating based tunable external cavity laser

Fig. 2
Fig. 2

WDM-PON link configurations (a) tunable lasers for both upstream- and downstream transmission (b) tunable lasers for upstream transmission and reflective type transmitters for downstream transmission. The simplified structures of the tunable transceiver are sketched in the inset of the Fig. 2(a) and Fig. 2(b).

Fig. 3
Fig. 3

(a) Simplified diagram of the transceiver in the configuration shown in Fig. 2(a), and (b) flow chart for the wavelength initialization process

Fig. 4
Fig. 4

the reflected optical power versus heater power, the optical spectrum of the reflected output when the wavelength of the Bragg reflector and the external light is aligned and misaligned.

Fig. 5
Fig. 5

Experimental setup to investigate two different cases: (a) tunable lasers located in the central office and (b) tunable lasers located in the subscriber region.

Fig. 6
Fig. 6

Superposition of the laser output spectrum under different external optical injection ratios. The channel spacing of the MUX/DeMUX were (a) 200 GHz and (b) 100 GHz

Fig. 7
Fig. 7

Downstream bit error rate plots after (a) 0 km transmission and (b) 40 km transmission

Fig. 8
Fig. 8

Upstream bit error rate plots using MUX spacing of (a) 200 GHz and (b) 100 GHz

Metrics